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Preface 

Diffusion is a universal phenomenon that controls a wide range of physical, 
chemical, and biological processes. The transport of spatially constrained molecules 
and small particles is ubiquitous in nature and technology, and plays an essential 
role in different processes. Understanding the physics of diffusion under conditions 
of confinement is essential for a number of biological phenomena and potential 
technological applications in micro- and nanofluidics, among others. Examples 
include diffusion of ions and macromolecular solutes through biological membrane 
channels, transport in zeolites, catalytic reactions, nanostructures of complex 
geometry, artificially produced pores in thin solid films, and protein and solid-
state nanopores as single-molecule biosensors for detection and structural analysis 
of individual molecules. Also, geometrical constraints can induce novel dynamical 
scenarios, such as separation techniques of size-dispersed particles. 

Aside from the development of experimental procedures, the problem of particle 
transport through confined quasi-one-dimensional structures has led to recent 
theoretical efforts to study the diffusion dynamics appearing in those geometries. 
In principle, the traditional method of solving the Smoluchowski equation with 
the necessary boundary conditions can be used to examine this confinement. While 
this approach has been effective when the system’s boundaries have fairly regular 
shapes, it is exceedingly challenging to address the boundary value problem when 
the boundaries are uneven or periodic. To overcome this problem, we can simplify 
the description by reducing the system’s dimensionality, therefore preserving only 
the main direction of transport and accounting for the irregularity of these borders 
by means of an entropic potential. Early studies by M.H. Jacobs and R. Zwanzig 
gave way to renewed research on this subject. 

Studies on diffusion under confinement are typically difficult to understand for 
young scientists and students because of the extensive background on diffusion 
processes, physics, and mathematics that is required. All of this information is 
provided in this book, which is essentially self-contained as a result of our efforts 
to make it accessible to an audience of students from a variety of different 
backgrounds. We also provide the necessary mathematical details, so students 
can follow the technical process required to solve each problem. Readers will
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vi Preface

also find detailed explanations of the main results based on the last 30 years 
of research devoted to studying diffusion under confinement. Lastly, because the 
approximations used when developing theoretical results are strongly dependent on 
the hypotheses, we also provide a detailed discussion on how to perform Brownian 
dynamics simulations to evaluate the range of applicability of the obtained results. 
We also explain how to apply the finite-difference method for numerically solving 
the diffusion equation. Readers will also find a code to numerically inverse the 
Laplace transform in Laplace’s space, which is used to obtain many results. 

This textbook is intended for young scientists, graduate students, and advanced 
undergraduates in physics, physical chemistry, biology, chemistry, chemical engi-
neering, biochemistry, bioengineering, and polymer and material sciences. 

This textbook is organized so as to facilitate the development of a two-semester 
course. We begin with a brief historical review of diffusion in Chap. 1. In Chap. 2, 
we introduce the physical and mathematical concepts that are used throughout the 
rest of the book to study and describe diffusion, such as diffusivity, flux, backward 
equation, mean first-passage time, and splitting probability, among others. In 
Chap. 3, we use different mathematical techniques to solve the diffusion equation in 
free space. We discuss the implications of the Central Limit Theorem and introduce 
Green’s function method. Chapters 4–9 are devoted to studying the boundary value 
problem in one dimension and its main physical properties. In these chapters, we 
discuss problems related to semi-infinite systems, diffusion between two targets, 
diffusion in the presence of a force field, and diffusion with stochastic resetting. We 
end Part III of the book with the analysis of the Langevin equation and Brownian 
dynamics in Chap. 10, and the numerical solution of the diffusion equation by means 
of the finite-difference method in Chap. 11. 

In Part IV of the book, which includes Chaps. 12 and 13, we focus on the two-
dimensional diffusion equation and boundary conditions, and we discuss the main 
physical properties and their solutions. We also introduce the reaction-diffusion 
process in two dimensions by means of the Turing mechanism. 

In Chap. 14, we first solve the diffusion equation in three dimensions with angular 
symmetry and given boundary conditions, such as a perfectly absorbent sphere, and 
a system consisting of two concentric spheres. Then, we study the diffusion particle 
trapping problem when there is an absorbent circular disk, or an arbitrary absorbing 
site, in a hard wall. Finally, we solve the problem of diffusion in a hyperboloidal 
cone. 

Part VI of the book is devoted to the boundary homogenization approach. With 
this technique, we can study the problem of diffusing particles in the presence of 
heterogeneous boundaries. Part VII includes Chaps. 17–25, and is devoted to the 
study of the one-dimensional reduction of quasi-one-dimensional systems, as from 
the early study by R. Zwanzig to the representation of channels and tubes as a tubular 
manifold. We also include the work done by M. Rubi and D. Reguera, and the 
classical treatment of the problem by P. Kalinay and J. Percus. Some applications 
of the latter approach, such as asymmetric channels, periodic systems, and active 
Brownian particles, are also reviewed.
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All Fortran codes can be downloaded from https://ixtlan.izt.uam.mx/leo/ 
diffusionbookcodes/. 
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Chapter 1 
History of Brownian Motion in a Nutshell 

Robert Brown was one of the greatest botanists of his time and is renowned for both 
his discovery of plant cell nuclei and his work on Brownian motion (see Fig. 1.1). 
Since he published his observations1 on how amyloplasts (starch organelles) and 
spherosomes (lipid organelles), ejected from the pollen grains, floating on the water 
continuously move around jerkily in all directions, this tricky motion has captivated 
a great many scientists. After systematic and meticulous work, Brown was able to 
pinpoint two of the main characteristics of this phenomenon: (a) the motion of the 
pollen grains never stopped, not even after the grains had been kept for a long time 
in a sealed container, and (b) lifeless particles exhibit exactly the same behavior. 
Therefore, Brown categorically concluded that the phenomenon had nothing to do 
with life, but rather with the particle itself. 

Although Robert Brown was not the first to observe this phenomenon,2 he was 
the first one to study it thoroughly. The motion of particles due to the thermal 
agitation of the fluids in which they are immersed is known as Brownian motion, and 
the particles are called Brownian particles (see Fig. 1.2). In terms of this language, 
we say that Brownian motion is due to the collision of the fluid’s atoms or molecules 
with the Brownian particles. 

In the 30 years following the publication of Brown’s leaflet, interest in this 
phenomenon was almost completely lost. It was not until 1858 that this discussion 
came back to life when Jules Regnault (1797–1863) suggested from his experiments 

1 His results were reported in a leaflet for personal distribution entitled “A brief account of 
microscopical observations made in the months of June, July and August, 1827 on the particles 
contained in the pollen of plants; and on the general existence of active molecules in organic and 
inorganic bodies.” It is important to clarify that, in this title, the word molecule refers to the smallest 
constituent of a living organism. 
2 The first to report the observation of Brownian motion was Jan Ingen-Housz (1730–1799) in a 
small article published in 1784 called “Remarks on the use of the microscope,” where he described 
his observations of the erratic movement of small pieces of charcoal in a drop of alcohol, as seen 
under a microscope. 
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2 1 History of Brownian Motion in a Nutshell

Fig. 1.1 Robert Brown, 
botanist (1773–1858). 
Lithograph made by the 
Austrian Rudolph Hoffmann. 
Published in 1860 2 years 
after Brown passed away
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Fig. 1.2 Robert Brown noticed the random jiggling of pollen particles suspended in solution, even 
for systems in equilibrium. Paths of individual Brownian particles in two dimensions obtained by 
performing a Brownian dynamics simulation are shown. All paths start at the origin. When running 
simulations, we consider an overdamped point-like Brownian particle; the diffusivity is .D = 1. The  
overdamped dynamics of the particle is modeled by the Langevin equation 

that the cause of Brownian motion was the effect of incident light on the fluid. As 
he explained it, the heat from the incident light caused the fluid to evaporate, and 
such evaporation caused the motion of Brownian particles.
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In the decade of 1860, several investigators proposed that Brownian motion was 
caused by continuous collisions between pollen grains and water molecules agitated 
by their thermal movement. More specifically, Giovanni Cantoni (1818–1897) 
demonstrated that the phenomenon was not caused by differences in temperature 
between different points in the fluid, given that the phenomenon was also present 
when the fluid had uniform temperature. He also observed the same phenomenon 
when his experiments were conducted in large containers, thus voiding the hypoth-
esis that it was due to capillary forces. 

In 1863, Christian Wiener (1826–1896) provided strong arguments to show that 
the movement of Brownian particles was not due to external causes, but rather 
had to be associated with internal movements in the fluid. In contrast, during 
the 1870s, Karl Nägeli (1871–1891) and William Ramsay (1852–1916), among 
others, provided arguments against these ideas. Their reasoning focused on the fact 
that Brownian particles have a vastly larger mass than the fluid’s molecules, and 
consequently, the latter would not be able to cause appreciable displacement on the 
former. On the other hand, it is paramount to point out that in the late nineteenth 
century, a great number of illustrious scientists, such as Ernst Mach (1838–1916) 
and Wilhelm Ostwald (1853–1932), among others, did not agree with the hypothesis 
of the atomic constitution of matter. 

Between the years of 1905 and 1908, Albert Einstein published five articles on 
Brownian motion, aiming to test the atomic hypothesis by looking at the fluctuations 
of small particles in a solution (see Fig. 1.3). His first paper includes all the 
foundations of this theory, while in the fourth one, published in 1907, he explains the 
difficulties of experimentally measuring Brownian velocities and why the existence 
of such quantities is a conflicting point.3 The articles published in 1905 and 1906 

Fig. 1.3 Albert Einstein 
(1879–1955) in 1947. 
Photograph by Orren Jack 
Turner, Princeton, N.J. 
Modified with Photoshop by 
PM Poon and by Dantadd

3 Entitled “On the motion of particles suspended in a resting fluid demanded by the molecular 
theory of heat” (1905) and “Theoretical Remarks on the Brownian Movement” (1907). 
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are particularly important, as in these articles, Einstein explained,4 for the first 
time ever and without any room for doubt, the causes and properties of Brownian 
motion. Back in 1905, his primary motivation was to make macroscopic observable 
predictions considering the thermal molecular movement of the fluid. In fact, the 
article starts by saying: “This Article will show that, according to the molecular 
kinetic theory of heat, bodies of sizes which are able to be seen microscopically, 
which are suspended in a liquid, carry out movements due to the molecular thermal 
movements and of such magnitude that can be seen under the microscope. It is 
possible that the movements that will be here discussed are identical to the so called 
Brownian molecular movement.” In this paper, Einstein modeled the movement 
of Brownian particles as a stochastic process.5 His great success was to come up 
with the solution for random motion as a problem of probabilities, i.e., to write 
the problem’s solution as the probability of finding a Brownian particle in a certain 
place at a certain time, putting aside the dogma of making deterministic descriptions 
of the particle’s position. In his work, Einstein concluded that the averaged squared 
distance traveled . A2 by the Brownian particle divided by the time . τ that it takes it 
to travel such distance is a constant. 

Since Einstein’s derivation of the diffusion equation and the relation between the 
diffusion coefficient and the fluid’s viscosity are a turning point in the history of 
Brownian motion and a cornerstone of the modern theory of stochastic processes, 
let us follow Einstein in his demonstration published in 1905.6 Assuming we have 
n particles suspended in a liquid, Einstein starts by considering only the one-
dimensional case, where, in an interval of time . τ , its position will increase by 
exactly . A. The time interval . τ is small compared to the duration of the observation, 
but large enough for the motions made by a particle to be observed during two 
consecutive intervals of time, which are to be considered as independent events. 
The number . dn of particles with a displacement between . A and .A + dA is given 
by .dn = n φ(A) dA, where .φ(A) is the probability distribution to move along a 
distance . A. In obtaining the evolution of the concentration, there are two essential 
assumptions to be made: The first is the symmetry in the jump probabilities, namely, 

.φ(A) = φ(−A). (1.1) 

In other words, the probability of being displaced a certain distance . A is the same 
regardless of whether such displacement is to the right or to the left, i.e., there 
is no bias at either direction. The second feature of the distribution .φ(A) is the 
normalization property,

4 The 1906 paper reads “On the theory of Brownian motion” where Einstein addresses the 
rotational Brownian motion of spherical particles. 
5 The theory of stochastic processes is centered in the study and modeling of systems that evolve 
along time, or space, according to some non-deterministic laws, i.e., laws of random character. 
6 In 1905, Albert Einstein published four papers that changed the history of science. These works 
encompass the photo-electric effect, his first two papers on special relativity theory, and his first 
paper on Brownian motion submitted on May 11, 1905. 
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.

f ∞

−∞
φ(A) dA = 1. (1.2) 

Then, the evolution of the distribution of particles between .x + A and x from t to . τ

is given by 

.f (x, t + τ) =
f +∞

−∞
f (x + A, t) φ(A) dA. (1.3) 

This equation tells us that in order to find a particle at position x at a time .t + τ , we  
need to sum over all of the possible ways that the particle could have gotten to . x+A

and then jump to position x during the step time . τ . Making a Taylor expansion in 
both sides of Eq. (1.3), we get 

.f (x, t + τ) ≈ f (x, t) + ∂f

∂t
τ (1.4) 

and 

.f (x + A, t) ≈ f (x, t) + ∂f

∂x
A + 1

2

∂2f

∂x2 A2, (1.5) 

respectively. Substituting these results into Eq. (1.3), we can write 

.

f (x, t) + ∂f

∂t
τ ≈ f (x, t)

f ∞

−∞
φ(A) dA + ∂f

∂x

f +∞

−∞
dφ(A) dA

+ 1

2

∂2f

∂x2

f +∞

−∞
A2 φ(A) dA.

(1.6) 

The integral in the first term on the right side is 1 because of the normalization 
property. As a consequence, .f (x, t) is canceled out on both sides of the equation. 
Additionally, the second term of the right-hand side is concluded to be zero, since 
it represents the integration of an odd function over a symmetric domain. Then, 
Einstein defined the integral in the last term as 

.D ≡ 1

2At

f +∞

−∞
A2 φ(A) dA, (1.7) 

where .τ → At . It is worth noting that Eq. (1.7) is the average of the quadratic 
variation produced by thermal agitation during the time . At . Substituting it into 
Eq. (1.6), he finally arrived to Fick’s second law of diffusion, 

.
∂f

∂t
= D

∂2f

∂x2 . (1.8)
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Einstein demonstrated that the process of Brownian motion can be described by 
the diffusion equation.7 Moreover, he showed that the trajectories of a Brownian 
particle can be regarded as memory-less and non-differentiable. 

The solution of Eq. (1.8) is given by8 

.f (x, t) = n√
4πDt

exp

(
− x2

4Dt

)
, (1.9) 

for which Einstein computed the second moment of distribution, i.e., the mean of 
squared displacements, as 

.λ2x =
/
x2

\
= 2Dt. (1.10) 

In addition, when considering Stokes’ law, which describes the force of friction 
opposing to a sphere of radius a moving at constant velocity . v in a fluid with 
viscosity . η, and the crucial notion of osmotic pressure (pressure increase) . ||, 
Einstein understood and proved that both arguments were equally valid in the 
description for Brownian particles. Therefore, he considered the equilibrium of 
these two force densities, that is, the gradient of the osmotic pressure and the 
external (friction) force density, leading to 

.nF − ∂||

∂x
= 0, (1.11) 

where 

.F = −6πμav and || = nRT

NA

. (1.12) 

In the latter equations, . μ is the friction coefficient, R the ideal gas constant, T 
the absolute temperature, and .NA the Avogadro-Loschmidt number, while n is 
the number of solute particles per unit volume or particle density. Substituting 
Eqs. (1.12) into Eq. (1.11) results in 

.nF = RT

NA

∇n(x, y, z). (1.13) 

The dynamics of moving in a liquid under force F brings the particle to a limit 
velocity, given by .V = F/μ, which allows us to write the number of particles 
crossing a unit surface as

7 The diffusion equation is a parabolic partial differential equation. It was obtained for the first time 
with heuristic arguments by Adolf Fick (1829–1901) in 1855, as a continuity of the well-recorded 
math of heat and electricity conduction. 
8 See Chap. 3 for the complete derivation. 
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.oF = nV = nF

μ
. (1.14) 

Later on, Einstein acknowledged that particle density, .n = n(x, y, z), satisfies the 
diffusion equation, Eq. (1.8). Therefore, n is directly connected to the flux due to 
diffusion, 

.oD = −D ∇n(x, y, z). (1.15) 

By introducing both equations for the flux into the equilibrium condition, one finds 

.
nF

μ
= D ∇n(x, y, z). (1.16) 

And a comparison between Eqs. (1.13) and (1.16) leads to 

.D = RT

NAμ
. (1.17) 

Then, by using the coefficient friction of a sphere .μ = 6πηa, Einstein found the 
following result: 

.D = RT

NA

1

6πηa
. (1.18) 

This equation in known as the Stokes-Einstein-Smoluchowski relation and was later 
generalized by H. B. Callen and T. A. Welton in terms of the fluctuation-dissipation 
theorem and in terms of the linear response theory by Ryogo Kubo (1920–1995). 

Finally, Einstein combined Eqs. (1.10) and (1.18) to obtain 

.λx =
/

RT

NA

1

3πηa

√
t . (1.19) 

Furthermore, Einstein presented Eq. (1.19) as a measurable quantity and cal-
culated .λx = 0.8μm using typical values for Brownian motion experiments. The 
crucial consequence of Einstein’s theory is that the diffusion constant coefficient 
can be measured by estimating the distance traveled rather than the velocity, thus 
making it possible to estimate the much debated Avogadro-Loschmidt number, 
. NA, something that inspired the study of the role of fluctuations through a series 
of experiments by Perrin and his students between the years 1908 and 1911. 
The publication of Einstein’s papers provided strong evidence for the atomistic 
hypothesis of matter, a subject of physical investigation in the development of 
the foundations of thermodynamics and the dynamical interpretation of statistical 
mechanics.
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Fig. 1.4 Marian Ritter von 
Smolan Smoluchowski 
(1872–1917) during his years 
at the University of Lviv. 
International Aerosol 
Research Assembly 

At the end of the nineteenth century, the explanation of Brownian motion 
based on collisions between the molecules or atoms of the fluid and the Brownian 
particles seemed totally absurd to some investigators, and there apparently seemed 
to be no way to explain the occurrence. The first scientist to successfully use 
the kinetic theory9 to study Brownian motion was Marian Ritter von Smolan 
Smoluchowski (see Fig. 1.4). He was able to qualitatively and quantitatively explain 
the phenomenon, obtaining results comparable to those of the experimental data. 
Smoluchowski used the results acquired by Ludwig Boltzmann and James Clerk 
Maxwell10 to model and explain the causes of Brownian motion. On the one hand, 
Maxwell and Boltzmann had demonstrated that the particles in a fluid do not move 
at the same speed, but rather, it is a distribution of speeds in all directions. On the 
other hand, the number of collisions that a Brownian particle experiences is of the 
order of .1020 collisions per second. Because of these two reasons, the net effect of 
the Brownian particle’s movement is appreciable. 

Even though Smoluchowski started working on Brownian motion in the year 
1900, focusing on the molecular kinetic approach, it was not until 1906 that he 
published his results. Smoluchowski’s intention was to wait for more experimental 
data to support his theory, which he constructed so as to include these observations. 
However, he was driven to publish them early, largely as a result of Einstein’s work 
being published in 1905. Einstein’s and Smoluchowski’s work is very different in 
approach, mainly in that Einstein was looking for a mathematical test of the kinetic

9 The kinetic theory of gases, mainly developed by Ludwig Eduard Boltzmann (1844–1906) 
and James Clerk Maxwell (1831–1879) during the nineteenth century, explains the behavior 
and macroscopic properties of gases from the statistical description of microscopic molecular 
processes. This theory considers that gases are composed of atoms and molecules in random 
movement, particles that undergo random collisions between them and the container’s walls. 
10 It is interesting to point out that neither Maxwell nor Boltzmann published on the topic, even 
though both of them were extremely knowledgeable of statistical mechanics and kinetic theory. 
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theory of gases and was not quite sure that the problem he was dealing with was 
really the so-called Brownian motion.11 

Smoluchowski also calculated the second moment of the displacement, for which 
he obtained the following equation, using his own notation 

.

/
<An>2 = 8

9

/
m'v'2
πμa

√
t, (1.20) 

where . m' and . v' are the mass and velocity of the medium particles. Equation (1.20) 
is comparable with Eq. (1.19) when using the equipartition of energy and writing 
.m'v'2 in terms of .kBT , leading to 

.

/
x2

\
=

/
64

27

/
kBT

3πμa

√
t, (1.21) 

which differs by a factor of .
√
64/27 from Einstein’s result, Eq. (1.19). This is a  

reasonable dissimilarity considering all the approximations made in the Smolu-
chowski procedure. Ultimately, Smoluchowski obtained the diffusion coefficient 
through qualitative reasoning of the mean free path and his latest works, namely, 

.D = 16

253

m'v'2

μπa
, (1.22) 

which again differs by a factor of .64/27 from Einstein’s result, Eq. (1.18). 
Between 1913 and 1915, Smoluchowski provided another great contribution to 

the Brownian motion theory by finding the equation that currently bears his name 
and describes the phenomenon in the presence of an external force, Eq. (1.23). 
In Smoluchowski’s equation, .f (x, t) represents the concentration (the number of 
particles per volume unit), and D is a constant diffusion coefficient. The potential is 
given by .U(x), while .β = 1/(kBT ), with . kB being the Boltzmann constant and T 
the absolute temperature. 

.
∂f (x, t)

∂t
= D

∂

∂x

{
e−βU(x) ∂

∂x

[
eβU(x)f (x, t)

]}
. (1.23) 

Smoluchowski also played an important role in designing some experiments. 
His work focused on measuring the spatial distribution of the Brownian particles,

11 If he could prove that the kinetic theory of gases was true, then the random motion of particles 
under the microscope would be an immediate result. Nevertheless, such behavior was forbidden by 
classic thermodynamics, which required equilibrium. Thus, the mean of the squared displacements 
was defined by Einstein as a parameter that would be agreeable to either of both theories. 
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confirming that the theory developed by both him and Einstein truly corresponded 
to the experimentally observed Brownian motion.12 

It is important to note that even though Smoluchowski and Einstein essentially 
obtained the same results, Einstein’s results were derived using a language that was 
more accessible to individuals interested in the topic and summarized in three stages. 
Firstly, he related the diffusion coefficient to the properties of the medium; secondly, 
he derived the diffusion equation; and finally, he combined these two results. For 
that reason, Einstein’s articles had a greater impact in the scientific community. In 
contrast, Smoluchowski used known arguments and approximations for all of those 
who were familiar with the kinetic theory, in topics like combinatorial analysis and 
concepts such as the mean free path. 

It has been recently shown that the Scottish-born Australian theoretical physicist, 
William Sutherland, was the first to inform the scientific community of the existence 
of the Stokes-Einstein-Smoluchowski relation in a paper published back in 1904,13 

which he presented at the Dunedin tenth meeting of the Australasian Association 
for the Advancement of Science (see Fig. 1.5). 

In his paper, Sutherland established a dynamical relation between the velocity 
of diffusion of a substance and the size of its molecule in order to measure the 
molecular mass of substances. This task is proposed to be accomplished through 
the application of Nernst’s theory of diffusion in an electrolyte. Beyond that, the 
treatment of diffusion through a liquid as a parallel phenomenon to the transpiration 
of gasses through porous partitions is mentioned, in other words, that the square of 

Fig. 1.5 Theoretical 
physicist William Sutherland 
(1859–1911) at the age of 20, 
1879, in Australia. Work of 
public domain

12 In fact, Smoluchowski exchanged correspondence with Theodor Svedberg (1884–1971) a 
Swedish chemist who worked on Brownian motion experiments. In their letters, Smoluchowski 
suggested modifications and improvements to Svedberg’s method. Svedberg was awarded the 
Nobel Prize for Chemistry in 1926 for his work on disperse systems. 
13 With the title “A dynamical theory of diffusion for non-electrolytes and the molecular mass of 
albumin,” 1904. 
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the velocity of diffusion of a substance through a given medium, when multiplied 
by the molecular mass of the substance, is a constant, (i.e., the kinetic energy 
of diffusion is constant for all molecules under like conditions). He assumed the 
existence of atoms to study the measurement of large molecular masses. His relation 
between diffusivity and viscosity is given by 

.D = RT

NA

1

6πηa

1 + 3η/βa

1 + 2η/βa
, (1.24) 

where . β is the coefficient of sliding friction, in case of slippage between the 
spreading molecule and the solution. It is important to emphasize that Sutherland 
used exactly the same derivation as Einstein to obtain Eq. (1.24). If there is no  
slippage at the boundary, . β goes to infinity and Eq. (1.24) becomes 

.D = RT

NA

1

6πηa
, (1.25) 

which is the Stokes-Einstein-Smoluchowski relation, Eq. (1.18). Using the latter 
equation, Sutherland obtained the molar volume of albumin and estimated its atomic 
mass at .32,814 Da. 

In 1908, Paul Langevin (see Fig. 1.6) published his one and only article on 
the study of a macroscopic description of Brownian motion, where he showed a 
beautiful derivation of the quantities we have already talked about. Nonetheless, 
because of the simplicity and power of his methods, these are worth discussing. 
Langevin wrote Newton’s second law for Brownian particles and assumed that, 
when introduced into a fluid, they are affected by two forces: the first one due to 
the great number of collisions with the fluid’s molecules and the second one due 
to the viscosity of the fluid. He modeled the forces due to collisions as those being 
stochastic in nature, while the viscosity effect was applied using its well-known 

Fig. 1.6 Paul Langevin 
(1872–1946). Photograph by 
Henri Manuel. Wellcome 
Collection. Public Domain 
Mark
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structure, opposite and proportional to its speed. The viscous force will describe 
the mean effect of resistance or friction, whereas the stochastic force X stands for 
the fluctuations around the average value, while maintaining the particle’s motion, 
which would otherwise eventually stop. Mathematically, the Langevin equation 
reads as follows: 

.m
d2x

dt2
= −6πμa

dx

dt
+ X. (1.26) 

This expression cannot be solved directly, because of stochastic noise, so by 
multiplying by x and using the chain rule, it transforms into 

.
m

2

d2x2

dt2
− m

(
dx

dt

)2

= −3πμa
dx2

dt
+ xX. (1.27) 

Thereafter, Langevin considered a large number of identical particles and took the 
average of Eq. (1.27), neglecting the mean value of xX because of the randomness 
of the collisions. Subsequently, he used the equipartition of energy to write 
.m<(dx/dt)2> = RT/NA and introduced the new variable .z = d<x2>/dt to find 

.
m

2

dz

dt
+ 3πμaz = RT

NA

. (1.28) 

The solution of the latter differential equation is computed straightforward, namely, 

.z(t) = RT

NA

1

3πμa
+ C exp

(
−6πμa

m
t

)
. (1.29) 

The second term of the solution decreases exponentially for .t > m/6πμa, which 
is approximately .10−8s. Given that this value is much smaller than the measurable 
time steps in experiments, the second term in Eq. (1.29) can always be neglected.14 

Therefore, by substituting z and integrating, Langevin arrives at Eqs. (1.18) and 
(1.25). 

The French physicist was able to reproduce the theoretical results obtained by 
Einstein and Smoluchowski. Additionally, just as Smoluchowski did, Langevin 
wrote in his article that his method was “better” than Einstein’s. Probably the 
greatest merit of Langevin was to write the first example of an equation with a 
random term, the solution of which is a stochastic function. 

From 1908 to 1911, Jean Baptiste Perrin (see Fig. 1.7) worked experimentally 
to show that the average of the square of the distance traveled by a Brownian 
particle divided by time is a constant, a prediction that had been made by Thomas 
Graham (1805–1869), Percival Spencer Umfreville Pickering (1858–1920), William

14 For times smaller than .m/6πμa, there will be an extra exponential term in the .<x2> relation. 
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Fig. 1.7 Jean Baptiste Perrin 
(1870–1942). Perrin was 
awarded the Nobel Prize for 
Physics for his experimental 
studies on Brownian motion. 
AIP Emilio Segrè Visual 
Archives 

Fig. 1.8 Three tracings of 
moving colloidal particles of 
0.53 .μm in radius, as seen 
under the microscope. 
Successive positions 
determined every 30 seconds 
are joined by straight line 
segments (the mesh size is 
3.2 . μm). J. B. Perrin, 
“Mouvement brownien et 
réalité moléculaire,” Ann. de 
Chimie et de Physique (VIII) 
18, 5–114 (1909). SVG 
drawing by Mirai Warren 

Sutherland, Marian Smoluchowski, and Albert Einstein. For such purpose, Perrin 
and his team took photographs every 30 seconds of particles performing a Brownian 
motion (see Fig. 1.8). When plotting the square of the distance traveled by the 
particle against time, they obtained a straight line. Furthermore, since he knew the 
temperature and viscosity of the media, as well as the particles’ dimensions, he 
calculated the Avogadro-Loschmidt number, obtaining .NA = 6.4 × 1023mol−1, an  
extremely close approximation to the most accurate value that has been computed 
as of this day.15 

A vast amount of experimental work is also attributed to Victor Henry (1872– 
1940) and Joseph Ulysses Chaudesaigues. Equation (1.19) was successfully tested, 
thanks to their contributions. As the reader may appreciate, this highlights how 
science is more of a community effort, rather than an individual endeavor.

15 In 2017, the mole was redefined by the Bureau International des Poids et Mesures (BIPM) as 
being the amount of substance containing exactly .NA = 6.02214076 × 1023mol−1 elementary 
entities. 
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The Brownian motion problem has played a key role in the development and 
evolution of the study and research of thermodynamics, statistical physics, and 
diffusion.16 Among scientists who have branched out on this topic, there are some 
who have focused on calculating fluctuation-dissipation relations. As such, Callen 
and Welton, mentioned earlier in this chapter, generalized the relations derived by 
Einstein and Smoluchowski. Later on, an extension of the theory by Harry Nyquist 
(1889–1976) and John B. Johnson (1887–1970) for voltage fluctuations arrived 
in the form of the quantum version of the fluctuation-dissipation theorem. Other 
advances worth mentioning include the so-called Green-Kubo relations, where the 
corresponding fluctuations theorem provides extremely valuable information on the 
role of non-equilibrium fluctuations. 

The debate on the true origin of the irregularity that causes the randomness 
of Brownian particles continues this day. It is thought to be either a chaotic 
microscopic dynamic effect or related to the extreme high dimensionality of the 
phase space that, in reduction, causes the agitated movement of the molecules 
under the microscope. Answering this question is even more difficult if quantum 
effects are to be considered, because of quantum fluctuations in stationary non-
equilibrium systems or microscopic quantum chaos. Nevertheless, the Brownian 
theory of motion unquestionably has a significant impact in physics, particularly in 
statistical and quantum mechanics. 

Researchers are still very active in this field of physics. Interesting things are 
yet to be discovered in the years to come, with applications in physics, chemistry, 
chemical kinetics, biology, and engineering, all stemming from the simple, random 
movement of a small particle. 

So far, the very basics of diffusion theory have been developed, i.e., the 
diffusion equation: a result that has led scientists to review the improvements and 
contributions of Brownian motion, starting with the observations of a botanist all 
the way up to how it relates to quantum theory. In the next chapter, we will discuss 
the random elevator game, a version of a gambling issue that led to the creation of 
the mathematical theory of probability. 
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Part I 
Brownian Motion and the Random 

Elevator Game 

Brownian motion and gambling problems provide a simple way 
to derive the diffusion equation, as well as to understand 
concepts such as survival probability, mean first-passage time, 
and splitting probability. 

“Everything existing in the universe is the fruit of chance and 

necessity.” 

—Democritus



Chapter 2 
The Random Elevator Game 

2.1 Introduction 

This chapter aims to provide the reader with the basic physical and mathematical 
concepts that are used in the study and description of diffusion. To such end, we are 
introducing a new board game: the random elevator. This game is quite similar 
to chutes and ladders, but simpler. Unlike the game many of us played in our 
childhood, we removed the chutes and ladders, and instead of starting at square 
number 1, players can start at any square. The board is shown in Fig. 2.1, and the 
squares on the board represent the floors of the Empire State Building. 

Let’s pretend that you work at an office located in the Empire State Building and 
that there is nothing more relaxing than going up to the Observatory at the end of 
your work day to take in the breathtaking view. But on a certain day, the elevator 
breaks down and is working erratically, so it randomly goes up or down one floor 
at a time only, when pressing any button. Then, the movement of the elevator to its 
next stop (i.e., either up or down) has the same probability of getting heads or tails 
when tossing a coin. You are now trapped in a pretty annoying game that we call the 
random elevator. The object of the game is to get to the Observatory or the Lobby. 
If you reach the Observatory, you win, and if you reach the Lobby, you lose, and the 
game is over. 

The random elevator game is similar to the gambler’s ruin problem, which is 
a classical concept in probability theory, first discussed by French mathematicians 
Blaise Pascal and Pierre de Fermat, who formulated this problem in mathematical 
terms. These well-known personalities were motivated by compensation received 
from the Chevalier de Méré to calculate, and presumably optimize, the odds of 
winning in a variety of simple games of chance. Furthermore, Christiaan Huygens, 
one of Leibniz’s teachers, published the first book on probability entitled De 
Ratiociniis in Ludo Aleae, a treatise on gambling-related problems. As a result, 
probability theory became popular, and the subject matter developed rapidly during 
the eighteenth century. Nevertheless, it was not until 1812, when Pierre-Simon de 
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Fig. 2.1 Schematic 
representation of the random 
elevator gameboard. The 
elevator can move either up 
or down randomly, as when 
tossing a coin 

Laplace introduced new ideas and mathematical techniques in his work Théorie 
Analytique des probabilités, that probabilistic ideas were applied to many scientific 
and practical problems. 

In games of chance, such as the random elevator game, players are usually 
interested in finding the answer to two questions: what are the chances of winning, 
and how long can the game be expected to last. Both of these questions can only 
be answered within a probabilistic framework. As we will see, the answers will 
depend on the initial position of the player, i.e., whether the contestant is closer 
to the Observatory or the Lobby. The study and solution to these two questions 
provide a good illustration of some general ideas and physical properties to be used 
in analyzing different aspects of diffusion. 

2.2 Mathematical Model of the Game: Discrete Version 

The first step in formulating the game in mathematical terms is to define the state 
space. In the random elevator game, the states of the game are characterized in 
terms of the player’s position j . To such end, let’s set the Lobby at .j = 0 and the 
Observatory at .j = L, considering a diagram consisting of .L + 1 squares outlined 
along the vertical length of the building (see Fig. 2.2). The complete possible set of 
states that may arise in the course of the game consists of integers .{0, 1, 2, . . . , L}. 

Let .A(n) be the position of player A after n tosses of the coin. Let us assume 
that at the beginning of the game, .A(0) = j0, which is the floor where the office 
is located. Then, after the first toss of the coin, .A(1) = j0 − 1 if the coin lands on 
heads; otherwise, .A(1) = j0 + 1. A’s position after one or more tosses is a random
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Fig. 2.2 Schematic 
representation of the random 
elevator gameboard. The 
player starts at floor . j0 and 
can move either up or down 
on every toss of the coin 

Fig. 2.3 Schematic representation of the state space and the probability of reaching j after . n + 1
steps. To reach j , the player had to be at .j − 1 or .j + 1 at step n and move to j with a probability 
of . a = b = 1/2

variable that depends on the specific sequence of heads or tails. We assume that the 
outcome of every toss of the coin is statistically independent of each other. Then, 
A’s position after .n + 1 tosses, i.e., .A(n + 1), certainly depends on its location at 
the n-th toss, .A(n). 

The random elevator game provides the simplest definition of a random walk: a  
random process that describes a path consisting of a succession of random steps on 
the integer number line . Z, which starts at 0. Each step moves . +1 or . −1 with equal 
probability. It is worth mentioning that if the process depends only on the previous 
outcome, then it is known as a Markov process. 

Now, let’s assume that the game ends at the m’th step. This means that at step 
.m − 1, A’s position must have been equal to either .j = 1, with A being one step 
from the Lobby, or .j = L − 1, with A preparing to get into the Observatory at the 
next coin toss with a probability of . 1/2. If  .A(m) = 0, A is already in the Lobby, 
while if .A(m) = L, then the player has reached the Observatory. The coordinates 
.j = 0 and .j = L will be referred to as absorbing points, or  traps, given that the 
game is over when either one is reached. The specific number of steps m at which 
the game is over is known as the first-passage time. 

Let us start by calculating the probability of reaching j after .n+1 steps or tosses 
of a coin. This implies that the player had to be at .j − 1 or .j + 1 after n steps (see 
Fig. 2.3). Let .pn+1(j) be the probability that A’s position after .n+1 steps is equal to 
j (i.e., .A(n + 1) = j ). A mathematical equivalent of the rules of the game, i.e., the 
probability of being at j after .n+1 steps, is given by the following master equation: 

.pn+1(j) = 1

2
[pn(j − 1) + pn(j + 1)] , where n = 0, 1, 2, . . . (2.1)
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where .2 ≤ j ≤ L − 2. This equation must be modified at .j = 1 and .j = L − 1. In  
the first case, we can only reach .j = 1 from .j = 2, and in the second one, we can 
get to .j = L − 1 from .j = L − 2, since there are no contributions from .j = 0 or 
.j = L. The master equation is essentially a differential equation of the first order 
in time for the probability density of a Markov stochastic variable. Therefore, when 
.A(j = 1) or .A(j = L − 1), 

.pn+1(1) = 1

2
pn(2), and pn+1(L − 1) = 1

2
pn(L − 2). (2.2) 

The latter equations have the same form as Eq. (2.1), provided that we adopt the 
following conventions: 

.pn(0) = 0, and pn(L) = 0. (2.3) 

These last relations are a simple example of a boundary condition (BC) and define a 
perfect absorbing boundary. This boundary indicates that the game is over and the 
player is removed from the board when A’s position reaches one of the values, either 
.j = 0 or .j = L. Equation (2.1) must be solved as well, subject to the following 
initial conditions: 

.p0(j) =
{
1, j = j0

0, j /= j0
, (2.4) 

which is a formal statement of the condition that player A is at . j0 initially. 
Equations (2.1)–(2.4) translate the random elevator game into a mathematical 
description. In the remainder of this chapter, we will show that Eqs. (2.1)–(2.4) can 
be regarded as a discrete form of the diffusion equation. In other words, we will 
prove that a continuous version of the random elevator game leads to the system of a 
particle diffusing along a line bounded by two absorbing boundaries. Moreover, the 
previously presented mathematical formulation is used to answer the two questions 
posed in the “Introduction.” 

2.3 Continuous Version of the Game 

A continuous version of the random elevator game problem can be formulated by 
assuming that successive coin tosses occur at very short intervals of time . At and, 
similarly, that the step size, i.e., floor spacing, is also a small quantity given by . Ax. 
This is equivalent to measuring an arbitrary time as an integer number of small-time 
units and, similarly, measuring an arbitrary displacement as an integer number of a 
small number of stops. Under this scenario, the game is sped up, but the positions 
and times remain as finite quantities. It will be seen that by letting both . Ax and . At

tend to 0, the continuous analog of Eq. (2.1) becomes the diffusion equation.
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Let’s go a little further in generalizing Eq. (2.1) in the sense that probabilities of 
the player moving either up or down are not set to . 1/2, but as a and b, where by 
conservation of probability, .a + b = 1. This would happen if we used a biased coin 
over the course of the game. Let’s assume that the probability by unit time of going 
to j from .j + 1 is given by a and that the probability by unit time of going from 
.j − 1 to j is given by b (see Fig. 2.3). After all, we can always return to our original 
problem by setting .a = b = 1/2. Then, the probability of being at j after . n + 1
steps is 

.pn+1(j) = a pn(j + 1) + b pn(j − 1). (2.5) 

In order to get to the continuous approach, we must rewrite Eq. (2.5) by changing 
.j → x, .j ± 1 → x ± Ax, .n → t , and .n + 1 → t + At . The time .t ∈ [0,∞) and 
the spatial position .x ∈ o. The spatial domain . o may be either a bounded or an 
infinite subset of . R, . R2, or  . R3 or a manifold. In the cases we are considering here, 
the domain is restricted to subsets of . R. Thus, the latter equation translates into 

.p(x, t + At) = a p(x + Ax, t) + b p(x − Ax, t). (2.6) 

Expanding this last equation in a Taylor series around . Ax and . At yields 

.

p(x, t) + At
∂p(x, t)

∂t
+ · · ·

= a

[
p(x, t) + Ax

∂p(x, t)

∂x
+ (Ax)2

2

∂2p(x, t)

∂x2 + · · ·
]

+ b

[
p(x, t) − Ax

∂p(x, t)

∂x
+ (Ax)2

2

∂2p(x, t)

∂x2
+ · · ·

]
.

(2.7) 

For instance, two identical terms in this last equation are canceled out, and by 
equating the lowest-order terms in both sides, we obtain 

.

At
∂p(x, t)

∂t
= a

[
Ax

∂p(x, t)

∂x
+ (Ax)2

2

∂2p(x, t)

∂x2

]

+ b

[
−Ax

∂p(x, t)

∂x
+ (Ax)2

2

∂2p(x, t)

∂x2

]
.

(2.8) 

When simplifying factors and terms, we find that 

.
∂p(x, t)

∂t
= (a − b)

Ax

At

∂p(x, t)

∂x
+ (Ax)2

2At

∂2p(x, t)

∂x2 . (2.9) 

Then, we define the drag velocity as
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.v ≡ − lim
Ax→0
At→0

(a − b)
Ax

At
, (2.10) 

in such a way that . Ax and . At must decrease as v remains finite. Likewise, we define 
the diffusion coefficient or diffusivity as 

.D ≡ lim
Ax→0
At→0

(Ax)2

2At
. (2.11) 

Inserting these last two definitions into (2.9), we get the Fokker-Planck or 
convection-diffusion equation in one dimension, namely, 

.
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
− v

∂p(x, t)

∂x
. (2.12) 

The latter equation describes the temporal evolution of the probability density 
.p(x, t). Furthermore, if we set .a = b, the term involving the drag velocity vanishes, 
which is equivalent to zero-drift, finding that 

.
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2 , (2.13) 

in other words, the well-known diffusion equation. The diffusion equation is first 
order in time and second order in space. It is classified as a parabolic partial 
differential equation. 

It is important to note that after one passes the diffusion limit, .p(x, t) is no longer 
a probability, but rather a probability density. The distinction between these two is 
that now .p(x, t) dx is the probability of the diffusion particle being within the 
interval .x, x + dx at time t . Since probabilities are dimensionless and x has units 
of length, .p(x, t) has the dimension of .L−1. Furthermore, the continuous analog of 
the initial condition in Eq. (2.4) is 

.p(x, 0) = δ(x − x0), (2.14) 

where . x0 is equal to A’s initial position and . δ is the Dirac delta function. The perfect 
absorbing boundary conditions in Eq. (2.3) are then translated into 

.p(0, t) = p(L, t) = 0. (2.15) 

These last three equations are the continuous analog of the discrete version of the 
game given by Eqs. (2.1), (2.3), and (2.4). 

The diffusion equation can be written in terms of the density number or 
concentration. Since .c(x, t) = Np(x, t), then the classic diffusion equation is given 
by
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.
∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (2.16) 

a relation that is also known as Fick’s second law of diffusion. Therefore, we will use 
.c(x, t) and .p(x, t) interchangeably. The diffusive N particles are called Brownian 
particles or diffusing particles. The extrapolation of the diffusion equation to higher 
dimensions is straightforward using the Laplace operator: 

.
∂c(r, t)

∂t
= D∇2c(r, t). (2.17) 

The diffusion coefficient has dimensions of .L2 T −1, and it is defined according 
to the dimension of the problem, differing by a factor of .1/2 for each extra space 
dimension. Therefore, to obtain the corresponding diffusion constant for a three-
dimensional system, we need to remember that .Ar2 = Ax2 + Ay2 + Az2, which 
by dividing by . 2At , gives  

.
Ar2

2At
= Ax2

2At
+ Ay2

2At
+ Az2

2At
. (2.18) 

If the diffusion coefficient for any direction is equal to D, i.e., .Dx = Dy = Dz = D, 
referring to an isotropic fluid, then the diffusivity in three dimensions is 

.D ≡ lim
Ar→0
At→0

Ar2

6At
. (2.19) 

When the diffusion takes place into an anisotropic medium, the diffusivity is given 
by a tensor. 

The diffusion coefficient depends on molecule size and other properties of the 
diffusing substance, as well as on temperature and pressure. Diffusion coefficients 
of one substance into the other are commonly determined experimentally. A typical 
diffusion coefficient for a molecule in the gas phase is in the range of .10−6 to . 10−5

m. 2/s. In contrast, diffusion for molecules dissolved in liquids is far slower, with the 
typical diffusion coefficient being in the range of .10−10 to .10−9 m. 2/s. Therefore, 
diffusion in liquids is very slow over everyday length scales and is almost always 
dominated by convection. 

For molecules diffusing within the cell, the time it takes them to travel a certain 
distance can be estimated using Eq. (2.11). For a monomeric protein with a 5-nm 
diameter, the diffusion constant in cytoplasm is around 10 . μm. 2/s. The time scale 
for such a typical protein to diffuse a distance equivalent to the length of an E. coli 
bacterium (i.e., 1 . μm) is approximately .1 μm2/[6 (10 μm2/s)] ≈ 1.6 × 10−2s. In  
contrast, the time required for diffusion to transport the same protein from one end of 
a neuronal cell axon to the other (i.e., a distance of around 1 cm) is approximately 
.1.6 × 106 s or nearly 20 days! Nature’s solution to this dilemma is to use active
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transport mechanisms where motor molecules use ATP to transport the cargo to its 
destination. 

At this point, we are almost ready to answer the questions posed in the 
“Introduction.” To such end, we will solve the diffusion equation in the next section, 
subject to the initial and boundary conditions given in Eqs. (2.14) and (2.15). 

2.3.1 Solution to the Continuous Model 

To find the solution of the diffusion equation within the interval .(0, L), we assume 
that .p(x, t) is sufficiently well-behaved so it can be expanded into a Fourier series 
(see Appendix A, Sect. A.6.2), namely, 

.p(x, t) =
∞Σ

n=1

[
an(t) sin

(nπx

L

)
+ bn(t) cos

(nπx

L

)]
. (2.20) 

The BC .p(0, t) = 0 implies that the .bn(t) are all equal to zero, while the remaining 
term satisfies the boundary conditions (BCs) given in Eqs. (2.15). Then, if we 
substitute the remaining first term into the diffusion equation, Eq. (2.13), this leads 
to 

.
∂

∂t

[ ∞Σ
n=1

an(t) sin
(nπx

L

)]
= D

∂2

∂x2

[ ∞Σ
n=1

an(t) sin
(nπx

L

)]
. (2.21) 

Due to the linear independence of the sine functions, the latter equation is finally 
expressed as 

.
dan(t)

dt
= −π2n2D

L2 an(t), (2.22) 

which is directly integrable and has solution 

.an(t) = An exp

(
−π2n2Dt

L2

)
. (2.23) 

The . An’s are constants to be determined by the initial conditions. Thus, we have the 
representation of .p(x, t) as 

.p(x, t) =
∞Σ

n=1

An exp

(
−π2n2Dt

L2

)
sin

(nπx

L

)
. (2.24) 

To determine the . An’s constants, we set .t = 0 and make use of the initial condition 
(2.14). This requires that
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.

∞Σ
n=1

An sin
(nπx

L

)
= δ(x − x0). (2.25) 

Since the delta function can be represented as the Fourier series, namely, 

.δ(x − x0) = 2

L

∞Σ
n=1

sin
(nπx0

L

)
sin

(nπx

L

)
, (2.26) 

and again by linear independence of the sine functions, the solution to Eq. (2.25) is 
therefore 

.An = 2

L
sin

(nπx0

L

)
. (2.27) 

Finally, the probability density .p(x, t |x0) is given by 

.p(x, t |x0) = 2

L

∞Σ
n=1

exp

(
−n2π2Dt

L2

)
sin

(nπx0

L

)
sin

(nπx

L

)
. (2.28) 

The probability density decays in time characterized by the diffusion time .L2/D. 
The temporal evolution of the probability density (2.28) is depicted in Fig. 2.4. 
This timeline shows, in terms of Brownian particles, how they are captured by the 
absorbing traps when times goes by until they all finally leave the system. 

Fig. 2.4 Temporal evolution of the probability density .p(x, t |x0) predicted by Eq. (2.28) is shown. 
The initial position of Brownian particles, system length, and diffusivity are .x0 = 0.5, .L = 1, and  
.D = 1, respectively. Whereas . x0 and L have units of length, D has units of length. 2/time, and 
.p(x, t) of length. −1. The absorbing BCs are .p(x = 0, t) = p(x = L, t) = 0
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The probability density .p(x, t |x0) will also be referred to as the propagator, as  
it describes the propagation of the particle from its initial position to its position at 
time t . Using  (2.28), we will be able to find a solution to the two questions posed 
earlier: what is the mean first-passage time, and what is the probability that player 
A will reach the Observatory or the Lobby. 

2.4 Duration of the Game 

2.4.1 Survival Probability and First-Passage Time 

As we are interested in determining the time it will take to finish the game, we have 
to determine the probability density for the duration of the game. Counter to our 
intuition, we start by calculating the probability that the game has not ended by time 
t . This can be written directly in terms of the propagator .p(x, t |x0). This probability 
will be referred to as the survival probability and will be denoted by .S(t |x0). 

Let us return for a moment to the discrete version of the game and ask what is 
the probability of the game not having ended by the n’th toss, i.e., the probability of 
A’s position being equal to .{1, 2, . . . , L − 1} at the n’th toss. This probability is 

.Sn(j0) =
L−1Σ
j=1

pn(j |j0) =
LΣ

j=0

pn(j |j0). (2.29) 

Note that in the last equality, we have extended the summation interval to .[0, L], 
since there is no contribution to the survival probability due to . pn(j = 0|j0) =
pn(j = L|j0) = 0. If we pass to the continuum limit, the sum over j in Eq. (2.29) 
needs to be replaced by an integral with respect to x over the entire interval, in our 
case, from 0 to L. Meanwhile, the probability .pn(j |j0) is replaced by .p(x, t |x0) dx, 
which is the probability of being between x and .x + dx at time t . Thus, .S(t |x0) can 
be written as 

.S(t |x0) =
f L

0
p(x, t |x0) dx. (2.30) 

Equation (2.30) gives the probability that the game has not ended by time t once 
the game has started at . x0. Since .p(x, t |x0) is integrated with respect to x, . S(t |x0)
is dimensionless. This relation can be used to find the probability density for the 
duration of the game, i.e., the probability density of the first-passage time, which 
will be denoted by .ϕ(t |x0). From this definition, we have that the probability of 
ending the game within the interval . τ , .τ + dτ is given by .ϕ(τ |x0) dτ . This means 
that the integral of .ϕ(τ |x0) dτ from 0 to t is the probability of finishing the game at 
time t and this is equal to not surviving at time t , in other words, .1−S(t |x0). Hence,
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.

f t

0
ϕ(τ |x0) dτ = 1 − S(t |x0). (2.31) 

Then, the probability of not having finished the game at time t is given by the 
integral of .ϕ(τ |x0) from .τ = t to .τ → ∞, which is the same as the survival 
probability. Consequently, the two functions are related by 

.

f ∞

t

ϕ(τ |x0) dτ = S(t |x0). (2.32) 

Taking the derivative of both sides of this equation with respect to t 

.
d

dt

f ∞

t

ϕ(τ |x0) dτ = lim
ζ→∞ ϕ(τ |x0)

||||
τ=ζ

τ=t

= dS(t |x0)
dt

, (2.33) 

and evaluating the upper limit since .ϕ(τ → ∞|x0) = 0, we get 

.ϕ(t |x0) = −dS(t |x0)
dt

. (2.34) 

This last equation is a practical formula to calculate the probability density of the 
mean first-passage time, which is one of the fundamental properties of diffusion, 
and its dimension is .T −1. 

Back to our game, the survival probability for the random elevator player is 
calculated if .p(x, t |x0) in Eq. (2.28) is substituted into (2.30). As such, 

. S(t |x0) =
f L

0

2

L

∞Σ
n=1

exp

(
−n2π2Dt

L2

)
sin

(nπx0

L

)
sin

(nπx

L

)
dx. (2.35) 

Integrating gives 

. S(t |x0) = − 2

L

∞Σ
n=1

exp

(
−n2π2Dt

L2

)
sin

(nπx0

L

)(
L

nπ

)
cos

(nπx

L

)|||||
L

0

,

(2.36) 

and after evaluating, 

. S(t |x0) = − 2

π

∞Σ
n=1

exp

(
−n2π2Dt

L2

)
sin

(nπx0

L

)(
1

n

)
[cos(nπ) − 1] . (2.37) 

Since in .cos(nπ) = (−1)n only odd terms contribute to the sum, we finally have 

.S(t |x0) = 4

π

∞Σ
n=0

exp

[
− (2n + 1)2π2

L2 Dt

] sin
[

(2n+1)
L

πx0

]
2n + 1

. (2.38)
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Fig. 2.5 Survival probability predicted by Eq. (2.38) and the probability density of first-passage 
time given by Eq. (2.39), as a function of time t . The relation between them is given by Eq. (2.34). 
The initial position, system length, and diffusivity are .x0 = 0.5, .L = 1, and .D = 1, respectively 

Now, by introducing this survival probability into (2.34), we find the explicit 
expression of the probability density .ϕ(t |x0) for the random elevator game: 

. 

ϕ(t |x0) = − d

dt

⎧⎨
⎩ 4

π

∞Σ
n=0

exp

[
− (2n + 1)2π2

L2
Dt

] sin
[

(2n+1)
L

πx0

]
2n + 1

⎫⎬
⎭

= 4Dπ

L2

∞Σ
n=0

(2n + 1) exp

[
− (2n + 1)2π2

L2 Dt

]
sin

[
(2n + 1)

L
πx0

]
.

(2.39) 

Figure 2.5 shows the survival probability predicted by Eq. (2.38) and the proba-
bility density of the first-passage time given by Eq. (2.39), as a function of time t . 
As we can see, at the beginning of the process, the probability of Brownian particles 
surviving is equal to one, and as time passes, the probability begins to decrease until 
it reaches zero. On the other hand, at the beginning, .ϕ(t |x0) starts at zero because 
it takes a while for the particles to become trapped. As time passes, it increases 
until it reaches a maximum, within which the most probable first-passage time is 
found. Finally, it tends toward zero, which means that very few Brownian particles 
will spend very long periods of time without being absorbed by the boundaries, 
something that is highly unlikely. 

2.5 Moments of the Mean First-Passage Time 

A fundamental definition in probability theory is given by the moments . μn of a 
probability distribution .f (x), where .n = 0, 1, 2, 3, . . ., namely,



2.5 Moments of the Mean First-Passage Time 31

.μn ≡
f ∞

−∞
xnf (x) dx. (2.40) 

With this definition in hand, we can now answer the question of how long the 
game can be expected to last. The average duration .<t (x0)> of the random elevator 
game or mean first-passage time (MFPT), which is the probability of a random walk 
or a diffusing particle hitting the absorbing boundary for the first time, is given by 
the first moment of .ϕ(t |x0), subsequently 

.<t (x0)> =
f ∞

0
t ϕ(t |x0) dt. (2.41) 

Introducing (2.34) into the last equation, we find a fundamental and practical 
relation between the MFPT and the survival probability, namely, 

.<t (x0)> = −
f ∞

0
t
dS(t |x0)

dt
dt. (2.42) 

Integrating it by parts leads to 

.

<t (x0)> = −
[
t

f
dS(t |x0)

dt
dt

]∞

0
+

f ∞

0
S(t |x0)dt

= − [t S(t |x0)]|∞0 +
f ∞

0
S(t |x0) dt.

(2.43) 

Considering that the survival probability is one at .t = 0 and null after a very long 
time, meaning that the particle will definitely be absorbed, and because .S(t |x0) goes 
to zero faster than the power law as t goes to infinity, then the latter equation is 
simplified to 

.<t (x0)> =
f ∞

0
S(t |x0) dt. (2.44) 

This relation is very useful for carrying out computations. 
Back to our game, using the explicit equation for .S(t |x0) given by Eq. (2.38), we  

get the MFPT in terms of a sum 

. 

<t (x0)> = 4

π

∞Σ
n=0

sin
[

(2n+1)
L

πx0

]
2n + 1

f ∞

0
exp

[
− (2n + 1)2π2

L2 Dt

]
dt

= 4

π

∞Σ
n=0

sin
[

(2n+1)
L

πx0

]
2n + 1

[
− L2

(2n + 1)2Dπ2

]
exp

[
− (2n + 1)2π2

L2 Dt

]||||
∞

0
,

(2.45)
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leading to 

.<t (x0)> = 4L2

Dπ3

∞Σ
n=0

sin
[

(2n+1)
L

πx0

]
(2n + 1)3

. (2.46) 

It is possible to find a simpler expression than (2.46) by differentiating .<t (x0)> twice 
with respect to . x0, namely, 

. 
d2<t (x0)>

dx2
0

= − 4

Dπ

∞Σ
n=0

sin
[

(2n+1)
L

πx0

]
2n + 1

= − 4

Dπ

∞Σ
n=1

sin
[

(2n−1)
L

πx0

]
2n − 1

,

(2.47) 
and after computing the sum, given in Eq. (A.32), we have  

.
d2<t (x0)>

dx2
0

= − 4

Dπ

[π

4
sgn

(πx0

L

)]
= − 1

D
. (2.48) 

Integrating the latter equation twice gives 

.<t (x0)> = − 1

2D
x2
0 + Bx0 + A. (2.49) 

The two constants . A and . B can be obtained by demanding that .<t (x0)> satisfies the 
BCs where .<t (0)> = <t (L)> = 0, and the reader can immediately see that . A = 0
and .B = L/(2D), leading to the solution: 

.<t (x0)> = x0(L − x0)

2D
. (2.50) 

This mathematical expression is equal to 0 at the absorbing endpoints and reaches 
its maximum, .L2/8D, when the player starts at the middle point (see Fig. 2.6 for 
.n = 1). 

The nth moment of the first-passage time can be similarly derived using the same 
process above, simply by integrating the definition 

. 

<tn(x0)> =
f ∞

0
tnϕ(t |x0) dt = −

f ∞

0
tn
dS(t |x0)

dt
dt, n = 1, 2, 3, . . .

= [−tn S(t |x0)
]||∞
0 + n

f ∞

0
tn−1S(t |x0) dt,

(2.51) 
which gives
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. <tn(x0)> = n

f ∞

0
tn−1S(t |x0) dt. (2.52) 

Talking about our game, and using the explicit equation for .S(t |x0) given by 
Eq. (2.38) into (2.52), we can compute the n’th moment of the first-passage time, 
namely, 

. 

<tn(x0)> = n

f ∞

0
tn−1

⎧⎨
⎩ 4

π

∞Σ
m=0

exp

[
− (2m + 1)2π2

L2
Dt

] sin
[

(2m+1)
L

πx0

]
2m + 1

⎫⎬
⎭ dt

= 4n

π

∞Σ
m=0

sin
[

(2m+1)
L

πx0

]
2m + 1

f ∞

0
tn−1 exp

[
− (2m + 1)2π2

L2
Dt

]
dt

= 4n

π

∞Σ
m=0

sin
[

(2m+1)
L

πx0

]
2m + 1

(n − 1)!
[
(2m + 1)2π2

L2 Dt

]−(n−1)−1

,

(2.53) 

using Eq. (A.10) to perform the integration. Finally, by collecting terms, we have 

.<tn(x0)> = 4

π

(
L2

Dπ2

)n

n!
∞Σ

m=0

sin
[

(2m+1)
L

πx0

]
(2m + 1)2n+1

. (2.54) 

Figure 2.6 depicts the first two moments of the MFPT. 
In the next section, we will show that the calculation of .<t (x0)> can be done easily 

by solving an ordinary differential equation (ODE). This formalism also allows us 
to find expressions in closed form for the moments of higher order. 

Fig. 2.6 First two moments 
of the MFPT predicted by 
Eq. (2.54), setting .n = 1 (blue 
line) and .n = 2 (yellow line). 
The first moment is reduced 
to Eq. (2.50). The system 
length and diffusivity are set 
to .L = 1 and .D = 1, 
respectively 
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2.6 The Backward Equation 

If we take a close look at Eq. (2.28), it is easy to see that .p(x, t |x0) is symmetric in 
the variables x and . x0, i.e., 

.p(x, t |x0) = p(x0, t |x). (2.55) 

Then, the diffusion equation could also be written using the latter symmetry 
statement as 

.
∂p(x0, t |x)

∂t
= D

∂2p(x0, t |x)

∂x2
0

. (2.56) 

Because of this last result, it is convenient to rename the diffusion equation, 
Eq. (2.13), as the  forward equation and Eq. (2.56), in which the spatial derivatives 
are taken with respect to . x0, as the  backward equation. 

As we will see below, the importance of the backward equations is that it allows 
us to find the differential equations that govern both the survival probability and 
the MFPT. To such end, let us integrate both sides of (2.56) with respect to x and 
use (2.55). For the left-hand term, we have 

.

f L

0

∂p(x, t |x0)
∂t

dx = ∂

∂t

f L

0
p(x, t |x0) dx = ∂S(t |x0)

∂t
, (2.57) 

and for the right-hand term, we have 

.D

f L

0

∂2p(x, t |x0)
∂x2

0

dx = D
∂2

∂x2
0

f L

0
p(x, t |x0) dx = D

∂2S(t |x0)
∂x2

0

. (2.58) 

Therefore, equating these two last relations, we observe that .S(t |x0) satisfies the 
following differential equation: 

.
∂S(t |x0)

∂t
= D

∂2S(t |x0)
∂x2

0

. (2.59) 

Equation (2.59) provides a simpler way to calculate the survival probability without 
the integration of the propagator .p(x, t |x0). It is worth noting that the boundary 
conditions in the presence of two absorbing boundaries at .x0 = 0 and . x0 = L

are given by .S(t |0) = S(t |L) = 0 and the initial condition is .S(0|x0) = 1 for 
.x0 /∈ {0, L}. Now, we are one step further to finding a similar relation to the MFPT. 
Accordingly, when multiplying Eq. (2.59) by .ntn−1, then 

.
∂S(t |x0)

∂t
ntn−1 = D

∂2S(t |x0)
∂x2

0

ntn−1, (2.60)
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and integrating with respect to t , while considering Eq. (2.52), leads to 

.

f ∞

0

∂S(t |x0)
∂t

ntn−1 dt =
f ∞

0
D

∂2S(t |x0)
∂x2

0

ntn−1 dt. (2.61) 

By performing the integrals, we finally find that .<tn(x0)> must satisfy 

. − n<tn−1(x0)> = D
d2<tn(x0)>

dx2
0

. (2.62) 

The generalization to higher dimensions is given by 

.∇2<tn(r0)> = − n

D
<tn−1(r0)>. (2.63) 

If we were to look for the first moment, the MFPT, from Eq. (2.62), the reader could 
easily verify that it should satisfy 

.D
d2<t (x0)>

dx2
0

= −1, (2.64) 

due to the identity .<t0(x0)> = 1. This last equation gives a straightforward way 
to compute the MFPT and is one of the fingerprints of diffusion. The BCs in the 
presence of two absorbing boundaries at .x0 = 0 and .x0 = L are given by . <t (0)> =
<t (L)> = 0, which correspond to the exit time being equal to zero if the particle 
starts at the boundary, and the initial condition is .<t (x0)> = 1 for . x0. 

The second moment of the MFPT for the random elevator game can be calculated 
from the first moment. By using (2.62), we have  

.D
d2<t2(x0)>

dx2
0

= −2<t (x0)> = −x0(L − x0)

D
, (2.65) 

where we have used the first moment given by Eq. (2.50). After solving (2.65), one 
finds that 

.<t2(x0)> = −Lx3
0

6D2 + x4
0

12D2 + Ax0 + B. (2.66) 

Now, subject to the BCs .<t2(0)> = <t2(L)> = 0, we find that .B = 0 and . A =
L3/12D2. Finally, the second moment is given by 

.<t2(x0)> = 1

12D2

(
x4
0 − 2Lx3

0 + L3x0

)
, (2.67)
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which finally leads to the result 

.<t2(x0)> = x0(L − x0)
(
L2 + Lx0 − x2

0

)
12D2 . (2.68) 

Expressions for higher moments can be computed via a recurrence relation as well. 
Figure 2.6 shows the first two moments of the MFPT. 

2.7 Going to the Observatory or the Lobby 

The splitting probability is defined as the probability of player A reaching one 
of the endpoints, the Observatory or the Lobby. To find this probability, we need 
to calculate the probability of the player, who is initially at . x0 between the two 
absorbing points, becoming trapped at either .x = 0 or .x = L. This probability will 
be denoted by .θ0(x0) and .θL(x0), respectively. To such end, we will limit ourselves 
to the continuous model and use a new quantity to be defined: the probability flux. 

2.7.1 Probability Flux 

Joseph Fourier made a significant contribution to the study of heat transfer 
phenomena by introducing the concept of flux. In his influential work, Théorie 
analytique de la chaleur (The Analytical Theory of Heat), he defines fluxion as 
a fundamental measure and then proceeds to derive equations for flux based on 
temperature differentials. The same definition was later extended by Fick in terms 
of concentration. 

In one dimension, diffusing particles can go to one side or the other, and the flux 
between two adjacent points is computed by counting the net number of particles 
crossing a unit length per unit of time. Now, in order to think in terms of fluxes, 
we need to recall that the probability density is analogous to the concentration 
of Brownian particles. This similarity will help us to define the probability flux, 
denoted by .J (x, t), with dimension of .T −1. Then, we note that the probability of 
being between x and .x +Ax within an interval of time . At is equal to the difference 
between the fluxes in and out of the interval. This leads to 

.
∂p(x, t)

∂t
Ax = J (x, t) − J (x + Ax, t). (2.69) 

The Taylor series expression of the latter equation is given as follows:
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. 
∂p(x, t)

∂t
Ax = J (x, t) −

[
J (x, t) + Ax

∂J (x, t)

∂x
+ (Ax)2

2

∂2J (x, t)

∂x2
+ · · ·

]
.

(2.70) 

Retaining only the linear terms in . Ax, we find that 

.
∂p(x, t)

∂t
= −∂J (x, t)

∂x
, (2.71) 

which can be regarded as the conservation equation for the probability or continuity 
equation. The generalization to higher dimensions is straightforward, namely, 

.
∂p(r, t)

∂t
+ ∇ · J = 0. (2.72) 

A direct comparison of Eq. (2.71) with the diffusion equation, Eq. (2.13), shows that 

.J(x, t) = −D
∂p(x, t |x0)

∂x
êi , (2.73) 

which is widely known as Fick’s first law of diffusion. It postulates that the flux 
goes from regions of high concentration to regions of low concentration, with a 
magnitude that is proportional to the concentration gradient. A diffusion process 
that obeys Fick’s laws is called normal or Fickian diffusion. 

The vectorial properties of the flux are manifested explicitly when the spatial 
derivative in Eq. (2.73) is replaced by the gradient . ∇. Then, the generalization is 

.J(r, t) = −D∇p(r, t). (2.74) 

In a three-dimensional Cartesian coordinate system, with a Euclidean metric, the 
gradient . ∇ (see Appendix B) is given by 

.∇ = ∂

∂x
êi + ∂

∂y
êj + ∂

∂z
êk. (2.75) 

2.7.2 Probability Flux at the Observatory and the Lobby 

Now, using Fick’s first law, Eq. (2.74), we can calculate the fluxes for the random 
elevator game problem based on the propagator expressed in Eq. (2.28), which must 
be differentiated as follows: 

. − D
∂p(x, t |x0)

∂x
= −2Dπ

L2

∞Σ
n=1

n exp

(
−n2π2Dt

L2

)
sin

(nπx0

L

)
cos

(nπx

L

)
.

(2.76) 
In Fig. (2.7), we show the time evolution of the latter equation.
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Fig. 2.7 Time evolution of the flux .J (x, t). The initial position of the Brownian particles, the 
system length, and the diffusivity are .x0 = 0.5, .L = 1, and  .D = 1, respectively. Whereas . x0 and 
L have units of length, D has units of length. 2/time, and .p(x, t) of length. −1. The absorbing BCs 
are . p(x = 0, t) = p(x = L, t) = 0

Once we have the general expression for the probability flux, Eq. (2.76), there 
are two points where measuring is relevant, namely, the absorbing points. It is worth 
noting that even though Eq. (2.76) gives the magnitude of the flux, the net flux of 
particles crossing a wall is given by .J · n̂, where . ̂n is the unit normal vector to the 
surface. Then, at .x = L, we have  

. 

J (L, t) = −D
∂p(x, t |x0)

∂x

||||
x=L

êi · n̂

= −2Dπ

L2

∞Σ
n=1

n exp

(
−π2n2Dt

L2

)
sin

(nπx0

L

)
cos (nπ) êi · êi ,

(2.77) 

where the factor .cos(nπ) yields 1 when n is an even number and . −1 when n is an 
odd number. This leads to 

.J (L, t) = −2Dπ

L2

∞Σ
n=1

(−1)n n exp

(
−π2n2Dt

L2

)
sin

(nπx0

L

)
. (2.78) 

An analogous computation for the Lobby placed at .x = 0 is carried out. Because 
the flux in this case is westward, it yields 

.J (0, t) = − D
∂p(x, t |x0)

∂x

||||
x=0

êi · (−êi )
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Fig. 2.8 Flux at L and 0 as a function of time,  given by Eqs. (2.78) and (2.79), respectively. The 
initial position is .x0 = 0.5 (blue line) and .x0 = 0.1 (yellow line), along with .L = 1 and .D = 1 for 
both absorbing points 

= 
2Dπ 
L2 

∞Σ
n=1 

n exp
(

−π2n2Dt 
L2

)
sin

(nπx0 

L

)
. (2.79) 

Both fluxes as a function of time and the initial position can be compared in 
Fig. 2.8. In order to analyze the curves obtained, it is simpler to think in terms of 
Brownian particles. These plots, as a function of time, show that they start with null 
flux, and as time goes by, they reach a maximum, followed by a decrease toward 
null flux, once there are no more particles in the system. As a function of the initial 
position, we can see that being closer to each of the absorbing boundaries speeds 
up how particles leave the system, reaching the maximum flux sooner. In contrast, 
being farther from the absorbing coordinate slows down how particles leave the 
system, and the maximum is reached later. 

2.8 Moments of Mean First-Passage Time: Revisited 

Our first task in this section will be to find the relationship between the density flux, 
the MFPT, and its probability density .ϕ(t |x0). To such end, integrating both sides of 
the continuity equation with respect to x over the interval from 0 to L gives 

.

f L

0

∂p(x, t)

∂t
dx = −

f L

0
∇ · J dx = −

f L

0

∂

∂x
êi · J(x, t) dx. (2.80) 

Then, by substituting Eqs. (2.30) and (2.34) into (2.80) for the left-hand side, we 
have 

.
∂

∂t

f L

0
p(x, t) dx = ∂S(t |x0)

∂t
= −ϕ(t |x0), (2.81)
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and for the right-hand side, we have 

. −
f L

0

∂

∂x
êi · J(x, t) dx = −êi · [J (L, t)êi − J (0, t)(−êi )]. (2.82) 

Equating these two last results, we have 

.ϕ(x0|t) = J (L, t) + J (0, t). (2.83) 

By substituting Eq. (2.83) into Eq. (2.41), we find the MFPT in terms of flux, 
namely, 

.<t (x0)> =
f ∞

0
t [J (L, t) + J (0, t)] dt. (2.84) 

Equations (2.83) and (2.84) are a useful relation that will be used extensively 
throughout the text. 

Our second task will be to show how the moments of the mean first-passage 
time in the time domain could be related to the Laplace transform of the survival 
probability .S(t |x0), as well as to the Laplace transform of .ϕ(t |x0). These relations 
are very useful if we know the integral transforms in closed form. 

To find the first relation, let us transform the survival probability1 

.S(s|x0) =
f ∞

0
S(t |x0) e−st dt. (2.85) 

Taking the .(n − 1)’th derivative with respect to s, we have  

. 
∂n−1S(s|x0)

∂sn−1
=

f ∞

0
S(t |x0)∂

n−1 e−st

∂sn−1
dt = (−1)n−1

f ∞

0
tn−1S(t |x0) e−st dt,

(2.86) 
and then, taking the limit when .s → 0, we have  

.
∂n−1S(s|x0)

∂sn−1

||||
s=0

= (−1)n−1
f ∞

0
tn−1S(t |x0) dt. (2.87) 

Substituting these derivatives into Eq. (2.52), the moments of MFPT are 

.<tn(x0)> = n(−1)−(n−1) ∂
n−1S(s|x0)

∂sn−1

||||
s=0

, (2.88)

1 For further details of the Laplace transform, see Appendix A, Sect. A.8. 
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or, equivalently,2 

.<tn(x0)> = (−1)n+1n
∂n−1S(s|x0)

∂sn−1

||||
s=0

n = 1, 2, 3, · · · (2.90) 

Now, we need to find a similar relation for .ϕ(t |x0). To such end, we perform the 
Laplace transform of the probability density of first-passage time, which is 

.ϕ(s|x0) =
f ∞

0
ϕ(t |x0) e−st dt. (2.91) 

Taking the nth derivative with respect to s, we have  

.
∂nϕ(s|x0)

∂sn
=

f ∞

0
ϕ(t |x0)∂

n e−st

∂sn
dt = (−1)n

f ∞

0
tnϕ(t |x0) e−st dt. (2.92) 

After evaluating at .s = 0, we arrive at the following relation: 

.
∂nϕ(s|x0)

∂sn

||||
s=0

= (−1)n
f ∞

0
tnϕ(t |x0) dt. (2.93) 

Thus, when using Eq. (2.52), moments of MFPT can be written as 

.<tn(x0)> = (−1)n
∂nϕ(s|x0)

∂sn

||||
s=0

. (2.94) 

The importance of Eqs. (2.90) and (2.94) becomes clear when the solution of a 
problem is obtained in Laplace’s space and finding the inverse Laplace transform is 
not easy. 

2.9 Splitting Probability 

The splitting probability is the probability of a player reaching the Observatory 
or the Lobby. In terms of Brownian particles, it is the fraction of particles that 
eventually reach any of the absorbing points. If the probability flux at the absorbing 
boundaries gives us the fraction of particles that reach such boundaries by unit time, 

2 Considering that 

.
1

(−1)n−1 = (−1)n+1 (2.89)
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the integral from 0 to infinity will take into account the total fraction of particles 
that reach them. Therefore, the splitting probability at L is given by 

.θL(x0) =
f ∞

0
J (L, t |x0) dt = −D

∂

∂x

f ∞

0
p(x, t |x0) dt

||||
x=L

. (2.95) 

Explicitly for the random elevator game, by substituting Eq. (2.28) into (2.95), we  
have 

. θL(x0) = −D
∂

∂x

f ∞

0

2

L

∞Σ
n=1

exp

(
−π2n2Dt

L2

)
sin

(nπx0

L

)
sin

(nπx

L

)
dt

|||
x=L

.

(2.96) 

By computing the integral and the derivative, we obtain 

. θL(x0) = −2D

L

∞Σ
n=1

(
L2

π2n2D

) (nπ

L

)
cos

(nπx

L

)
sin

(nπx0

L

)|||
x=L

. (2.97) 

Evaluating the sum at .x = L, we have  

.θL(x0) = 2

π

∞Σ
n=1

(−1)n−1

n
sin

(nπx0

L

)
. (2.98) 

Computing the sum into this last equation, given in Eq. (A.33), yields 

.θL(x0) = x0

L
. (2.99) 

This results shows that the probability of reaching L is the ratio of the distance from 
. x0 to L. It is proportional to the initial position, and the closer we are to L, the  
greater the possibility of reaching it. 

Now, let us compute .θ0(x0). This computation is easy because the only difference 
is given by the evaluation of .cos(nπx/L) in Eq. (2.97). Hence, considering that 
.θx'(x0) is 

.θx'(x0) = − 2

π

∞Σ
n=1

1

n
cos

(nπx

L

)
sin

(nπx0

L

)|||
x=x' , (2.100) 

consequently, taking into account the westward direction of the flux, when .x' = 0, 
we have 

.θ0(x0) = 2

π

∞Σ
n=1

1

n
sin

(nπx0

L

)
, (2.101)
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leading to the result anticipated by the conservation of probability, 

.θ0(x0) = 1 − x0

L
. (2.102) 

This results shows that the probability of reaching 0 is a proportional ratio between 
the difference .L − x0 and L. It depends on the initial position, and the closer we are 
to 0, the greater the possibility of reaching it. 

Now, we will explore a simpler way to obtain the splitting probability by means 
of a differential equation. To such end, we start from the backward equation in 
Eq. (2.56) and then differentiate with respect to the variable . x0. Making use of the 
relation in Eq. (2.73), we find that the flux must satisfy 

.
∂J (x, t |x0)

∂t
= D

∂2J (x, t |x0)
∂x2

0

. (2.103) 

Setting .x = L and integrating both sides with respect to time, we find 

.

f ∞

0

∂J (L, t |x0)
∂t

dt = D
∂2

∂x2
0

f ∞

0
J (L, t |x0) dt, (2.104) 

and therefore, 

.J (L, t → ∞|x0) − J (L, t = 0|x0) = D
∂2θ

∂x2
0

. (2.105) 

The left side of the latter equation is zero because, at .t → ∞, the game is guaranteed 
to have ended and, at .t = 0, the status of the game does not have any contributions 
when .x0 = L. These arguments take us to the following ODE: 

.
d2θL(x0)

dx2
0

= 0. (2.106) 

This is another fingerprint of diffusion. The two BCs to be satisfied for the random 
elevator game are .θL(0) = 0 and .θL(L) = 1, i.e., whether A is already at the 
Observatory or the Lobby. Thus, the linear function in Eq. (2.99) is the solution of 
Eq. (2.106). 

2.10 Concluding Remarks 

In this chapter, we have computed and derived the fundamental physical properties 
of diffusion, as well as its mathematical representation. For the reader’s conve-
nience, listed below are the most important equations to depict and define diffusion 
that we have obtained so far, which will be frequently used throughout this book.
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.
∂p(r, t)

∂t
= D∇2p(r, t) (Diffusion equation) 

.
∂p(r, t)

∂t
= D∇2p(r, t) − v · ∇p(r, t) (Fokker-Planck equation) 

.
∂p(r, t |r0)

∂t
= D∇2p(r, t |r0) (Backward diffusion equation) 

.J(r, t) = −D∇p(r, t) (Probability flux) 

.
∂p(r, t)

∂t
= −∇ · J(r, t) (Continuity equation) 

.
∂S(t |r0)

∂t
= D∇2S(t |r0) (Survival probability) 

.∇2<tn(r0)> = − n

D
<tn−1(r0)> (Moments of MFPT) 

.∇2θr'(r0) = 0. (Splitting probability) 

All required representations of special differential operators, .∇,∇ · ∇2, can be 
found in Appendix B. 
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Part II 
Diffusion: Free Particle 

On the diffusion equation and the techniques of its general 
solution in the one-dimensional unconfined space. 

“All the effects of Nature are only the mathematical 

consequences of a small number of immutable laws” 

—Pierre-Simon Laplace



Chapter 3 
Solution of the Diffusion Equation in 
Free Space 

In this chapter, we will focus on solving the diffusion equation under no spatial 
constraints, i.e., in free space, to find a unique solution that will satisfy both the 
partial differential equation and the initial condition. We will review the most widely 
used methods, the Fourier and Laplace transforms and Green’s function formalism, 
presenting the complete step-by-step process for each. In later chapters, we will 
show how these solutions are to be modified when space boundaries are present. We 
also discuss the implications and consequences of the central limit theorem, which 
is a mainstay of statistics and probability. 

3.1 Fourier Transform 

One of the most useful methods to solve the diffusion equation consists in using the 
Fourier transform. The major advantage of this method is that it allows the original 
differential equation to become an ordinary differential equation (ODE), which is 
usually easier to solve. Once we have solved the ODE in Fourier’s space, we then 
need to find the inverse Fourier transform of such solution in order to return to the 
original space. Unfortunately, most of the time, this process is not an easy task. 

In this section, we solve the diffusion equation in a free space with the initial 
condition .p(x, t = 0) = δ(x − x0) by means of the Fourier transform. 

The Fourier transform of a function .f (x) is given by1 

.F{f (x, t)} = f (k, t) =
∫ ∞

−∞
f (x) eikx dx. (A.46) 

1 See Sect. A.7 for further details of the Fourier transform. 
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By applying the Fourier transform to the diffusion equation, i.e., Eq. (2.13), we have  
that 

.F
{

∂p(x, t)

∂t

}
= F
{
D

∂2p(x, t)

∂x2

}
. (3.1) 

To perform the transformation, we need to multiply both sides of the diffusion 
equation by .eikx and integrate them with respect to x. Thereafter, we find for the 
left-hand side of Eq. (2.13) that 

. F
{

∂p(x, t)

∂t

}
=
∫ ∞

−∞
∂p(x, t)

∂t
eikx dx = ∂

∂t

∫ ∞

−∞
p(x, t) eikx dx = ∂p(k, t)

∂t
(3.2) 

and for the right-hand side that 

.F
{
D

∂2p(x, t)

∂x2

}
= D

∫ ∞

−∞
∂2p(x, t)

∂x2 eikx dx. (3.3) 

To solve this last integral, we have to integrate it twice by parts. The first integration 
reads 

.

D

∫ ∞

−∞
∂2p(x, t)

∂x2
eikx dx

= D

[
lim

ζ→∞ eikx ∂p(x, t)

∂x

∣∣∣∣
x=+ζ

x=−ζ

− ik

∫ ∞

−∞
∂p(x, t)

∂x
eikx dx

]
.

(3.4) 

Based on the physical requirement that the probability of finding a particle at 
infinity at time t is null, its derivative, i.e., the flux, also vanishes, as shown by 

. lim
ζ→∞ eikx ∂p(x, t)

∂x

∣∣∣∣
x=+ζ

x=−ζ

= 0. (3.5) 

Then, incorporating this consideration into Eq. (3.4), we have  

.F
{
D

∂2p(x, t)

∂x2

}
= −ikD

∫ ∞

−∞
∂p(x, t)

∂x
eikx dx, (3.6) 

which we integrate by parts again, yielding
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. 

F
{
D

∂2p(x, t)

∂x2

}
= −ikD

[
lim

∆ζ→∞ eikx p(x, t)

∣∣∣∣
x=+ζ

x=−ζ

− ik

∫ ∞

−∞
p(x, t) eikx dx

]

= D(ik)2
∫ ∞

−∞
p(x, t) eikx dx.

(3.7) 
Using the definition of the Fourier transform, Eq. (A.46), the right-hand side 
transforms into 

.F
{
D

∂2p(x, t)

∂x2

}
= −D k2 p(k, t). (3.8) 

Substituting Eqs. (3.2) and (3.8) into (3.1) yields 

.
∂p(k, t)

∂t
= −D k2 p(k, t). (3.9) 

Now, we transform the original partial differential equation (PDE) into an ODE. The 
solution of this ODE is given by 

.p(k, t) = p0 e
−Dk2t . (3.10) 

The explicit value of . p0 must be chosen in such a way that the general solution 
satisfies the initial conditions. To such end, we have to Fourier-transform the initial 
condition, which in this case turns out to be 

.p(k, t = 0) =
∫ ∞

−∞
δ(x − x0) eikx dx = eikx0 . (3.11) 

Evaluating (3.10) at .t = 0 and equating to (3.11) lead to 

.p(k, t = 0) = p0 = eikx0 . (3.12) 

Thereafter, Eq. (3.10) is written as 

.p(k, t |x0) = exp
(
−Dk2t + ikx0

)
. (3.13) 

In order to obtain the result as a function of space and time, we must make use 
of the inverse Fourier transform, defined as 

.f (t) = 1

2π

∫ ∞

−∞
f (k) e−ikx dk. (A.48) 

When Eq. (3.13) is substituted into Eq. (A.48), one finds 

.p(x, t |x0) = 1

2π

∫ ∞

−∞
exp
[
−(ikx − ikx0) − Dk2t)

]
dk. (3.14)
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It is helpful to perform this integration in the complex plane. Therefore, we rewrite 
the argument inside the exponential function by completing the square, namely, 

. 

−[ik(x − x0) + Dk2t] = −Dt

{
k2 + 2k

[
i

2Dt
(x − x0)

]

+
[

i

2Dt
(x − x0)

]2
−
[

i

2Dt
(x − x0)

]2}
.

(3.15) 

Then, after some algebraic manipulations, we get to 

.

[
k + i

2Dt
(x − x0)

]2
= k2 + ik(x − x0)

Dt
+
[

i

2Dt
(x − x0)

]2
. (3.16) 

Thus, the argument of the exponential becomes 

. − [ik(x − x0) + Dk2t] = −Dt

{[
k + i

2Dt
(x − x0)

]2
−
[

i

2Dt
(x − x0)

]2}
.

(3.17) 

Then, Eq. (3.14) turns into 

. p(x, t |x0) = 1

2π
exp

[
− (x − x0)

2

4Dt

] ∫ ∞

−∞
exp

[
−Dt

(
k + i(x − x0)

2Dt

)2]
dk.

(3.18) 

When we introduce the change of variables 

.z ≡ k + i

2Dt
(x − x0), (3.19) 

into Eq. (3.18), we find that 

.p(x, t |x0) = 1

2π
exp

[
− (x − x0)

2

4Dt

] ∫ ∞+i(x−x0)/(2Dt)

−∞+i(x−x0)/(2Dt)

e−Dtz2 dz. (3.20) 

To solve the remaining integral, we make use of the Cauchy-Goursat theorem2 

by introducing the following change of variables: 

2 The Cauchy-Goursat theorem states that if there is a function .f (z) = u(x, y) + iv(x, y), and  if  
.f (z) is analytic in a simply connected domain . Ω, then for every closed curve C in . Ω, the contour 
integral of .f (z) over C is zero, namely, 

.

∮
C

f (z) dz = 0. (3.21)
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Fig. 3.1 Complex plane of 
integration. The path of the 
integral in Eq. (3.23) is 
represented with blue lines 
and goes in clockwise 
direction 

.z1 = a + i(x − x0)

2Dt
and z2 = b + i(x − x0)

2Dt
, (3.22) 

where a tends to minus infinity and b to plus infinity. In such a case, the auxiliary 
integral to solve is 

. 

∮
C

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz +
∫

C3

f (z) dz +
∫

C4

f (z) dz = 0.

(3.23) 
A graphic representation in the complex plane of the integration path is depicted in 
Fig. 3.1. 
The function .f (z) = e−Dtz2 decays exponentially at a and b; therefore, 

.

∫
C2

f (z) dz = −
∫

C4

f (z) dz (3.24) 

as well as 

.

∫
C1

f (z) dz = −
∫

C3

f (z) dz. (3.25) 

Following the path integration in clockwise direction, or equivalently using (3.22) 
at the limit where a and b diverge, we have 

. 

∫
C1

f (z) dz =
∫ z2

z1

e−Dtz2 dz and
∫

C3

f (z) dz =
∫ z1

z2

e−Dtz2 dz.

(3.26) 
Including the latter result into the original integral, Eq. (3.14), we find 

.p(x, t |x0) = 1

2π
exp

[
− (x − x0)

2

4Dt

] ∫ ∞

−∞
e−Dtz2 dz. (3.27)
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This last integral can be solved considering Eq. (A.16), given by 

.

∫ ∞

−∞
xn e−λx2 dx = 1 + (−1)n

2
λ− 1+n

2 𝚪

(
1 + n

2

)
. (A.16) 

Then, 

.

∫ ∞

−∞
e−Dtz2 dz =

√
π

Dt
. (3.28) 

Finally, the solution to the diffusion equation that satisfies the imposed initial 
conditions is 

.p(x, t |x0) = 1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
. (3.29) 

This propagator is a Gaussian with a peak that becomes broader over time and is 
centered at the initial position . x0 and with its maximum decreases as .(4πDt)−1/2. 
The time evolution of the propagator is given in Fig. 3.2. 

When the particle initiates its trajectory at .x0 = 0, the later equation becomes 

.p(x, t |0) = 1√
4πDt

exp

(
− x2

4Dt

)
. (3.30) 

Fig. 3.2 Time evolution of the probability density for free Brownian particles given by Eq. (3.29) 
at different times, i.e., .t = 1.0, .t = 4.0, .t = 9.0, and .t = 20.0. The peak of the function is centered 
at the initial position, which is .x0 = 0, its height decreases as the square root of time t , and  it  
becomes broader over time
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3.2 Laplace Transform 

The Laplace transform method applied to obtain the solution of a PDE is, in some 
way, similar to that of the Fourier transform: the original differential equation 
becomes an ODE that is usually easier to solve. After solving the ODE in Laplace’s 
space, one obtains the original temporal space solution by performing the inverse 
Laplace transform. In this section, we will solve the diffusion equation in free space 
with the initial condition .p(x, t = 0) = δ(x − x0) through the Laplace transform. 

The Laplace transform of a function .f (x, t) is defined as follows:3 

.L{f (x, t)} = f (x, s) =
∫ ∞

0
f (x, t) e−st dt. (A.53) 

Then, applying this definition to the diffusion equation, Eq. (2.13), we have  

.L
{

∂p(x, t)

∂t

}
= L
{
D

∂2p(x, t)

∂x2

}
. (3.31) 

To perform the transformation, we need to multiply both sides of the diffusion 
equation by .e−st and integrate with respect to t . Thereafter, the right-hand side 
yields 

.L
{
D

∂2p(x, t)

∂x2

}
= D

∫ ∞

0

∂2p(x, t)

∂x2 e−st dt = D
∂2p(x, s)

∂x2 . (3.32) 

On the left-hand side, we have to integrate by parts, namely, 

. 

∫ ∞

0

∂p(x, t)

∂t
e−st dt = lim

ζ→∞ p(x, t) e−st

∣∣∣∣
t=ζ

t=0
+ s

∫ ∞

0
p(x, t) e−st dt.

(3.33) 
To evaluate the limit in this last equation, we consider that 

. lim
ζ→∞ p(x, t) e−st

∣∣∣∣
t=ζ

= 0. (3.34) 

Thus, by using the initial condition .p(x, t = 0) = δ(x − x0), Eq. (3.33) becomes 

.

∫ ∞

0

∂p(x, t)

∂t
e−st dt = s p(x, s) − δ(x − x0). (3.35)

3 See Sect. A.8 for further details of the Laplace transform. 
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Consequently, the Laplace transform of the diffusion equation is given by 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2 . (3.36) 

The latter ODE is referred to as the subsidiary diffusion equation or simply the 
subsidiary equation.4 This last equation depends on the Dirac delta function . δ(x −
x0) and on the difference .x − x0 or displacement. In the region where .x < x0 and 
.x > x0, the delta function is zero, and the solution is either a hyperbolic or real 
exponential function. 

Let us propose a linear combination of real exponential functions as a solution of 
Eq. (3.36) given by 

.p(x, s|x0) = A exp

[√
s

D
(x − x0)

]
+ B exp

[
−
√

s

D
(x − x0)

]
, (3.37) 

where . A and . B are constants fixed by the boundary conditions (BCs) of our problem. 
At the limit when .x → −∞, the propagator, Eq. (3.37), should vanish, meaning 
that for such region, .B = 0. In contrast, when .x → ∞, we see that . A should 
be zero so that .p(x, s|x0) remains convergent. Therefore, to satisfy both physical 
arguments, it is convenient to write the propagator in two separate parts, i.e., 

.p(x, s|x0) =

⎧⎪⎨
⎪⎩
A exp
[√

s
D

(x − x0)
]

for x < x0

B exp
[
−
√

s
D

(x − x0)
]

for x > x0.

(3.38) 

The constants . A and . B are obtained from the joining conditions. The first of these 
relations is found by observing that the solution must be continuous at the starting 
position .x = x0, the so-called conservation or continuity condition, namely, 

. p(x, s|x0)|x+
0

= p(x, s|x0)|x−
0

. (3.39) 

We denote as . x+
0 when we’re approaching . x0 from the right and . x−

0 when we 
are approaching from the left, respectively. Then, equating the solutions given by 
Eq. (3.38) in each region when .x = x0 yields 

.A = B. (3.40)

4 The subsidiary equation is the equation in terms of s, obtained by taking the transforms of all the 
terms in a linear differential equation. 
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To find the remaining constant . A, we impose the so-called discontinuity condition 
(for more details, see Sect. 3.5). To such end, we integrate the subsidiary diffusion 
equation, Eq. (3.36), over an infinitesimal interval from .x0 − ϵ to .x0 + ϵ, namely, 

. 

∫ x0+ϵ

x0−ϵ

s p(x, s|x0) dx −
∫ x0+ϵ

x0−ϵ

δ(x − x0) dx = D

∫ x0+ϵ

x0−ϵ

∂2p(x, s|x0)
∂x2

dx.

(3.41) 

Now, taking the limit when .ϵ → 0, the first term of the latter equation is zero at the 
limit .ϵ → 0, and the integral of .δ(x − x0) is 1 (see Subsection A.10.3), leading to 

. − 1

D
= ∂p(x, s|x0)

∂x

∣∣∣∣
x+
0

− ∂p(x, s|x0)
∂x

∣∣∣∣
x−
0

. (3.42) 

Introducing the propagator given by Eq. (3.38) into (3.42), we are  led to the  result  

.A = 1√
4Ds

, (3.43) 

yielding a unique solution for the entire domain, i.e., 

.p(x, s) = 1√
4Ds

exp

[
−
√

s

D
|x − x0|

]
. (3.44) 

The last thing we need to do is transform Eq. (3.44) back to our initial temporal 
coordinate t . In order to accomplish this task, one usually works with the inversion 
theorem of the Laplace transformation through the Bromwich integral, 

.f (t) = L−1{f (s)} = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

est f (s) ds, (A.54) 

by looking for the singularities (or poles) of function .f (s) and by choosing the 
right path in the complex plane to integrate Eq. (3.44) using Eq. (A.54). Due to the 
complications involved in solving this integral, let us find the inverse transform of 
Eq. (3.44) through a simpler method. 

Consider two functions .g(r, s) and .q(r, s) defined as follows: 

.g(r, s) ≡ 1√
s
e−k

√
s and q(r, s) ≡ e−k

√
s , (3.45) 

with .k ≡ |x − x0|/
√

D, meaning that .p(x, s|x0) is actually 

.p(x, s|x0) = 1√
4D

g(r, s). (3.46)
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We can see that .g(r, s) and .q(r, s) are intrinsically linked through their deriva-
tives with respect to s by noting that 

.
∂
√

s g(r, s)

∂s
= −k e−k

√
s

2
√

s
and

∂q(r, s)

∂s
= −k e−k

√
s

2
√

s
. (3.47) 

A combination of the last two equations leads us to the ordinary differential 
equations 

.2s
∂ g(r, s)

∂s
+ g(r, s) + k q(r, s) = 0 and 2

∂q(r, s)

∂s
+ kg(r, s) = 0. (3.48) 

Additionally, the derivatives of Laplace transforms can be computed using the 
following formula: 

.
∂nf (s)

∂sn
=
∫ ∞

0
e−st (−t)nf (t) dt = L

{
(−t)nf (t)

}
, (A.57) 

which takes us to the general result 

.L−1
{

∂nf (s)

∂sn

}
= (−t)nf (t), (3.49) 

and by taking the m’th derivative with respect to t , we find that 

. 
∂m(−t)nf (t)

∂tm
= 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

est (s)m
∂nf (s)

∂sn
ds = L−1

{
(s)m

∂nf (s)

∂sn

}
.

(3.50) 
Therefore, by inverse Laplace transforming both relations in Eq. (3.48), we arrive  
at5 

5 Using 

.g(r, t) = L−1{g(r, s)
} = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

est g(r, s) ds (3.51) 

and 

.q(r, t) = L−1{q(r, s)
} = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

est q(r, s) ds (3.52)
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.

L−1
{
2s

∂g(r, s)

∂s

}
+ L−1{g(r, s)

}+ L−1{k q(r, s)
}

= −2
∂t g(r, t)

∂t
+ g(r, t) + kq(r, t)

= −2t
∂g(r, t)

∂t
− g(r, t) + kq(r, t) = 0

(3.53) 

and 

.L−1
{
2
∂q(r, s)

∂s

}
+ L−1{kg(r, s)

} = −2 tq(r, t) + kg(r, t) = 0. (3.54) 

Using Eqs. (3.53) and (3.54), we obtain an ODE for .g(r, s), namely, 

.
∂g(r, t)

∂t
=
(

k2

4t2
− 1

2t

)
g(r, t), (3.55) 

which solution is given by 

.

g(r, t) = C exp

(
−k2

4t

)
exp

(
ln t

2

)

= C√
t
exp

(
−k2

4t

)
.

(3.56) 

In order to find the constant . C, we evaluate the definition of .g(r, s), i.e., Eq. (3.45), 
at .k = 0, yielding 

. g(r, s)|k=0 = 1√
s
. (3.57) 

The inverse transform of the last equation is well-known and is given by . 1/
√

πt

(see Eq. (A.66)); then .C = 1/
√

π , leading to 

.g(r, t) = 1√
πt

exp

(
−k2

4t

)
. (3.58) 

Finally, the inverse Laplace transform of Eq. (3.44) is now computed straightforward 
by adding the factor .1/

√
4D and replacing k for .|x − x0|/

√
D. Therefore, 

.p(x, t) = 1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
, (3.59) 

which is the same as in Eq. (3.29), as expected.
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3.3 Mean and Standard Deviation of Gaussian Distribution 

In statistics, the standard deviation is a measure of the amount of variation or 
dispersion within a set of values. A low standard deviation indicates that the values 
tend to be close to the set’s mean, while a high standard deviation indicates that the 
values expand over a wider range. 

The expected value, average, mean, or first moment . μ (also represented as .E[x]) 
and the standard deviation . σ of a random variable x with probability distribution 
.f (x) are computed as 

.μ =
∫ ∞

−∞
xf (x) dx (3.60) 

and 

.σ =
√∫ ∞

−∞
(x − μ)2 f (x) dx, (3.61) 

respectively. 
From the propagator for a free Brownian particle, Eq. (3.29), we can compute . μ

and . σ for the Gaussian probability density. Starting with the expectation value of 
the position coordinate, we have 

.μ = 〈x〉 =
∫ ∞

−∞
x√

4πDt
exp

[
− (x − x0)

2

4Dt

]
dx. (3.62) 

When imposing the change of variable .z = x − x0, the latter expression becomes6 

. 〈x〉 = 1√
4πDt

{∫ ∞

−∞
z exp

(
− z2

4Dt

)
dz + x0

∫ ∞

−∞
exp

(
− z2

4Dt

)
dz

}
.

(3.63) 
To evaluate the integral, we use (A.16), and after some algebraic manipulations, the 
latter equation reduces to 

.μ = x0. (3.64) 

Then, the mean for a Gaussian probability density is equal to . x0. 
Additionally, we can find . σ by substituting Eq. (3.64) into Eq. (3.61) and then 

expanding all terms, i.e.,

6 The change of variables preserves the integral’s limits. 
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.σ =
√

1√
4πDt

∫ ∞

−∞
(x2 − 2xx0 + x2

0) exp

[
− (x − x0)2

4Dt

]
dx. (3.65) 

Now, it is helpful to treat each integral individually and use the same change of 
variable, namely, .z = x − x0. As such, the first integral becomes 

.

∫ ∞

−∞
x2 exp

[
− (x − x0)

2

4Dt

]
dx =
∫ ∞

−∞
(z + x0)

2 exp

(
− z2

4Dt

)
dz. (3.66) 

Expanding terms, we find that 

.

∫ ∞

−∞
x2 exp

[
− (x − x0)

2

4Dt

]
dx =
∫ ∞

−∞
z2 exp

(
− z2

4Dt

)
dz

+ 2x0

∫ ∞

−∞
z exp

(
− z2

4Dt

)
dz

+ x2
0

∫ ∞

−∞
exp

(
− z2

4Dt

)
dz

= 2
√

πDt
(
2Dt + x2

0

)
.

(3.67) 

Each term in the latter equation was calculated, again, using Eq. (A.16). The second 
integral inside Eq. (3.65) is computed similarly, namely, 

.

2x0

∫ ∞

−∞
x exp

[
− (x − x0)

2

4Dt

]
dx = 2x0

{∫ ∞

−∞
z exp

(
− z2

4Dt

)
dz

+ x0

∫ ∞

−∞
exp

(
− z2

4Dt

)
dz

}

= 4x2
0

√
πDt.

(3.68) 

For the third integral, we have 

. x2
0

∫ ∞

−∞
exp

[
− (x − x0)

2

4Dt

]
dx = 2x2

0

√
πDt. (3.69) 

Including all three latter results into Eq. (3.65) yields 

. σ =
√

1√
4πDt

[
2
√

πDt
(
2Dt + x2

0

)− 4x2
0

√
πDt + 2x2

0

√
πDt
]
, (3.70) 

which simplifies to
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Fig. 3.3 Representative plot of normal distribution centered at .x0 = 0. For  Eq. (3.73), all values 
less than one, two, and three standard deviations away from the mean account for 68.2%, 95.4%, 
and 99.6% of the set, respectively. It is worth noticing that inflection points occur where .x = μ±σ ; 
consequently, the inflection points are located one standard deviation above the mean and one 
standard deviation below the mean 

.σ = √
2Dt. (3.71) 

Considering that the variance is the standard deviation squared, we have 

.σ 2 = 2Dt. (3.72) 

Finally, by using Eq. (3.64), together with Eqs. (3.71) and (3.72), Eq. (3.29) given 
by a Gaussian or normal distribution (see Fig. 3.3) can be written as 

.p(x, t |x0) = 1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2]
. (3.73) 

So far, we have learned that particles undergoing free diffusion in infinite space 
have zero mean displacement, Eq. (3.64). On the other hand, diffusing particles 
follow different trajectories, i.e., they travel different distances from their initial 
position at time t . The distribution of the distances traveled is predicted by a 
Gaussian distribution. From Eq. (3.73), it is inferred that for a fixed time t , . 68.2%
of the particles are traveling a distance x within .−1σ and . 1σ , while .95.4% are 
traveling within .−2σ and . 2σ , and so on (see Fig. 3.3). In order to obtain one of the 
latter values, we must integrate Eq. (3.73) from .−nσ to . nσ , where n stands for the 
range of interest. The Gaussian distribution also predicts that the peak decreases as 
.
√
2πσ and becomes broader over time proportionally to . σ , meaning that, as time 

passes, the particles move away from the origin to distribute uniformly. 
A wide range of continuous random variables follow a Gaussian probability 

distribution. This distribution is ubiquitous throughout probability theory for various 
reasons, one of the most important ones being the central limit theorem, which we 
will discuss in detail in the next section.
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3.4 The Central Limit Theorem and Moments of 
Displacement 

Let .{X1, . . . , XN, . . .} be a sequence of random variables independently and 
identically distributed with mean . μ and variance .σ 2 < ∞. The central limit 
theorem (CLT) states that as . N approaches infinity, their distribution probability 
converges into a normal distribution with zero mean . μ and variance . σ 2. The larger 
the number of samples, the closer to a Gaussian distribution it becomes. Note that if 
the variables do not have a zero mean, we can always normalize them by subtracting 
the expectation value from it. 

It is worth noting that Laplace discovered the essentials of this fundamental 
theorem in 1810. Nowadays, the term CLT is related to a multitude of statements 
dealing with the convergence of probability distributions of functions of an increas-
ing number of random elements to a normal distribution. 

Now, we will provide proof of the theorem. Consider a one-dimensional random 
walker. The total displacement X after N steps is given by the sum of individual 
displacements on every step X, namely, 

.X =
N∑

i=1

Xi. (3.74) 

To obtain the displacement X, a coordinate . X'must exist one step away from X after 
.N − 1 steps. This can be viewed as a statement of the continuity of paths along the 
random walk, and it is known as the Chapman-Kolmogorov equation,7 namely, 

.PN(X) =
∫ ∞

−∞
PN−1(X

') P
(
X − X') dX' (3.75) 

where .PN(X) is the probability of the random walker being at position X after N 
steps. Then, .PN−1(X

') is the probability of the random walker being at position . X'
after .N − 1 steps and .P(X − X') is the probability of the random walker taking 
the final step from . X' to X. By Fourier transforming Eq. (3.75), we see that it is the 
definition of a convolution (see Eqs. (A.73) and (A.74)). Then, a recurrence relation 
on the probability distributions can be found in the Fourier domain, 

.PN(k) = PN−1(k) P (k). (3.76) 

The same procedure can be applied to .PN−1(X), leading to

7 The master equation is the Chapman-Kolmogorov equation expressed as a first-order differential 
equation in time for the probability density function of a Markovian stochastic variable. 
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.PN−1(X) =
∫ ∞

−∞
PN−2(X

') P
(
X − X') dX', (3.77) 

where .PN−2(X
') is the probability of the random walker being at position . X' after 

.N − 2 steps, and .P(X − X') is the probability of the random walker taking the final 
step from . X' to X. Using the property of the convolution under a Fourier transform 
again, we have 

.PN−1(k) = PN−2(k) P (k). (3.78) 

Substituting (3.78) into (3.76) leads to 

.PN(k) = PN−2(k) P (k)2. (3.79) 

Then, after N iterations, we arrive at 

.PN(k) = P0(k)
[
P(k)
]N

. (3.80) 

Because we know that the initial condition is .P0(x) = δ(x − x0) and that its Fourier 
transform is one, we obtain 

.PN(k) = [P(k)
]N

. (3.81) 

Performing the inverse Fourier transform of this last relation leads to 

.PN(X) = 1

2π

∫ ∞

−∞
[P(k)]N e−ikX dk. (3.82) 

Now, we only have to express .P(k) in terms of .P(X). From the definition of a 
Fourier transform, we have 

.P(k) =
∫ ∞

−∞
P(X) e−ikX dk. (3.83) 

Because the first two moments are finite, we can Taylor expand the exponential 
function; therefore, 

.

P(k) =
∫ ∞

−∞
P(X)[1 + ikX − 1

2
k2X2 + · · · ] dX,

=
∫ ∞

−∞
[P(X) + ikXP (X) − 1

2
k2X2P(X) + · · · ] dX,

=
[
1 + ik〈X〉 − 1

2
k2〈X2〉 + · · ·

]
.

(3.84)
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For a random walker, we have proved that .〈X〉 = 0. Keeping terms up to the 
second order in the latter equation, then 

.P(k) =
[
1 − 1

2
k2〈X2〉

]
. (3.85) 

Introducing Eq. (3.85) into Eq. (3.82), we obtain 

. PN(X) = 1

2π

∫ ∞

−∞

[
1 − 1

2
k2〈X2〉

]N
e−ikX dX. (3.86) 

At the limit of large N and small k, small  k corresponding to large X in the Fourier 
domain, we can approximate the expression inside the brackets as an exponential 
function, so asymptotically, Eq. (3.86) goes to 

.PN(X) ≃ 1

2π

∫ ∞

−∞
e− 1

2Nk2〈X2〉−ikX dX. (3.87) 

Given that the Fourier transform of a Gaussian function is a Gaussian function itself, 
by Fourier transforming Eq. (3.87), we arrive at the expected result: 

. PN(X) = 1√
2πN〈X2〉 exp

( −X2

2N〈X2〉
)

. (3.88) 

This is the central limit theorem for the case of a symmetrical random walk. This 
universality does not only apply to a random walk but also accounts for innumerable 
phenomena in nature, as well as applications in physics, chemistry, and biology. 
Among them, we find the ideal long chain of a polymer and the measurement 
of errors, which can be regarded to be an accumulation of independent errors. In 
physics, when we have variables of a macroscopic or mesoscopic system, such as 
energy, volume, pressure, or number of particles, the deviations of the variables from 
their averages are statistically independent. Then, the deviations have a Gaussian 
distribution. The importance of the CLT stems from the fact that in a number of 
real-life applications, a random variable is the sum of a large number of independent 
random variables. 

To demonstrate the central limit theorem, there is a toy designed as a probability 
machine introduced in 1894 by Francis Galton, otherwise known as the Galton 
board. Have you ever played with a Galton board or quincunx? A Galton board 
is a triangular or rectangular array of pegs. Balls are dropped, one at a time, onto 
the top peg, and they bounce all the way down to the bottom, where they are 
collected in bins. Each time a ball hits one of the pegs, it bounces either left or 
right with the same probability8 , executing a random walk as it moves from row to

8 To fulfill this requirement, the device must be level and properly built. 
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Fig. 3.4 Schematic representation of a Galton board consisting of a triangular array of pegs. 
Individual balls (represented as red points) are dropped at the top of the board. As these balls 
bounce down, they have an equal probability of going to either the left or the right of the peg. At 
the bottom of the board, the balls are collected into specific bins. The probability that a ball ends 
up in one of the bins depends on the number of trajectories it takes to reach it. The distribution of 
the balls in the bins forms a visual representation of the binomial distribution tending to a Gaussian 
distribution (blue solid curve) as the number of balls released increases 

row. Interestingly, the balls collected in the bins follow a normal distribution (see 
Fig. 3.4). 

We provide a Mathematica code, which requires the number of pegs and balls 
in the system to simulate a Galton board. The execution of this code results in the 
simulation of the random walk of the balls, together with the creation of a histogram 
depicting the final position distribution within the bins. 

Additionally, a modified Galton board can help us visualize the splitting proba-
bility time and the first-passage time (Figs. 3.5 and 3.6). By using a square Galton 
board, where balls are dropped from above a fixed initial peg and collected in 
two bins once they reach either of the two end columns, we can reproduce the 
splitting probability process once the initial peg, above which the balls are dropped, 
is fixed. In this board, rows represent positions, and columns represent time steps. 
Furthermore, if the balls are collected in bins placed on both sides of every exit row, 
we obtain the probability distribution of the first-passage time, which is then used to 
calculate the mean first-passage time. It is worth noting that balls perform a random 
walk into the Galton board when moving between pegs.



3.5 Green’s Function Method 65

Fig. 3.5 Schematic 
representation of a modified 
Galton board consisting of a 
rectangular array of pegs. 
Individual balls are dropped 
at the top from a certain peg, 
labeling their initial position 
as . x0. Balls are collected in 
two bins once they reach any 
of the two ends. With this 
board, we are able to 
reproduce the splitting 
process. The codes simulating 
this modification of a Galton 
board can be downloaded 
from https://ixtlan.izt.uam. 
mx/leo/diffusionbookcodes/ 

Fig. 3.6 Schematic representation of a modified Galton board consisting of a rectangular array 
of pegs. Individual balls are dropped at the top from a certain peg, labeling their initial position 
as . x0. Using this configuration of a Galton board, we obtain the probability distribution of the 
first-passage time, from which is then used to compute the mean first-passage time. The codes 
simulating this modified Galton board can be downloaded from https://ixtlan.izt.uam.mx/leo/ 
diffusionbookcodes/ 

3.5 Green’s Function Method 

The Green functions, or Green’s functions, are auxiliary functions used to find 
the solution of an ODE or PDE. Green’s function is named after the British 
mathematician George Green (1793–1841). In 1828, Green published a privately 
printed booklet introducing the derivation of Green’s theorem and the application 
of Green’s functions to electrostatic problems. His work was ignored until William 
Thomson (Lord Kelvin) discovered and recognized its great value.

https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
https://ixtlan.izt.uam.mx/leo/diffusionbookcodes/
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To begin our analysis, let us consider the following differential equation: 

.an(x)
dny(x)

dxn
+ · · · + a1(x)

dy(x)

dx
+ a0(x)y(x) = f (x), (3.89) 

where the .an(x)’s, and its derivatives, are continuous functions on .[a, b]. It is also  
required that the forcing term .f (x) is bounded within .[a, b]. Using a simplified 
notation, we can write Eq. (3.89) as 

.

n∑
m=0

am(x)
dmy(x)

dxm
= f (x), (3.90) 

and for the sake of brevity, we denote the left-hand side with .L = L(x), which is a 
linear differential operator acting on .y(x), namely, 

.L =
n∑

m=0

am(x)
dm

dxm
. (3.91) 

Consequently, Eq. (3.89) now reads 

.L y(x) = f (x). (3.92) 

We now define Green’s function .G(x|ξ) of .L(x) to be the unique solution to the 
problem 

.LG(x, |ξ) = δ(x − ξ), (3.93) 

which satisfies the homogeneous boundary conditions .G(a|ξ) = G(b|ξ) = 0, 
where . ξ is an arbitrary point of excitation. In Eq. (3.93), the delta function . δ(x −x0)

is acting as a source forcing function. The initial conditions show the importance of 
having homogeneous boundary conditions in the original differential equation, such 
as .y(a) = y(b) = 0 or . y(a) = dy(b)/dx = 09 . If such conditions apply to .G(t |τ), 
then a solution that superimposes .G(t |τ) for different values of . τ will still satisfy 
the boundary conditions. 

Green’s function, .G(x|ξ), may be viewed physically as the response of a 
system to a unit impulse at .x = ξ . Depending on the differential equation under 
consideration, the source .f (x) can be interpreted to be a load, a concentration 
flux, a charge density, and so on. The dimensions of a one-dimensional Green’s 
function is .[G(x, x0)] = [x2][δ(x)] = [x]; then, in d dimensions, it becomes 
.[G(x, x0)] = [x]2−d .

9 If the boundaries are not homogeneous, for example, .y(a) = y(b) = c, the problem would have 
to be manipulated into one for which the boundary conditions are homogeneous. In this explicit 
case, we have to write a differential equation for z with the substitution .z = y − c. 
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Formally, a Green’s function is the inverse of an arbitrary linear differential 
operator . L that may depend on space and time. This tells us that Green’s function is 
the solution to the differential equation with a forcing term given by a point source. 
Generally speaking, a Green’s function inverts the operator . L; thus, it is referred to 
as its integral kernel. In fact, the solution to Eq. (3.92) is the convolution .(G⋆f )(x), 
as we will show below. To prove the latter statement, we multiply Eq. (3.93) by . f (ξ)

and integrate along . ξ , leading to 

.

∫
L
[
G(x|ξ)

]
f (ξ) dξ =

∫
δ(x − ξ)f (ξ) dξ = f (x). (3.94) 

The left-hand side of this last equation can be expressed as 

.

∫
L
[
G(x|ξ)

]
f (ξ) dξ = L

[∫
G(x|ξ)f (ξ) dξ

]
. (3.95) 

Now, due to transitivity, 

.L

[∫
G(x|ξ)f (ξ) dξ

]
= f (x). (3.96) 

When comparing Eqs. (3.92) and (3.96), we see that .y(x) is given by 

.y(x) =
∫

G(x|ξ)f (ξ) dξ, (3.97) 

which is an integral representation of the solution. 
In addition to Eq. (3.93), we must impose two further sets of restrictions on 

.G(x|ξ). The first is that the general solution .y(x) in Eq. (3.97) must satisfy the 
boundary conditions (BCs). This is simply arranged by demanding that .G(x|ξ) itself 
stratifies the BCs. 
The second set of restrictions concerns the continuity or discontinuity of .G(x|ξ) and 
its derivatives at .x = ξ . Such constraints are found by integrating Eq. (3.93) with 
respect to x over the small interval .[ξ − ϵ, ξ + ϵ] and then taking the limit as .ϵ → 0. 
To such end, let us write Eq. (3.93) in the following form: 

. 

d

dx

(
an(x)

dn−1G(x|ξ)

dxn−1

)
− dn−1G(x|ξ)

dxn−1
dan(x)
dx + · · · + a1(x)

dG(x|ξ)
dx + a0(x)G(x|ξ)

= δ(x − ξ).

(3.98) 

By integrating from .[ξ − ϵ, ξ + ϵ], we have
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. 

an(x)
dn−1G(x|ξ)

dx

∣∣∣∣
ξ+ϵ

ξ−ϵ

−
∫ ξ+ϵ

ξ−ϵ

dan(x)

dx

dn−1G(x|ξ)

dxn−1 dx + · · ·

+
∫ ξ+ϵ

ξ−ϵ

a1(x)
dG(x|ξ)

dx
dx +
∫ ξ+ϵ

ξ−ϵ

a0(x)G(x|ξ)dx =
∫ ξ+ϵ

ξ−ϵ

δ(x − ξ)dx.

(3.99) 
Now, by taking the limit when .ϵ → 0, all the terms except the first one vanish, 
because at . ξ , the .an(x)’s and their derivatives are continuous, yielding 

.
dn−1

dxn−1
G(x|ξ)

∣∣∣∣
ξ+

− dn−1

dxn−1
G(x|ξ)

∣∣∣∣
ξ−

= 1

an(ξ)
. (3.100) 

In other words, the latter equation is telling us that the derivatives of .G(x|ξ) with 
respect to x up to order .n − 2 are continuous at .x = ξ , but  the  .(n − 1)th-order 
derivative has a discontinuity of .1/an(ξ) at this point. This is the so-called jump 
condition or discontinuity. Finally, besides this condition, we have the continuity 
condition, namely, 

. lim
ϵ→0

[G(x|ξ + ϵ) − G(x|ξ − ϵ)] = 0. (3.101) 

Summarizing, the jump condition (3.100), the continuity condition (3.101), and 
the boundary conditions give the 2n equations needed to complete the construction 
of Green’s function. 

3.5.1 An Application of Green’s Function: The Forced 
Undamped Harmonic Oscillator 

The primary use of Green’s functions in mathematics and physics is to solve non-
homogeneous boundary value problems. As an introduction to Green’s function 
technique, we will solve the equation of motion of the driven harmonic oscillator 
by an applied external force .F(t). A simple harmonic oscillator consists of a 
mass m attached to a spring which, when displaced from its equilibrium position, 
experiences a restoring force .−kx proportional to the displacement x, which pulls 
the mass in the direction of the origin, .x = 0, and is characterized by a natural 
frequency .ω0 = √

k/m. The equation of motion of a harmonic oscillator in the 
presence of an external force .F(t) is given by 

.
d2x

dt2
+ ω2x = F(t)

m
= f (t). (3.102)
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To solve Eq. (3.102) by Green’s method, let us assume that instead of the 
oscillator experiencing a force .f (t), it receives a whole sequence of impulses . f (τ)

from 0 to t , in such a way that 

.f (t) =
∫ ∞

0
f (τ)δ(t − τ) dτ. (3.103) 

Accordingly, we have to solve Eq. (3.102) with .f (t) replaced by .δ(t − τ), that is, 
we find the response of the system to a unit impulse at . τ . When the system receives 
the impulse at .t = τ , the oscillator emits a response .G(t, τ ), and from Eq. (3.93), 

.
d2G(t |τ)

dt2
+ ω2G(t, τ ) = δ(t − τ), (3.104) 

where the linear operator .L(t) is given by 

.L(t) = d2

dt2
+ ω2. (3.105) 

On the other hand, we have from Eq. (3.97) that the solution to Eq. (3.102) is 
computed through 

.x(t) =
∫ ∞

0
G(t |τ) f (τ) dτ. (3.106) 

Now, solving Eq. (3.104) subject to the initial conditions .G(t |τ) = 0 and 
.dG(t |τ)/dt = 0, both at . τ , we obtain Green’s function of the problem 

.G(t |τ) =
{
0, 0 < t < τ,

1
ω
sin [ω(t − τ)] , 0 < τ < t.

(3.107) 

Figure 3.7 shows the time evolution of .G(t |τ). 
Recalling that . τ is an arbitrary reference time and that the value of Green’s 

function is null for .τ > t , then, by substituting Eq. (3.107) into Eq. (3.106), we  
finally find that the solution of the driven harmonic oscillator is 

.x(t) =
∫ t

0

1

ω
sin [ω(t − τ)] f (τ) dτ, (3.108) 

where we add up all the single impulses .f (τ) from 0 to t in order to reproduce the 
effect of .f (t) over the harmonic oscillator.
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t 

G
(t|

τ)
 

τ 

Fig. 3.7 Time evolution of Green’s function for an undamped harmonic oscillator. . G(t, |tau)

represents the system’s response to an impulse from the source .f (t). When  .t = 0, the mass is 
elongated from its equilibrium position and then released without any impulse. Subsequently, at 
time . τ , the external force starts to act on the system. When .0 < t < τ , the object will oscillate 
with its own frequency . ω0, and no response is produced, .G(t |τ)=0. In between .0 < τ < t , a  
new frequency . ω resulting from .f (t) is obtained, leading to a sinusoidal response. Afterward, the 
external force is removed, meaning that the oscillator goes back to oscillating at . ω0

3.5.2 The Inhomogeneous Diffusion Equation and Green’s 
Function 

In Chap. 2, we derived the homogeneous diffusion equation in terms of the 
concentration .c(x, t), Eq. (2.16). In contrast, when a source is present in the system, 
the diffusion equation becomes inhomogeneous: 

.
∂c(x, t)

∂t
− D

∂2c(x, t)

∂x2
= ρ(x, t), (3.109) 

where .ρ(x, t) is the concentration of Brownian particles per unit of time delivered 
into the system. In order to use Green’s function method to solve the latter 
equation, we must write the complete source .ρ(x, t) as a sequence of infinitesimal 
components, namely, 

.ρ(x, t) =
∫ ∞

0

∫ ∞

−∞
ρ(ξ, τ )δ(x − ξ)δ(t − τ) dξ dτ. (3.110) 

Then, we look for the solution of Eq. (3.109) with a unit pulse of concentration 
located at .x = ξ when .t = τ , i.e., .δ(x − ξ)δ(t − τ), to find the system’s response to 
such perturbation, .G(x, t). This translates into solving 

.
∂G(x, t)

∂t
− D

∂2G(x, t)

∂x2
= δ(x − ξ)δ(t − τ), (3.111)
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which is subject to10 

.G(x, 0) = 0 and G(|x| → ∞, t) = 0. (3.112) 

Although we already solved the homogeneous problem using different methods, let 
us solve Eq. (3.111) using a combination of the Fourier and Laplace transforms in 
order to consider causality.11 First, we take the Laplace transform of Eq. (3.111), 
which is 

. 

∫ ∞

0

[
∂G(x, t)

∂x
− D

∂2G(x, t)

∂x2

]
e−st dt =

∫ ∞

0
δ(x − ξ)δ(t − τ)e−st dt.

(3.113) 
Now, the left-hand side of the transform has already been computed and can 
be found through Eq. (3.33) when considering that .G(x, t)e−st

∣∣
t→∞ = 0 and 

.G(x, 0) = 0. For the right-hand side, we use one of the main properties of the Dirac 
delta function, Eq. (A.92). These arguments, along with .L

{
G(x, t)

} = G(x, s), lead 
to 

.sG(x, s|ξ, τ ) − D
∂2G(x, s|ξ, τ )

∂x2
= δ(x − ξ)e−sτ . (3.114) 

Then, by taking the Fourier transform of the latter equation, we obtain 

. 

∫ ∞

−∞

[
sG(x, s|ξ, τ ) − D

∂2G(x, s|ξ, τ )

∂x2

]
eikx dx =

∫ ∞

−∞
δ(x − ξ)e−sτ eikx dx,

(3.115) 
leading to 

.sG(k, s|ξ, τ ) + Dk2G(k, s|ξ, τ ) = e−sτ eikξ , (3.116) 

where we used Eq. (3.8) for the transform of the second spatial derivative with 
respect to x. Moreover, by defining .α2 ≡ s/D, the last expression is reduced to 

.G(k, s|ξ, τ ) = eikξ−sτ

(α2 + k2)D
. (3.117) 

10 The BC for Green’s function arises from the fact that Eq. (3.111) is subject to the homogeneous 
version of the BC associated with Eq. (3.109). For instance, if the solution of Eq. (3.109) is required 
to satisfy an inhomogeneous Neumann BC, then Eq. (3.111) is to be solved together with the 
corresponding homogeneous Neumann BC.
11 Causality refers to the fact that an event cannot occur before its cause is produced. This means 
that the solutions to be considered must be treated carefully, since the diffusion equation itself can 
distinguish past from future. 
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To find .G(x, t |ξ, τ ), we start by making the inverse Fourier transform of 
Eq. (3.117), that is, 

.G(x, s|ξ, τ ) = e−sτ

2πD

∫ ∞

−∞
e−ik(x−ξ)

α2 + k2
dk. (3.118) 

If we think about the inverse Fourier transform as a line integral along the real axis 
in the complex plane, the computation becomes easier. For such purpose, we rewrite 
the latter equation as 

.G(x, s|ξ, τ ) = e−sτ

2πD

∮
C

e−ik(x−ξ)

α2 + k2
dk − e−sτ

2πD

∫
CR

e−ik(x−ξ)

α2 + k2
dk, (3.119) 

in which the subscript C indicates the integration along a closed path laying on the 
real axis and the subscript . CR indicates the integration along a semicircular path 
joining the contour at point .k = 0. In accordance with Jordan’s lemma, we can 
neglect the second term,12 yielding 

.G(x, s|ξ, τ ) = e−sτ

2πD

∮
C

e−ik(x−ξ)

α2 + k2
dk, (3.122) 

and by applying Cauchy’s residue theorem,13 we find that 

12 Jordan’s lemma states that if having a circular arc . CR with radius R at the center of the origin 
and a function .f (z) such as .f (z) → 0 uniformly as .R → ∞, then  

. lim
R→∞

∫
CR

f (z)eimz dz = 0, (m > 0), (3.120) 

if . CR lies in the first and/or second quadrants, and 

. lim
R→∞

∫
CR

f (z)e−imz dz = 0, (m > 0), (3.121) 

if . CR lies in the third and/or fourth quadrants. Such requirements perfectly suit Green’s function 
of the inhomogeneous diffusion equation. For instance, in Eq. (3.120), .m = x0 − x > 0 when we 
are to the left of . x0, and  in  Eq. (3.121), .m = x − x0 > 0 when we are to the right of . x0. 
13 Cauchy’s residue theorem states that if C is a simple-closed contour, described in the positive 
sense, and if a function .f (z) is analytic inside and on C except for a finite number of singular 
points . zk inside C, then  

.

∮
C

f (z) dx = 2πi

N∑
k=1

Res[f (z)]. (3.123)
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.

G(x, s|ξ, τ ) = e−sτ

2πD

{
2πi

N∑
n=1

Res

[
e−ik(x−ξ)

α2 + k2

]}

= ie−sτ

D

N∑
n=1

Res

[
e−ik(x−ξ)

α2 + k2

]
.

(3.124) 

To find the residues, we make a Taylor series of the argument around the singular 
points (or poles), . iα and .−iα. Writing the first term only is enough to identify the 
residue, namely, 

.
e−ik(x−ξ)

α2 + k2
= − ie(x−ξ)α

2α(k − iα)
+ · · · (around iα), (3.125) 

.
e−ik(x−ξ)

α2 + k2
= ie−(x−ξ)α

2α(k + iα)
+ · · · (around − iα). (3.126) 

Thus, 

.G(x, s|ξ, τ ) = i e−sτ

D

[
− ie(x−ξ)α

2α

]
= e(x−ξ)α−sτ

2Dα
for iα, (3.127) 

and, given that for .−iα the integration is in clockwise direction, for the second pole, 
we have that 

.G(x, s|ξ, τ ) = −i e−sτ

D

[
ie−(x−ξ)α

2α

]
= e−(x−ξ)α−sτ

2Dα
for − iα. (3.128) 

Intending to express the solution in a single function, we use the absolute value of 
the difference .x − ξ , yielding 

.G(x, s|ξ, τ ) = e−|x−ξ |α−sτ

2Dα
, (3.129) 

and by substituting . α, we find that 

.G(x, s|ξ, τ ) = e−|x−ξ |√s/D−sτ

√
4sD

. (3.130) 

The Fourier inverse transform is now done. Then, by inverse Laplace transform-
ing Eq. (3.130),
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.G(x, t |ξ, τ ) = L−1

{
e−|x−ξ |√s/D−sτ

√
4sD

}
, (3.131) 

and using the fact that .L
{
f (t −b)H(t −b)

} = e−bsF (s), where .F(s) is the Laplace 
transform of .f (t), .H(t) the step function, and b a real positive constant, together 
with the inverse Laplace transform of .exp

[
−
√

s
D

(x − ξ)
]
/
√
4Ds, Eq. (3.59), we  

finally obtain Green’s function of the inhomogeneous diffusion equation, 

.G(x, t |ξ, τ ) = H(t − τ)√
4πD(t − τ)

exp

[
− (x − ξ)2

4D(t − τ)

]
. (3.132) 

The Heaviside step function indicates that there is no response until the source is 
placed at time . τ . In previous chapters, this time has been taken to be .τ = 0. Since 
we start studying the diffusion process once the concentration source is placed in 
the system, say at .ξ = x0, such consideration simplifies Eq. (3.132) as follows: 

.G(x, t |ξ = x0, τ = 0) = G(x, t |x0) = 1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
, (3.133) 

which is actually Eq. (3.30). This allows us to conclude that Green’s function of 
the inhomogeneous diffusion equation is identical to the solution of the diffusion 
equation in free space. Lastly, we find that the solution of the inhomogeneous 
diffusion equation is given by 

.c(x, t) =
∫ t

0

∫ x

0

H(t − τ)√
4πD(t − τ)

exp

[
− (x − ξ)2

4D(t − τ)

]
ρ(x0, τ ) dτ dξ. (3.134) 

3.6 Free Diffusion on d-Dimensional Space 

The propagator for a diffusing particle in a d-dimensional free space, subject to the 
initial condition .p(r, t = 0) = r0, can be found based on the fact that motion 
in different directions is independent from each other. Then, the d-dimensional 
diffusion equation can be written as 

.
∂p(r, t)

∂t
= D

(
∂2p(r, t)

∂x2
1

+ ∂2p(r, t)

∂x2
2

+ · · · + ∂2p(r, t)

∂x2
d

)
. (3.135) 

Since the partial spatial derivatives are with respect to a single variable, we can 
use the superposition principle and propose a general solution as the product of the 
solutions for each dimension, namely,
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.p(r, t |r0) =
d∏

i=1

pi(xi, t |x0i
), (3.136) 

where .i = 1, 2, 3, . . . , d. Substituting (3.136) into (3.135), we find that . pi(xi, t |x0i
)

must satisfy the following equation: 

.
∂pi(xi, t |x0i

)

∂t
= D

∂2pi(xi, t |x0i
)

∂x2
i

. (3.137) 

Equation (3.137) must be solved subject to the initial conditions . pi(xi, t |x0i
) =

δ(xi − x0i
) for all i. The solution to the one-dimensional diffusion equation has 

been found using different methods in this chapter, and now we know that it is given 
by (3.29). When this solution is substituted into (3.136), we finally arrive at 

.p(r, t |0) = 1

(4πDt)d/2
exp

(
− (r − r0)2

4Dt

)
. (3.138) 

The propagator is a Gaussian with a peak centered at . r0. When d is set equal to 1, 
Eq. (3.29) is recovered. Now, as times goes by, the peak’s decrease depends on the 
dimension, as well as on how it broadens (see Fig. 3.8). 

Fig. 3.8 Representative plot of the time evolution of the probability density for free Brownian 
particles in two dimensions, given by Eq. (3.138) and setting .d = 2 at different times, i.e., .t = 0.08, 
.t = 0.10, .t = 0.30, and .t = 0.50. The peak of the function is centered at the initial position . r0 and 
becomes broader over time
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3.7 Concluding Remarks 

In this chapter, we solved the diffusion equation in free space, i.e., we found a unique 
solution that satisfies both the PDE and the initial conditions. To solve the free-space 
diffusion problem, we reviewed the most commonly used methods: the Fourier and 
Laplace transforms and Green’s function formalism. We also proved the central 
limit theorem and discussed its important implications, i.e., if the first two moments 
of a sequence of independent and identically distributed random variables are finite, 
their distribution probability converges to a normal distribution. 

For the reader’s convenience, listed below are the most important equations we 
have obtained in this chapter. 

.p(x, t |x0) = 1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2]
(Gaussian or normal distribution) 

.
∂c(x, t)

∂t
− D

∂2c(x, t)

∂x2 = ρ(x, t) (Inhomogeneous diffusion equation) 

. G(x, t |ξ, τ ) = H(t − τ)√
4πD(t − τ)

exp

[
− (x − ξ)2

4D(t − τ)

]

(Green’s function for the diffusion equation) 

. p(r, t |0) = 1

(4πDt)d/2
exp

(
− (r − r0)2

4Dt

)

(Propagator in a d-dimensional free space) 

3.A Galton Board Simulation 

This appendix presents Listing 3.1, in which we provide a Mathematica code to 
simulate the random walk of balls within a Galton board. The execution of function 
Galtonboard, which requires the number of pegs and balls in the system, generates 
a histogram from a list of the final positions of the balls. For instance, by running 
the function Galtonboard[100, 10000], we obtain the distribution of 10,000 
balls within the bins after interacting with 100 pegs (see Fig. 3.9).
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Listing continued on next page 

Listing 3.1 [Galtonboard.nb]: Mathematica code to simulate a Galton 
board and provide an histogram of final positions

 (∗Definition of the Galton board simulation∗)

 Galtonboard[(∗number of pegs∗)pegs_, (∗number of balls∗) 
balls_] :=

Module[(∗Definition of local variables∗)

{position, list, motionofparticle},

(∗We create a table containing all balls' final 
position∗)

list = Table[

(∗Initial position of each ball∗)
(∗we drop each ball at the center of the board∗)

position = IntegerPart[pegs/2];

(∗Calculation of the position after bouncing off all 
pegs∗)

Do[
(∗equal probability of moving to the left of the 

right∗)

motionofparticle = RandomChoice[{-1, 1}];

(∗new position computation∗)

position = position + motionofparticle;

, pegs (∗random motion after each bounce∗)];
position, {balls}];

(∗Finally, we make an histogram using the list of 
balls' final positions∗)

Histogram[list, {1}, Frame -> True]
]

 1
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Listing continued from last page 

Listing ended

 34 (∗As an example, we show the distribution of 10,000 balls 
in the bins after interacting with 100 pegs∗)

 35
 36 Galtonboard[(∗number of pegs∗)100,(∗number of balls∗) 

10000] 

Fig. 3.9 The bar chart 
represents the number of 
paths leading to each slot 
obtained from the code in 
Listing 3.1 by means of the 
function 
Galtonboard[100, 
10000] 

Further Reading and References 

C. Constanda, Solution Techniques for Elementary Partial Differential Equations (Chapman & 
Hall/CRC, Boca Raton, 2010)



Part III 
One-Dimensional Diffusion and Boundary 

Conditions 

The randomness of being trapped and reflected in one 
dimension. 

“In physics, you don’t have to go around making trouble for 
yourself - nature does it for you.” 

—Frank Wilczek



Chapter 4 
One-Dimensional Semi-infinite Systems 
Solutions 

When a Brownian particle hits a boundary, its fate is determined by the physical 
properties of this boundary. For example, if the particle hits a perfectly reflecting 
boundary, it bounces off, and if it hits a perfectly absorbing wall, it is removed from 
the system. The latter occurs, for example, when the particle either crosses through 
a different container that it cannot go back to or reacts with the wall by binding 
to it or turning into another substance. A third possibility is that the boundary 
wall may be neither perfectly reflecting nor perfectly absorbing, and instead, both 
effects occur with a certain probability. In this case, the boundary is referred to as 
a partially absorbent or radiation boundary. It turns out that the solution to the 
diffusion equation is dependent on the boundary conditions (BCs) imposed. 

In the previous chapter, we focused on solving the diffusion equation under no 
spatial constrains and with one initial condition. In this chapter, we will impose a 
boundary condition (BC) from those described in the previous paragraph, as well as 
an initial condition, to solve the diffusion equation in a semi-infinite system. These 
BCs can be described mathematically by the Dirichlet and Neumann BCs. With 
Dirichlet BCs, we can define the perfectly absorbing boundary, while Neumann 
BCs are used to describe perfectly reflecting and radiation boundaries. As we will 
see, the properties of the propagator .p(x, t) and its flux .∂p(x, t)/∂x at the boundary 
become essential when defining BCs. 

Solving the diffusion equation with BCs can be carried out using different 
approaches. Since all of them are important and useful, in this chapter, we will 
solve each problem using different mathematical methods and tools. Even though 
it might seem unnecessary, when facing new problems related with diffusion under 
confinement, knowing the different ways in which these problems can be solved 
can prove to be extremely helpful. Usually, one method will turn out to be easier or 
more useful than others depending on the characteristics of the system under study, 
making it worthwhile. 
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4.1 Boundary Conditions 

This section is intended to provide a brief introduction to the concept of BCs. The 
conditions we impose on the boundary . ∂Ω of the domain . Ω are called boundary 
conditions. The BCs are the constraints that need to be satisfied by the solution of 
a boundary value problem : a differential equation together with a set of additional 
constraints that make its solution unique. For instance, in one dimension, the only 
choice for a domain . Ω is an interval. In a finite spatial domain .[a, b], it is necessary 
to specify two constraints, one at .x = a and the other at .x = b, in addition to the 
time constraints, that typically is the initial condition at .t = 0. 

There are five types of BCs: Dirichlet, Neumann, Robin, mixed, and Cauchy 
BCs. The Dirichlet, Neumann, and Robin BCs are also called the first-, second-, and 
third-type BCs, respectively. It is worth remembering that a BC is homogeneous if 
its value is set to be zero; otherwise, it is called inhomogeneous. 

Dirichlet BCs specify the value of the function on . ∂Ω. For example, we could 
specify Dirichlet BCs for the interval domain .[a, b], such as in a one-dimensional 
(1D) constrained diffusion problem where both ends of the system are maintained 
with constant concentration, namely, .c(x = a) = ca and .c(x = b) = cb. When 
these constants are set to be zero, each boundary describes a perfectly absorbing 
point, namely, .c(x = a) = c(x = b) = 0. In general, the boundary value could also 
be dependent on time, for example, .c(x = a, t) = f (x = a, t). 

Neumann BCs specify the value of the normal derivative of the function on 
. ∂Ω. Accordingly, the derivative of the dependent variable is known for the entire 
boundary. For example, in our 1D diffusion example, we could be interested in 
specifying the flux at the two endpoints, i.e., .∂cx(x = a)∂x = f (x = a) and 
.∂c(x = b)∂x = f (x = b). When .f (x) is equal to zero, this boundary describes 
a perfectly reflecting point, namely, .∂cx(x = a)∂x = ∂cx(x = b)∂x = 0. On the  
other hand, when the flux is proportional to the concentration, a partially absorbing 
point is described, namely, .∂cx(x = a)∂x = κcx(x = a). If the proportionally 
constant . κ tends to infinity, we recover the perfectly absorbing BC, and if it is set 
equal to zero, a perfectly reflecting BC is described. As in the Dirichlet case, the 
boundary constraint could also depend on time. 

The Robin BCs, when imposed on an ordinary or a partial differential equation, 
are a weighted combination of the Dirichlet and Neumann BCs at . ∂Ω. When dealing 
with diffusion in 1D, such constraints can be written as follows: . α1c(x = a) +
α2∂cx(x = a)∂x = f (x = a, t) and .α1c(x = b)+α2∂cx(x = b)∂x = f (x = b, t), 
where . αi (.i = 1, 2) are constants representing the weights. 

The Cauchy BCs correspond to imposing Dirichlet and Neumann BCs simulta-
neously. For example, if a diffusion process takes place in 1D interval domain .[a, b], 
this corresponds to the condition where concentration is specified at one end of the 
domain, .c(x = a) = ca , while the flux is known at the other end of the domain, i.e., 
.∂c(x = b)∂x = f (x = b). 

The mixed BCs are commonly used in second-order differential equations, 
in which one may specify the value of the function .c(x, t) and its derivative.
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Consequently, the Dirichlet and Neumann BCs, regarding the bounded 1D diffusion 
problem, can be written as .c(x = a) = ca and .∂c(x = a)∂x = f (x = a). 

The selection of any of the mentioned BCs depends on the geometrical and 
physical properties of the domain, as we will see in the following sections. 

4.2 Derivation of Boundary Conditions 

In order to present a derivation of the BCs, we will assume a discrete one-
dimensional random walk on .x ≥ 0, with the probability of the particle being at 
site j at the nth time step given by .pn(j), in the presence of either: a reflecting, 
absorbing, or partially absorbing boundary at the origin, .j = 0. We will start 
deriving the partially absorbing boundary, because once we have it in the continuous 
limit, the perfectly absorbing and reflecting boundaries can be derived as special 
cases. Let us start with the definition of probability flux in the x direction from j to 
.j + 1 at the n’th step: 

.Jn(j) = −[b pn(j + 1) − a pn(j)], (4.1) 

where a and b are the probability of hopping to the right and to the left, respectively. 
It is convenient to write this equation with a minus sign, given that the diffusive 
flux is proportional but opposite in sign to the concentration gradient. In terms 
of Brownian particles, the relationship inside the square brackets is obtained by 
counting the particles that enter at j from .j + 1, minus those that leave j to reach 
.j + 1, at the  nth step. 

In a random walk, the partially absorbing boundary is defined in terms of the 
probability . β of a particle becoming trapped or else being reflected when reaching 
the boundary, with a probability of .1 − β. If the boundary is placed at the origin, 
.j = 0, by definition, when a particle is reflected, the flux is zero,1 and in our case, 
this occurs with a probability of .(1 − β). Then, from Eq. (4.1), we have  

.Jn(0) = 0 = a pn(0) − (1 − β) b pn(1). (4.2) 

Consequently, the master equation for site 1 is given by 

.pn(1) = a

b(1 − β)
pn(0). (4.3) 

This relation in the continuous limit is

1 In classical mechanics, a particle colliding with a reflecting or impenetrable wall instantaneously 
changes the sign of the component of its velocity perpendicular to this surface. Consequently, the 
net flux of particles crossing the wall is equal to zero. 



84 4 One-Dimensional Semi-infinite Systems Solutions

.p(x + ∆x, t) = a

b(1 − β)
p(x, t). (4.4) 

By Taylor expanding this last equation to the lowest order, we arrive at 

.p(x, t) + ∆x
∂p(x, t)

∂x
= a

b(1 − β)
p(x, t). (4.5) 

Then, for isotropic diffusion, namely, .a = b = 1/2, we have  

.
∂p(x, t)

∂x
= 1

∆x

(
β

1 − β

)
p(x, t). (4.6) 

This flux is proportional to the ratio of the probability of being trapped and the 
probability of being reflected. Now, defining 

.k ≡ 1

∆x

(
β

1 − β

)
, (4.7) 

we finally find that the continuum version of the partially absorbing or radiation 
boundary is 

.
∂p(x, t)

∂x

∣∣∣∣
x=xb

= k p(xb, t), (4.8) 

where .p(x, t) and its derivative are evaluated at the boundary . xb. The units of k are 
inverse of length. Setting .β = 0 and consequently .k = 0, we recover a reflecting 
BC, namely, 

.
∂p(x, t)

∂x

∣∣∣∣
x=xb

= 0. (4.9) 

By setting .β = 1 and therefore .k → ∞, a perfectly absorbing BC is recovered, i.e., 

.p(xb, t) = 0. (4.10) 

If we wish to express Eq. (4.8) in terms of the probability flux, we have to 
multiply it by D. Then, by defining the .κ ≡ Dk, the so-called trapping rate 
coefficient, we arrive at 

. D
∂p(x, t)

∂x

∣∣∣∣
x=xb

= κ p(xb, t). (4.11) 

Observing that . κ and .p(xb, t) are positive-definite quantities, regardless of the 
direction of the outward flow crossing the boundary, we can write a more affordable
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equation for a partially absorbing BC in one dimension, specifically 

.J(xb, t) · êi = κ p(xb, t), (4.12) 

where . ̂ei is the unit outward-facing normal vector to the boundary . xb. It is worth  
noting that the trapping rate coefficient, . κ , has units of length per time, consequently 
units of velocity, and it characterizes the trapping efficiency. The analog equation 
associated with the concentration of particles can be found in a straightforward 
manner if we recall that .c(r, t) = Np(r, t), where N is the number of diffusing 
particles. Therefore, in one dimension, the flux of the concentration has units of 
number of particles per time. 

The partially absorbing BC is generalized in higher dimensions as follows: 

.J(rb, t) · n̂ = κ p(rb, t). (4.13) 

For the sake of clarity, some examples of the most useful formulas for the 
trapping rate coefficients are provided in the next section. Later on, in the following 
chapters, these formulas will be deduced. 

4.2.1 Useful Formulas for Trapping Rate Coefficients and Rate 
Constants 

Trapping of diffusing particles by perfectly absorbing, reflecting, and partially 
absorbing regions on the otherwise reflecting surface plays an important role in 
many physical, chemical, technological, and biophysical processes, such as electric 
current through an array of microelectrodes, reactions on supported catalysis, 
transport passing through porous membranes, and ligand binding to cell sur-
face receptors. These trapping problems are extremely complicated for analytical 
treatment, but one can take advantage of simple formulas for the trapping rate 
coefficients. 

4.2.2 Perfectly Absorbing Sphere 

Consider trapping of diffusing particles in a perfectly absorbing sphere of radius 
R centered at the origin, where as soon as a particle reaches the surface of the 
sphere, it is removed from the system. In a steady state, .dc(r)/dt = 0, where . c(r)
is the particle concentration and r is the distance from the origin. Consequently, the 
diffusion equation, Eq. (2.17), in spherical coordinates simplifies to 

.
D

r2

d

dr

(
r2

dc(r)

dr

)
= 0, r > R, (4.14)
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which is to be solved subject to the following boundary conditions: perfectly 
absorbing on the surface of the sphere, .c(R) = 0 (.κ → ∞), and uniform 
concentration at infinity, .c(r)|r→∞ = c∞. Integrating Eq. (4.14), we find that the 
solution of this boundary value problem is given by 

.c(r) =
(
1 − R

r

)
c∞. (4.15) 

Once we know the concentration, and keeping in mind that the flux goes inward 
toward the center of the sphere, we can calculate it using the following expression 
in spherical coordinates: 

.J = D
dc(r)

dr
= DRc∞

r2
. (4.16) 

We can then use this result to find the diffusion current, or  total flux, which is the 
number of particles trapped by the sphere per unit time: 

. I = 4πR2D
dc(r)

dr

∣∣∣∣
r=R

= 4πRDc∞. (4.17) 

The ratio of the diffusion current to the particle concentration at infinity, .I/c∞, is  
the diffusion-controlled rate constant, or  rate constant, for a perfectly absorbing 
sphere, 

.kS = 4πRD, (4.18) 

which has units of volume per time. This formula is known as the Smoluchowski 
rate constant. 

4.2.3 Partially Absorbing Sphere 

Considering diffusing particles in the presence of a partially absorbing sphere of 
radius R centered at the origin, the corresponding boundary condition, on this 
surface takes the following form: 

. D
dc(r)

dr

∣∣∣∣
r=R

= κc∞, (4.19) 

where . κ is the trapping rate constant that characterizes the trapping efficiency. When 
.κ → ∞ or .κ = 0, the boundary condition corresponds to a perfectly absorbing or 
reflecting surface, respectively. The association of the effective rate constant in this 
case, also known as the Collins-Kimball rate constant, is given by
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.kCK = kS κA

kS + κA
= 4πR2Dκ

D + Rκ
, (4.20) 

where .A = 4πR2 is the surface area of the sphere. The physical interpretation of this 
expression seems to be quite simple: It describes the decrease of the Smoluchowski 
rate constant by the factor 

.
κA

kS + κA
, (4.21) 

which is the trapping probability of a particle that starts diffusing from the surface 
of the sphere. The details of the derivations of Eq. (4.20) are given in Sect. 15.1.2. 

4.2.4 Perfectly Absorbing Circular Disk 

If a three-dimensional diffusion process takes place in the presence of a perfectly 
absorbing circular disk of radius a located on a flat reflecting surface, the diffusion 
current, or total flux, at steady state is given by .I = 4Dac∞. Consequently, the rate 
constant is given by 

.kHBP = 4Da. (4.22) 

This formula is also known as the Hill-Berg-Purcell rate constant. The units of this 
constant are volume per unit time. The details of the derivations of Eq. (4.22) are 
given in Sect. 14.4. 

4.2.5 Boundary Homogenization 

The main idea behind the so-called boundary homogenization is to replace a 
heterogeneous boundary condition on a surface with a homogeneous one that has 
a properly chosen effective trapping rate (or rate constant), so that the steady-state 
flux remains unchanged. Such a replacement is possible because the memory of a 
local configuration of the absorbing patch decays with distance from the surface. 
Sufficiently far away from a patchy surface, the steady-state fields of the particle, 
i.e., fluxes and concentrations, are indistinguishable from the corresponding fields 
in the case of a uniform partially absorbing surface with a properly chosen . κ . Even  
though boundary homogenization focuses on the steady-state flux, the approach can 
also be used to find the moments of the particle’s mean first-passage time (MFPT), 
the probability density of the MFPT, and the particle’s survival probability.
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4.2.5.1 Patchy Surface 

Consider trapping of diffusing particles by . N small perfectly absorbing circular disks 
of radius a randomly distributed over the surface of a perfectly reflecting sphere of 
radius R, where .a ⪡ R. In such a system, we want to replace this inhomogeneity 
by an effective rate constant. To such end, we introduce the rate coefficient for 
a perfectly absorbing disk, given by Eq. (4.22), into the Collins-Kimball formula, 
Eq. (4.20), leading to 

.kBP = 4πDRaN

πR + aN
. (4.23) 

This formula was first obtained by Berg and Purcell in a classical paper on 
chemotaxis using an analogy to an electrical case, that although it is a clever method, 
it only applies in the steady-state problem. The details of the derivations of Eq. 
(4.23) are given in Sect. 15.2. 

4.2.5.2 Cylindrical Capillary: One-Dimensional Reduction 

The boundary homogenization also is useful to reduce the dimension of a problem. 
For example, the diffusion into a cylinder of length L with two perfectly absorbing 
ends at .x = 0 and .x = L can be replaced with diffusion along a line by choosing the 
correct . κ . In such a case, the radiation boundary conditions at either the end or the 
beginning of the line of length L involve flux densities, which replace the capillary, 
given by 

.
∂p(x, t |x0)

∂x

∣∣∣∣
x=0

= κ0 p(0, t |x0), . (4.24) 

∂p(x, t |x0) 
∂x

∣∣∣∣
x=L 

= κL p(L, t |x0), (4.25) 

where .p(x, t |x0) is the propagator for a particle initially at . x0. The rate constant . κi

is obtained by dividing the Hill-Berg-Purcell rate constant, Eq. (4.22), by the area of 
the circular plane surface ends of the cylinder, which gives 

.κi = 4D

πa
, i = 0, L. (4.26) 

The units of this effective rate constant are length per unit time, as expected. The 
details of the derivations of Eq. (4.26) are given in Sect. 16.2. 

All these examples give us an incentive motivation to solve the diffusion equation 
in one dimension subject to boundary conditions. In Chap. 16, we will take an in-
depth look at boundary homogenization and consider some of its applications.
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4.3 Semi-infinite: Perfectly Absorbing Endpoint 

4.3.1 The Fourier Transform Solution 

Consider a Brownian particle diffusing along a one-dimensional semi-infinite 
domain in the presence of a perfectly absorbing point at .x = 0 (see Fig. 4.1). 
The mathematical description of the absorbing boundary is given by Eq. (4.10); 
consequently, 

.p(0, t) = 0, (4.27) 

which is a Dirichlet BC. 
To solve the diffusion equation under this BC, it is required that .x0 > 0. 

In previous chapters, we defined the Fourier transform using the kernel .eikx (see 
Eq. (A.46)). But we can take either the real or imaginary parts of this exponential, 
namely, .cos kx or .sin kx, to compute the transform. We can take advantage of this 
flexibility by choosing the proper kernel that satisfies the BC. 

When the Brownian particle has an initial position .x0 > 0, it never leaves the 
positive domain and .p(0, t) = 0. Thus, in this case, it is helpful to define the Fourier 
transform as 

.p(k, t) =
∫ ∞

0
p(x, t) sin(kx) dx, (4.28) 

with the inverse of the latter equation given by 

.p(x, t |x0) = 1

π

∫ ∞

0
p(k, t) sin(kx) dk. (4.29) 

It is worth noting that the BC given in (4.27) is satisfied by this last equation once 
we choose the sine function to define the Fourier transform, Eq. (4.28). Since the 
propagator must satisfy the diffusion equation, its Fourier transform is given by 
Eq. (3.13), which, excluding the imaginary part, reduces to 

.p(k, t) = p(k, 0) exp
(
−Dk2t

)
. (4.30) 

The transform of the initial condition, .p(0, t) = δ(x − x0), in the Fourier domain 
using Eq. (4.28), is  .p(k, 0) = sin(kx0). Then, using this initial condition in 

Fig. 4.1 Schematic representation of a one-dimensional semi-infinite domain with an absorbing 
end at .x = 0 (red circle)



90 4 One-Dimensional Semi-infinite Systems Solutions

Eq. (4.30), the propagator given in (4.29) can be represented as 

. 

p(x, t |x0) = 2

π

∫ ∞

0
exp

(
−Dtk2

)
sin (kx0) sin (kx) dk.

= 1

π

∫ ∞

0
exp

(
−Dtk2

)
{cos [(k − x0)] − cos [(k + x0)]}dk.

Using Eq. (A.12) to solve the integrals yields 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
− exp

[
− (x + x0)

2

4Dt

]}
. (4.31) 

We see that the concentration has a linear dependence on x near the origin and a 
Gaussian large-distance tail, as illustrated in Fig. 4.2. 

4.3.2 The Laplace Transform Solution 

The solution to our current problem can also be found by means of a Laplace 
transform. As you may recall from Sect. 3.2, the Laplace transform of the diffusion 
equation subject to the initial condition .p(x, t = 0) = δ(x − x0) is given by 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2 . (3.36) 

Fig. 4.2 Time evolution of the probability density .p(x, t |x0) in Eq. (4.31) as a function of x 
evaluated at different times. The starting position of the particles is set at .x0 = 0.5, and the diffusion 
coefficient is .D = 1
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Since the particle is diffusing in a one-dimensional semi-infinite domain, where 
a perfectly absorbing point is set at .x = 0, the solution must be canceled at the 
origin and decrease when x tends to infinity. Therefore, the solution in each region 
should be a linear combination of exponentials or hyperbolic functions. The most 
appropriate functions are those that meet the BCs at the origin and when x tends to 
infinity. Consequently, let us propose that 

.p(x, s|x0) =

⎧⎪⎨
⎪⎩
A sinh

(√
s
D

x
)
, x < x0

B exp
(
−
√

s
D

x
)
, x > x0.

(4.32) 

By imposing the continuity condition, given by Eq. (3.39), to the propagator 
.p(x, t, |x0), we find that 

.A sinh

(√
s

D
x0

)
= B exp

(
−
√

s

D
x0

)
, (4.33) 

and substituting (4.32) into the discontinuity condition, Eq. (3.42), we obtain 

.B exp

(
−
√

s

D
x0

)
− A cosh

(√
s

D
x0

)
= −1√

sD
. (4.34) 

Solving the system of equations given by (4.33) and (4.34), and writing the 
hyperbolic sine function in terms of real exponentials, we find that 

.A = 1√
sD

exp

(
−
√

s

D
x0

)
(4.35) 

and consequently 

.

B = 1√
sD

sinh

(√
s

D
x0

)

= 1

2
√

sD

[
exp

(√
s

D
x0

)
− exp

(
−
√

s

D
x0

)]
.

(4.36) 

Then, substituting the constants into (4.32) yields 

. p(x, s|x0) =

⎧⎪⎨
⎪⎩

1
2
√

sD

{
exp
[√

s
D

(x − x0)
]

− exp
[
−
√

s
D

(x + x0)
]}

, x < x0

1
2
√

sD

{
exp
[√

s
D

(x0 − x)
]

− exp
[
−
√

s
D

(x + x0)
]}

, x > x0.

(4.37) 

The latter equation can be rewritten in a compact form, namely,



92 4 One-Dimensional Semi-infinite Systems Solutions

.p(x, s|x0) = 1

2
√

sD

[
exp

(√
s

D
|x − x0|

)
− exp

(
−
√

s

D
|x + x0|

)]
. (4.38) 

Finally, by using Eq. (A.70) to invert Laplace (4.38), we find that 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
− exp

[
− (x + x0)

2

4Dt

]}
, (4.39) 

which is Eq. (4.31), as the reader may have anticipated. 

4.3.3 From the Propagator of Two Absorbing Endpoints 

Alternatively, the solution obtained by the Fourier and Laplace transforms can be 
derived from the propagator for a free particle diffusing between two absorbing 
endpoints at .x = 0 and .x = L, by taking the limit when .L → ∞. Therefore, our 
starting point is Eq. (2.28), namely, 

.p(x, t |x0) = 2

L

∞∑
n=0

exp

(
−n2π2Dt

L2

)
sin
(nπx0

L

)
sin
(nπx

L

)
. (2.28) 

Note that we have extended the summation limits from .n = 0 instead of 1, since 
.p(x, t |x0) = 0. The convenience of doing this will become clear later. To find 
the solution that describes a single absorbing point at the origin, let .L → ∞ in 
Eq. (2.28). The result is obtained using the definition of the Riemann integral, which 
is 

. lim
∆z→0

∆z

∞∑
n=0

f (n∆z) =
∫ ∞

0
f (z)dz. (4.40) 

Setting .∆z = 1/L and taking the limit when .L → ∞, Eq. (2.28) becomes 

. 

p(x, t |x0) = 2
∫ ∞

0
exp

(
−π2Dtz2

)
sin (πx0z) sin (πxz) dz,

=
∫ ∞

0
exp

(
−π2Dtz2

)
{cos [π(x − x0)z] − cos [π(x + x0)z]}dz.

Using (A.12) to solve the integrals, we ultimately arrive at 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
− exp

[
− (x + x0)

2

4Dt

]}
. (4.41)
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Fig. 4.3 Schematic representation of the method of images applied to the semi-infinite one-
dimensional system. On the right-hand side, we have the real space where diffusion will take place. 
On the left-hand side, we have the image, with its own domain and mirror particle 

4.3.4 Method of Images 

A solution to our problem can be also found by the method of images, a math-
ematical tool for solving differential equations, commonly used in electrostatics. 
The main idea behind this method is to find a solution as a linear combination of 
the free-space propagator when describing two particles: the real particle and the 
image particle (see Fig. 4.3). To such end, let the propagator in free space, given by 
Eq. (3.29), be denoted by .pF (x, t |x0). Thus, considering that the initial position of 
the real particle is . x0 and the initial position of the image particle is .−x0, 

.pF (x, t |x0) = 1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
(4.42) 

is the solution for the real particle, and 

. − pF (x, t | − x0) = − 1√
4πDt

exp

[
− (x + x0)

2

4Dt

]
(4.43) 

is the solution for the image particle. This last solution is obtained by making two 
transformations. First, we set . pF to .−pF , which takes the probability distribution to 
negative values, and then, we set . x0 to .−x0, leading to an anti-Gaussian. We see that 
if both contributions are added, they are ultimately canceled out at the origin, which 
is the solution to the corresponding boundary-value problem (see Fig. 4.4). Finally, 
the solution to the diffusion equation in the presence of an absorbing boundary is 
given by 

.p(x, t |x0) = pF (x, t |x0) − pF (x, t | − x0), (4.44) 

which is again, Eq. (4.31), 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
− exp

[
− (x + x0)

2

4Dt

]}
. (4.45)
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Fig. 4.4 Graphic interpretation of the method of images applied to the semi-infinite system with a 
perfectly absorbing endpoint: The orange dashed curve represents the propagator describing a real 
particle, i.e., .pF (x, t = 10, x0 = 2), while the green dashed curve stands for the propagator of the 
image particle, i.e.,.−pF (x, t = 10, x0 = −2). The superposition of the dashed curves produces 
the solid blue line, which is the solution of the boundary-value problem. It is worth pointing out 
that the domain of the solution in Eq. (4.45) is . [0,∞)

4.3.5 Survival Probability and First-Passage Time 

Once we have found the propagator .p(x, t |x0), we now can obtain the survival 
probability 

.S(t |x0) =
∫ ∞

0
p(x, t |x0) dx, (4.46) 

which, following substitution of the propagator, becomes 

.S(t |x0) =
∫ ∞

0

1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
− exp

[
− (x + x0)

2

4Dt

]}
dx. (4.47) 

To solve the integrals, it is helpful to calculate them separately by defining 

.I1 ≡
∫ ∞

0

1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
dx (4.48) 

and 

.I2 ≡
∫ ∞

0

1√
4πDt

exp

[
− (x + x0)

2

4Dt

]
dx. (4.49) 

Setting
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.y ≡ x − x0√
4Dt

, (4.50) 

then 

.dy = dx√
4Dt

, (4.51) 

and consequently, the integration limits change to .y ∈ [−x0/
√
4Dt,∞). We can 

write . I1 as follows: 

. I1 = 1√
π

∫ ∞

−x0/
√
4Dt

e−y2dy = 1√
π

∫ 0

−x0/
√
4Dt

e−y2dy + 1√
π

∫ ∞

0
e−y2dy.

(4.52) 

Using the error and complementary error function, given by Eqs. (A.81) and (A.82), 
respectively, we obtain 

. I1 = 1√
π

∫ 0

−x0/
√
4Dt

e−y2dy + 1

2
[1 − erf(0)] = 1√

π

∫ 0

−x0/
√
4Dt

e−y2dy + 1

2
.

(4.53) 

Following the same steps to integrate . I2, we find that 

.I2 = − 1√
π

∫ x0/
√
4Dt

0
e−y2dy + 1

2
. (4.54) 

Thereafter, the survival probability is given by 

.S(t |x0) = I1 − I2 = 1√
π

∫ 0

−x0/
√
4Dt

e−y2dy + 1√
π

∫ x0/
√
4Dt

0
e−y2dy. (4.55) 

To reduce the latter expression, we use the error function again. Consequently, we 
can write 

.S(t |x0) = −1

2
erf

(
− x0√

4Dt

)
+ 1

2
erf

(
x0√
4Dt

)
, (4.56) 

which takes the final following form: 

.S(t |x0) = erf

(
x0√
4Dt

)
. (4.57) 

From this last equation, we see that its value is practically constant until we reach 
the diffusion length .

√
Dt . The survival probability vanishes when .t → ∞, meaning 

it is certain that the Brownian particles become trapped. Therefore, the probability
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of becoming trapped is 1. The long-time behavior, .t ⪢ x2
0/D, is obtained when the 

first term of the Taylor series in Eq. (4.57) is kept, namely, 

.S(t |x0) ≈ x0√
πDt

. (4.58) 

A curve of Eq. (4.57) is shown in Fig. 4.5. 
Aiming to compute the probability density of first-passage time, we intro-

duce (4.57) into Eq. (2.34), yielding 

.ϕ(t |x0) = −dS(t |x0)
dt

= − d

dt

[
erf

(
x0√
4Dt

)]
. (4.59) 

Using the result of the derivative in Eq. (A.86) together with the chain rule, we arrive 
at its simplified version, namely, 

.ϕ(t |x0) = x0t
−3/2

√
4πD

exp

(
− x2

0

4Dt

)
. (4.60) 

This last equation starts at zero, then reaches a maximum, and then goes to zero 
again (see Fig. 4.5). 

After substituting the probability density for the survival probability given by 
Eq. (4.57) into the moments of the mean first-passage time (MFPT) given in (2.52), 
we find that 

.〈tn(x0)〉 = n

∫ ∞

0
tn−1S(t |x0) dt = n

∫ ∞

0
tn−1erf

(
x0√
4Dt

)
dt, (4.61) 

which by integrating by parts yields 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
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ϕ(
t| x

0) 

Fig. 4.5 The survival probability given in Eq. (4.57) is depicted in the left-hand panel. On 
the right-hand panel, the probability density of first-passage time .ϕ(t |x0) is depicted, given by 
Eq. (14.15). The starting position of the particle is set at .x0 = 0.5, and the diffusion coefficient is 
.D = 1
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.〈tn(x0)〉 = n

{
tn

n
erf

(
x0√
4Dt

)∣∣∣∣
∞

0
+
∫ ∞

0

x0t
n−3/2

n
√
4πD

exp

(
x2
0√
4Dt

)
dt

}
. (4.62) 

It is worth noting that the latter expression diverges, meaning that every moment of 
MFPT is infinite. Interestingly, even though the probability of hitting the absorbing 
target is 1, the MFPT is infinite. The latter is due to the fact that a Brownian 
particle may arbitrarily move across a long trajectory before becoming trapped. 
Counterintuition begins to unfold. 

4.3.6 Survival Probability: Revisited 

In this section, we will find the survival probability by solving its partial differential 
equation (PDE) for the system we have been studying: a particle diffusing in a one-
dimensional semi-infinite domain in the presence of a perfectly absorbing point at 
.x = 0. Hence, now we must solve the following equation: 

.
∂S(t |x0)

∂t
= D

∂2S(t |x0)
∂x2

0

, (2.59) 

with the initial and BCs given by .S(0|x0) = 1 and .S(t |x0 = 0) = 0, respectively. 
To such end, we use the Laplace transform given by 

.S(s|x0) =
∫ ∞

0
S(t |x0) e−st dt. (4.63) 

Then, applying the Laplace transform to Eq. (2.59), we have  

.L
{

∂S(t |x0)
∂t

}
= L

{
D

∂2S(t |x0)
∂x2

0

}
. (4.64) 

By following the same procedure used in Sect. 3.2, we have that the subsidiary 
equation for the transformed survival probability is 

.s S(s|x0) − 1 = D
d2S(s|x0)

dx2
0

. (4.65) 

It is worth noting that we have replaced the partial derivative in Eq. (4.63) with an 
ordinary derivative. The general solution to Eq. (4.65) is the sum of the solution to 
the homogeneous problem plus the solution to the inhomogeneous equation, namely,
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.S(s|x0) = A exp

(
x0

√
s

D

)
+ B exp

(
−x0

√
s

D

)
+ 1

s
. (4.66) 

The constants . A and . B must be chosen so that .S(s|x0) satisfies the Laplace 
transform of the BCs. Since .S(s|x0) has to remain finite when .x0 → ∞, we assert 
that .A = 0. Since .S(s|x0 = 0) = 0, then .B = −1/s. Consequently, the solution is 

.S(s|x0) = 1

s

[
1 − exp

(
−x0

√
s

D

)]
. (4.67) 

Since the inverse Laplace transform of .e−k
√

s/s is .erfc(k/
√
4t), the real-space 

solution of .S(s|x0) is 

.S(t |x0) = erf

(
x0√
4Dt

)
, (4.57) 

as expected. 

4.4 Perfectly Reflecting Endpoint 

4.4.1 The Fourier Transform Solution 

In this section, we assume that a Brownian particle diffuses in a one-dimensional 
semi-infinite domain in the presence of a perfectly reflecting point at .x = 0 (see 
Fig. 4.6). In mathematical terms, we define a reflecting boundary by requiring that 
the flux at the reflecting point is equal to zero, which corresponds to a Neumann 
BC, Eq. (4.9). The physical motivation to perfectly reflecting boundary comes from 
mechanics: When a particle collides with a perfectly reflecting wall, its velocity 
component that is perpendicular to the wall instantaneously changes directions (i.e., 
changes signs). Consequently, the net flux of particles crossing the wall is equal to 
zero. Therefore, a reflecting boundary is one for which 

.J · n̂ = 0, (4.68) 

where . ̂n is the unit normal vector to the reflecting boundary. Then, when the 
reflecting point is at .x = 0, the reflecting BC is given by 

Fig. 4.6 Schematic representation of a one-dimensional semi-infinite domain with a reflecting end 
at .x = 0 (blue bar)
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.

J(x, t |x0) · n̂∣∣
x=0 = −D

∂p(x, t |x0)
∂x

êx · (−êx)

∣∣∣∣
x=0

= D
∂p(x, t |x0)

∂x

∣∣∣∣
x=0

= 0.

(4.69) 

In this case, .n̂ = −êx , since the unit normal vector to the reflecting boundary points 
eastward. 

Because the particle has an initial position greater than zero, it never leaves the 
positive domain. Therefore, it is useful to define the Fourier transform as 

.p(k, t) =
∫ ∞

0
p(x, t) cos(kx) dx, (4.70) 

with the inverse given by 

.p(x, t |x0) = 1

π

∫ ∞

0
p(k, t) cos(kx) dk. (4.71) 

The BC given in Eq. (4.69) is satisfied by this last equation. The equivalent 
initial condition, .p(0, t) = δ(x − x0), in the Fourier domain, using Eq. (4.70), is  
.p̃(k, 0) = cos(kx0). Then, using this initial condition in Eq. (4.30), the propagator 
given in (4.71) is 

. p(x, t |x0) = 1

π

∫ ∞

0
exp

(
−Dtk2

)
{cos [(k − x0)] + cos [(k + x0)]}dk.

Finally, using (A.12) to solve the integrals, we find that the propagator is given by 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
+ exp

[
− (x + x0)

2

4Dt

]}
. (4.72) 

Equation (4.72) is depicted in Fig. 4.7. 

4.4.2 The Laplace Transform Solution 

The solution to our current problem can also be found by means of a Laplace 
transform. Starting from Eq. (3.36), 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2
, (3.36)
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Fig. 4.7 Time evolution of the probability density given by Eq. (4.72). The starting position of the 
particles is set at .x0 = 0.3, and the diffusion coefficient is . D = 1

we require a solution such that its derivative vanishes both at .x = 0 and when x 
tends to infinity. Since we already have known from the latter section that the general 
solution of (3.36) must be a linear combination of real exponential or hyperbolic 
functions, the most appropriate functions are those that meet the BCs at the origin 
and when x tends to infinity. Consequently, let us propose the following solution: 

.p(x, t |x0) =

⎧⎪⎨
⎪⎩
A cosh

(√
s
D

x
)

, x < x0

B exp
(
−
√

s
D

x
)
, x > x0.

(4.73) 

In addition, we must apply the continuity condition, given by Eq. (3.39), so  
that the propagator is well-behaved across the entire domain. Then, equating the 
solutions in each region when .x = x0 yields 

.A cosh

(√
s

D
x0

)
= B exp

(
−
√

s

D
x0

)
. (4.74) 

Substituting Eq. (4.73) into the discontinuity condition, Eq. (3.42), we obtain 

.B exp

(
−
√

s

D
x0

)
− A sinh

(√
s

D
x0

)
= −1√

sD
. (4.75) 

Solving the system of equations given by Eqs. (4.74) and (4.75), we can find the 
constants . A and . B. Consequently,
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.A = 1√
sD

exp

(
−
√

s

D
x0

)
(4.76) 

and 

.

B =
√

s

D
cosh

(√
s

D
x0

)

= 1

2
√

sD

[
exp

(√
s

D
x0

)
+ exp

(
−
√

s

D
x0

)]
.

(4.77) 

Substituting the two latter equations in the solution, we find that the propagator is 

. p(x, s|x0) =

⎧⎪⎨
⎪⎩

1
2
√

sD

{
exp
[√

s
D

(x + x0)
]

+ exp
[
−
√

s
D

(x − x0)
]}

, x < x0

1
2
√

sD

{
exp
[
−
√

s
D

(x + x0)
]

+ exp
[√

s
D

(x − x0)
]}

, x > x0

(4.78) 

an expression that can be written as follows: 

.p(x, s|x0) = 1

2
√

sD

{
exp

[√
s

D
|x + x0|

]
+ exp

[√
s

D
|x − x0|

]}
. (4.79) 

Finally, taking the inverse transform using Eq. (A.70) yields 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
+ exp

[
− (x + x0)

2

4Dt

]}
, (4.80) 

which is Eq. (4.72). 

4.4.3 Method of Images 

Using the method of images, the propagator for diffusion with a reflecting boundary 
at the origin is given by 

.p(x, t |x0) = pF (x, t |x0) + pF (x, t | − x0), (4.81) 

given that the derivative of .pF (x, t |x0) is an odd function, namely, 

.
∂pF (x, t | − x0)

∂x

∣∣∣∣
x=0

= − ∂pF (x, t |x0)
∂x

∣∣∣∣
x=0

. (4.82)
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As a result, the flux is zero in the reflecting point, and the BC in Eq. (4.69) is 
satisfied. Consequently, Eq. (4.81) is the solution to the semi-infinite line, and 
substituting the expressions for .pF (x, t |x0) and .pF (x, t | − x0) yields 

.p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
+ exp

[
− (x + x0)

2

4Dt

]}
. (4.83) 

4.4.4 Survival Probability and First-Passage Time 

In this system, the survival probability must evidently be 1, which is easy to 
demonstrate, as shown below. 

The survival probability is computed using Eq. (2.30) with .L → ∞ and 
Eq. (4.72), namely, 

.S(t |x0) =
∫ ∞

0

1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
+ exp

[
− (x + x0)

2

4Dt

]}
dx. (4.84) 

In order to reduce the latter expression, we use the definition of the integrals . I1 and 
. I2 computed in the last section. Therefore, .S(t |x0) can be written as follows: 

. 
S(t |x0) = I1 + I2 = 1√

π

[
−

√
π

2
erf

(
− x0√

4Dt

)]
− 1√

π

[√
π

2
erf

(
x0√
4Dt

)]
+1

= 1,
(4.85) 

as expected. 
Accordingly, the probability density of first-passage time is computed straightfor-
ward, resulting in 

.ϕ(t |x0) = −∂S(t |x0)
∂t

= 0. (4.86) 

4.5 Partially Absorbing Endpoint 

Consider a Brownian particle diffusing along a one-dimensional semi-infinite 
domain in the presence of a partially absorbing endpoint at the origin, .x = 0 (see 
Fig. 4.8). Mathematically, this property can be expressed using a trapping rate . κ in 
the BC. Appealing to Eq. (4.13), we have
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Fig. 4.8 Schematic representation of a one-dimensional semi-infinite domain with a partially 
absorbing end at .x = 0 (yellow circle) 

.

J(0, t |x0) · n̂ = −D
∂p(x, t |x0)

∂x
êx · (−êx)

∣∣∣∣
x=0

= D
∂p(x, t |x0)

∂x

∣∣∣∣
x=0

= κp(0, t |x0),
(4.87) 

which is a Neumann BC and where .n̂ = −êx , since the unit normal vector to 
the partially absorbing boundary points westward. This is also called a radiation 
BC because its application is to be found in Newton’s law of cooling. If we think 
of Eq. (4.87) in terms of concentration expressed in particles/L, then . κ gives the 
fraction of particles absorbed out of all those that reach the boundary per unit of 
time, whereas the right-hand side gives the fraction of particles absorbed out of the 
total particles that hit the boundary per unit of time. 

To solve the diffusion equation under this BC, it is useful to define an auxiliary 
function, which is actually a Robin BC given by 

.q(x, t |x0) ≡ D
∂p(x, t |x0)

∂x
− κp(x, t |x0). (4.88) 

Our first task will be to show that .q(x, t |x0) also satisfies the diffusion equation. To 
such end, we derive Eq. (4.88) twice with respect to x, yielding 

. 

D
∂2q(x, t |x0)

∂x2 = D
∂2p(x, t |x0)

∂x2 − κD
∂2p(x, t |x0)

∂x2

= ∂

∂t
[D p(x, t |x0) − κp(x, t |x0)] ,

an expression that reduces properly to the diffusion equation, 

.D
∂2q(x, t |x0)

∂x2
= ∂q(x, t |x0)

∂t
. (4.89) 

The advantage of solving the problem by means of the auxiliary equation . q(x, t |x0)
is revealed when we find that the BC at the origin translates into 

.q(0, t |x0) = D
∂p(x, t |x0)

∂x

∣∣∣∣
x=0

− κp(0, t |x0), (4.90)
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which is actually 

.q(0, t |x0) = 0. (4.91) 

Comparing Eqs. (4.27) and (4.91), we can notice that the diffusion equation in terms 
of .q(0, t |x0) becomes a problem with a perfectly absorbing boundary at the origin, 
which we have already solved. Its solution is given by Eq. (4.81); consequently, 

.q(x, t |x0) = qF (x, t |x0) − qF (x, t | − x0). (4.92) 

The next step is to find the solution of the propagator .p(x, t |x0) in terms of 
.q(x, t |x0). To such end, we need to solve Eq. (4.88). This can be solved using the 
integrating factor method,2 resulting in 

.p(x, t |x0) = Ce−μx + 1

D
eκx/D

∫
e−κy/Dq(y, t |x0) dy. (4.93) 

Since .p(x, t |x0) is the probability of finding the particle at position x at time t , 
the limits of the integral must go from x to . ∞ or, conversely, from . ∞ to x. Both  
directions are allowed in our mathematical problem. Additionally, the probability of 
finding the Brownian particle at infinity is null, which translates into 

.p(x → ∞, t |x0) = 0. (4.94) 

Taking the abovementioned arguments into account, and considering both possi-
bilities in the sign, the propagator becomes 

.p(x, t |x0)± = Ceκx/D ± 1

D
eκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy. (4.95) 

Furthermore, from the BC at infinity, we have that 

. p(x → ∞, t |x0)± = Ceκx→∞/D ± 1

D
eκx→∞/D

∫ ∞

∞
e−κy/Dq(y, t |x0) dy;

(4.96) 
consequently, .C = 0. Then, 

.p(x, t |x0)± = ± 1

D
eκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy. (4.97) 

2 The integrating method is commonly used in ordinary differential equations in which, by 
multiplying by a special factor, we transform an inexact differential into an exact differential, 
making the integral a simple process. Section A.4.1 of Appendix 4.A shows the steps leading to 
Eq. (4.93).
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Substituting the latter result into .q(x, t |x0)’s definition, Eq. (4.88) will tell us 
which sign we should keep in order to get the correct solution. As it turns out, the 
minus sign is the proper choice (see Sect. A.4.2). Therefore, 

.p(x, t |x0) = − 1

D
eκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy. (4.98) 

From Eq. (4.98), we see that the function .q(x, t |x0) must be found in terms of 
.p(x, t |x0) to give a closed solution of the propagator. To such end, we need to 
write Eq. (4.92) in a much simpler way. Let us start by writing .q(x, t |x0) using 
the Chapman-Kolmogorov equation (see Sect. 3.4), namely, 

.q(x, t |x') =
∫ ∞

−∞
q(x, t − τ |x') q(x', τ |x') dx'. (4.99) 

Setting .τ = 0 and because the system under study is semi-infinite, we have that 

.q(x, t |x') =
∫ ∞

0
q(x, t |x') q(x', 0|x') dx'. (4.100) 

Introducing Eq. (4.92) into this integral yields 

.q(x, t |x') =
∫ ∞

0
[qF (x, t |x0) − qF (x, t | − x0)] q(x', 0|x') dx'. (4.101) 

This integral can be calculated by evaluating the initial condition of . q(x, t |x0)
and then relating such result to the initial distribution, i.e., a Dirac delta function. 
Accordingly, 

. q(x, 0|x0) = D
∂

∂x
p(x, 0|x0) − κ p(x, 0|x0) = D

∂δ(x − x0)

∂x
− κ δ(x − x0),

(4.102) 
which can be written as 

.q(x, 0|x0) =
(

D
∂

∂x
− κ

)
δ(x − x0). (4.103) 

Thereafter, including the solution in Eq. (4.44), which is the free-space prop-
agator in the presence of a perfectly absorbing point at .x = 0, and Eq. (4.103) 
into (4.99), we find that3 

3 Section A.4.3 shows the steps leading to Eq. (4.104).
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. q(x, t |x0)=D
∂

∂x
[pF (x, t | − x0)+pF (x, t |x0)]+κ [pF (x, t | − x0)−pF (x, t |x0)] .

(4.104) 
Substituting this last expression into Eq. (4.98), we find that 

. 

p(x, t |x0) = − 1

D
eκx/D

∫ ∞

x

e−κy/D

{
D

∂

∂y
[pF (y, t | − x0) + pF (y, t |x0)]

+ κ [pF (y, t | − x0) − pF (y, t |x0)]
}

dy

= −eκx/D

∫ ∞

x

e−κy/D ∂pF (y, t | − x0)

∂y
dy

− eκx/D

∫ ∞

x

e−κy/D ∂pF (y, t |x0)
∂y

dy

− 1

D
κeκx/D

∫ ∞

x

e−κy/DpF (y, t | − x0) dy

+ 1

D
κeκx/D

∫ ∞

x

e−κy/DpF (y, t |x0) dy.

(4.105) 

In order to give an exact solution to the latter equation, it is helpful to define the 
following relations: 

. I±
3 ≡

∫ ∞

x

e−κy/D ∂pF (y, t | ± x0)

∂y
dy and I±

4 ≡
∫ ∞

x

e−κy/D pF (y, t |±x0) dy,

(4.106) 

from where we can write Eq. (4.105) as follows:4 

. 

p(x, t |x0) = −eκx/D I−
3 − eκx/D I+

3 + 1

D
κeκx/D

(
I+
4 − I−

4

)

= −eκx/D

[
−e−κx/D pF (x, t | − x0) + 1

D
κ I+

4

]

− eκx/D

[
−e−κx/D pF (x, t |x0)+ 1

D
κ I−

4

]
+ 1

D
κ eκx/D

(
I+
4 − I−

4

)

= pF (x, t |x0) + pF (x, t | − x0)

− 2

D
κ eκx/D

{
1

2
exp

[
−x2

0−(2κt+x0)
2

4Dt

]
erfc

[
x + (2κt+x0)√

4Dt

]}
.

(4.107) 

4 Section A.4.4 shows the steps leading to Eq. (4.107).
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Fig. 4.9 Time evolution of the probability density given by Eq. (4.108). The starting position of 
the particles is set at .x0 = 0.5, and the diffusion coefficient is . D = 1

Finally, the propagator for a partially absorbing target is 

. 

p(x, t |x0) = pF (x, t |x0) + pF (x, t | − x0)

− 2

D
κ eκx/D

{
1

2
exp

[
−x2

0 − (2κt+x0)
2

4Dt

]
erfc

[
x + (2κt+x0)√

4Dt

]}
.

(4.108) 
Equation (4.108) is depicted in Fig. 4.9. The effect of selectivity through the trapping 
rate . κ is present in the last term of the last equation. The reader can easily verify 
that, if . κ is equal to zero, then the propagator is the solution of a semi-infinite system 
with a perfectly reflecting point at the origin, i.e., Eq. (4.81). 

4.5.1 Survival Probability and First-Passage Time 

The survival probability .S(t |x0), given by Eq. (2.30), will be computed using 
Eq. (4.98), yielding 

.S(t |x0) = −
∫ ∞

0

1

D
eκx/D

∫ ∞

x

e−κy/D q(y, t |x0) dy dx

= −
{[∫ ∞

x

e−κy/D q(y, t |x0) dy
∫

1

D
eκx/D dx

]∞

0

−
∫ ∞

0

(∫
eκx/D

D
dx

)
∂

∂x

[∫ ∞

x

e−κy/D q(y, t |x0) dy
]

∂x

}
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= −
{[

1 

κ

∫ ∞ 

x 
e−κy/D q(y, t |x0) dy eκx/D

]∞ 

0 

−
∫ ∞ 

0 

1 

κ 
eκx/D

[
−e−κx/D q(x, t |x0)

]
dx

}
, (4.109) 

where the evaluation of the first term leads to 

.S(t |x0) = −
[
− 1

κ

∫ ∞

0
e−κy/D q(y, t |x0)dy + 1

κ

∫ ∞

0
q(x, t |x0) dx

]
. (4.110) 

Simplifying, we eventually find 

.S(t |x0) = − 1

κ

∫ ∞

0

(
1 − e−κx/D

)
q(x, t |x0) dx. (4.111) 

If we introduce this last expression .q(x, t |x0), given by Eq. (4.104), we arrive at  

. 

S(t |x0) = − 1

κ

∫ ∞

0

(
1 − e−κx/D

){
D

∂

∂x
[pF (x, t | − x0) + pF (x, t |x0)]

+ κ [pF (x, t | − x0) − pF (x, t |x0)]
}
dx

= − 1

κ

∫ ∞

0

{
D

∂

∂x
[pF (x, t | − x0) + pF (x, t |x0)]

+ κ [pF (x, t | − x0) − pF (x, t |x0)]
}
dx

+ 1

κ

∫ ∞

0
e−κx/D

{
D

∂

∂x
[pF (x, t | − x0) + pF (x, t |x0)]

+ κ[pF (x, t | − x0) − pF (x, t |x0)]
}
dx.

(4.112) 
Every term of the last equation has already been computed (see Eqs. (4.48)– 

(4.49), (4.53), and (4.54)). Moreover, the integral of . κ [pF (x, t |−x0)−pF (x, t |x0)]
with respect to x is minus . κ times the survival probability of a Brownian particle 
in the presence of a perfectly absorbing boundary (see Eqs. (4.47) and (4.57)). The 
integral of the derivative of the free diffusion propagator is simply the evaluation 
of such function at the limits . ∞ and 0, although there is a unique detail the reader 
should keep in mind: Since we are considering that the probability of finding a 
particle in space converges to a finite value, more specifically, to zero when x tends 
to infinity, the only contribution comes from evaluating the equation at .x = 0. 
Therefore, Eq. (4.112) becomes
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.

S(t |x0) = 1

κ
D [pF (0, t |x0) + pF (0, t | − x0)] + erf

(
x0√
4Dt

)

+ 1

κ

∫ ∞

0
e−κx/D

{
D

∂

∂x
[pF (x, t | − x0) + pF (x, t |x0)]

+ κ[pF (x, t | − x0) − pF (x, t |x0)]
}
dx.

(4.113) 

To calculate the remaining integrals, let us first differentiate 

.

d

dx

[
De−κx/D

κ
pF (x, t | ± x0)

]
= De−κx/D

κ

∂

∂x
pF (x, t | ± x0)

− e−κx/D pF (x, t | ± x0)

(4.114) 

and then integrate between 0 and . ∞

. 

∫ ∞

0

d

dx

[
De−κx/D

κ
pF (x, t | ± x0)

]
dx =

∫ ∞

0

De−κx/D

κ

∂

∂x
pF (x, t | ± x0) dx

−
∫ ∞

0
e−κx/D pF (x, t | ± x0) dx.

(4.115) 
Afterward, we can write that 

. 

∫ ∞

0

De−κx/D

κ

∂

∂x
pF (x, t | ± x0) dx = − 1

κ
D pF (0, t | ± x0)

+
∫ ∞

0
e−κx/D pF (x, t | ± x0) dx.

(4.116) 
Thus, Eq. (4.113) reduces to 

. 

S(t |x0) = 1

κ
D [pF (0, t |x0) + pF (0, t | − x0)] + erf

(
x0√
4Dt

)
− 1

κ
D pF (0, t | − x0)

+
∫ ∞

0
e−κx/D pF (x, t | − x0) dx − 1

κ
D pF (0, t |x0)

+
∫ ∞

0
e−κx/D pF (x, t |x0) dx +

∫ ∞

0
e−κx/D pF (x, t | − x0) dx

−
∫ ∞

0
e−κx/D pF (x, t |x0) dx,

(4.117) 
leading to
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.S(t |x0) = erf

(
x0√
4Dt

)
+ 2

∫ ∞

0
e−κx/D pF (x, t | − x0) dx. (4.118) 

Calculating the last integral, which is actually . I−
4 , given  in  Eq. (4.146), and 

evaluated at .x = 0, we finally arrive at 

. S(t |x0) = erf

(
x0√
4Dt

)
+ exp

[
−x2

0 − (2κt + x0)
2

4Dt

]
erfc

(
2κt + x0√

4Dt

)
.

(4.119) 

Figure 4.10 shows the time evolution of Eq. (4.119). There are two special cases 
in which Eq. (4.119) is reduced to Eqs. (4.57) and (4.85), i.e., when .κ = 0 or 
approaches infinity, respectively. Apart from this, other probabilistic features are 
interesting to analyze. For instance, the reader can verify that for long times, the 
second term of the latter equation vanishes, while the first is Eq. (4.58). Therefore, 
all moments of the MFPT .〈tn(x0)〉 approach infinity. 

Once we have computed .S(t |x0), we can find the probability density of first-
passage time with Eq. (2.34), namely, 

. ϕ(t |x0) = − d

dt
erf

(
x0√
4Dt

)
− d

dt

{
exp

[
−x2

0 − (2κt + x0)
2

4Dt

]
erfc

(
2κt + x0√

4Dt

)}
.

(4.120) 

The first term of .ϕ(t |x0) is the probability density of first-passage time for the 
absorbing point, given by Eq. (4.60). Therefore, by using the chain rule together 
with the error function properties for derivatives, we have that 

.

ϕ(t |x0) = x0t
−3/2

√
4πD

exp

(
− x2

0

4Dt

)
−
{

− exp

[
−x2

0 − (2κt + x0)
2

4Dt

]

× d

dt
erf

(
2κt + x0√

4Dt

)
+ 1

D
κ2 exp

[
−x2

0 − (2κt + x0)
2

4Dt

]

× erfc

(
2κt + x0√

4Dt

)}
.

(4.121) 

The derivative of the error function is computed as follows: 

. 

d

dt
erf

(
2κt + x0√

4Dt

)
= 2√

π
exp

[
− (2κt + x0)

2

4Dt

]
d

dt

(
2κt + x0√

4Dt

)

= 1√
4πD

exp

[
− (2κt + x0)

2

4Dt

] (
2κt−1/2 − x0t

−3/2
)

.

(4.122)
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Fig. 4.10 Schematic representation of survival probability, Eq. (4.119), and the probability density 
of first-passage time, Eq. (4.124), for different values of the trapping rate: .κ = 0 (blue line), . κ =
0.1 (yellow line), .κ = 0.3 (green line), .κ = 0.5 (orange line), and .k = 0.9 (purple line). The 
starting position of the particles is set at .x0 = 0.5, and the diffusion coefficient is . D = 1

Then, 

.

ϕ(t |x0) = x0t
−3/2

√
4πD

exp

(
− x2

0

4Dt

)
−
{

− 1√
4πD

exp

(
− x2

0

4Dt

)

× (2κt−1/2 − x0t
−3/2) + 1

D
κ2 exp

[
−x2

0 − (2κt + x0)
2

4Dt

]

× erfc

(
2κt + x0√

4Dt

)}
.

(4.123) 

Factoring and rearranging common terms, the latter equation yields 

.

ϕ(t |x0) = 1√
4πD

exp

(
− x2

0

4Dt

)⎧⎨
⎩2κt−1/2

−
√
4πk4

D
exp

[
(2κt + x0)

2

4Dt

]
erfc

(
2κt + x0√

4Dt

)⎫⎬
⎭ .

(4.124) 

Figure 4.10 shows the time evolution of Eq. (4.124). 

4.6 Concluding Remarks 

The most important result found in this chapter is that for a semi-infinite system, 
even though the survival probability is finite, the moments of the MFPT are not.
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The latter property is due to the fact that a Brownian particle may arbitrarily move 
across a long trajectory before becoming trapped, leading to an infinite MFPT. 

Finally, the most important equations that were obtained in this chapter are listed 
below. 

Boundary Conditions 
Boundary conditions for a function . y, where . c0 and . c1 are constants and f and g 

are scalar functions 

.y = f . (Dirichlet BC) 

.
∂y
∂n

= f . (Neumann BC) 

.c0y + c1
∂y
∂n

= f . (Robin BC) 

.Both y = f and c0
∂y
∂n

= g. (Cauchy BC) 

.Both y = f and c0y + c1
∂y
∂n

= f . (Mixed BC) 

Semi-infinite Propagators 
Perfectly absorbing endpoint: 

. p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
− exp

[
− (x + x0)

2

4Dt

]}
.

Perfectly reflecting endpoint: 

. p(x, t |x0) = 1√
4πDt

{
exp

[
− (x − x0)

2

4Dt

]
+ exp

[
− (x + x0)

2

4Dt

]}
.

Partially absorbing endpoint: 

.

p(x, t |x0) = pF (x, t |x0) + pF (x, t | − x0)

− 2

D
κ eκx/D

{
1

2
exp

[
−x2

0 − (2κt+x0)
2

4Dt

]
erfc

[
x + (2κt+x0)√

4Dt

]}
.
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4.A Mathematical Computations 

Additional and intermediate mathematical computations are provided in this 
appendix. 

4.A.1 Derivation of Eq. (4.88) 

In order to solve to Eq. (4.88), let us simplify the problem by rearranging this 
equation as 

.
∂p(x, t |x0)

∂x
− 1

D
κp(x, t |x0) = 1

D
q(x, t |x0). (4.125) 

By defining the following variables as 

.μ ≡ − 1

D
κ and g(x) ≡ 1

D
q(x, t |x0), (4.126) 

we find that 

.
∂p(x, t |x0)

∂x
+ μ p(x, t |x0) = g(x). (4.127) 

Multiplying both sides of the latter equation by an arbitrary function .u(x) leads to 

.u(x)
∂p(x, t |x0)

∂x
+ μ u(x)p(x, t |x0) = u(x)g(x). (4.128) 

The left-hand side of the last equation can be written alternatively as 

.u(x)
∂p(x, t |x0)

∂x
+ μ u(x) p(x, t |x0) = d

dx
[u(x) p(x, t |x0)] , (4.129) 

as long as 

.
du(x)

dx
= μ u(x) or u(x) = eμx. (4.130) 

Thus, 

.d [u(x)p(x, t |x0)] = u(x)g(x) dx. (4.131) 

By integrating, we have that
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.u(x) p(x, t |x0) =
∫

u(x)g(x) dx + C. (4.132) 

Solving for .p(x, t |x0) gives 

.p(x, t |x0) = 1

u(x)

∫
u(x)g(x) dx + C

u(x)
, (4.133) 

which can be simplified by substituting .u(x) given by Eq. (4.130), together with 
Eq. (4.126), leading to Eq. (4.93), namely, 

.p(x, t |x0) = Ce−μx + 1

D
eκx/D

∫
e−κy/Dq(y, t |x0) dy. (4.93) 

4.A.2 Derivation of Eq. (4.98) 

By substituting Eq. (4.97) into Eq. (4.125), we have that 

.

q(x, t |x0) =D
d

dx

[
± 1

D
eκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy
]

∓ 1

D
κeκ/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy.

(4.134) 

Then, using the product rule for derivatives, we have 

.

q(x, t |x0) =D

[
± d

dx

(
1

D
eκx/D

) ∫ ∞

x

e−κy/Dq(y, t |x0) dy

± 1

D
eκx/D d

dx

∫ ∞

x

e−κy/Dq(y, t |x0) dy

]

∓ κeκx/D

D

∫ ∞

x

e−κy/Dq(y, t |x0)dy,

(4.135) 

and applying the Leibniz rule for the derivative of the integral, we find that 

. 

q(x, t |x0) = ± 2

D
κeκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy ∓ eκx/D e−κx/Dq(x, t |x0)

∓ 1

D
κeκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy,

(4.136) 
leading to
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.q(x, t |x0) = ∓q(x, t |x0), (4.137) 

where 

.
d

dx

∫ ∞

x

e−κy/Dq(y, t |x0) dy = 0 − eκx/Dq(x, t |x0). (4.138) 

Since Eq. (4.137) requires the positive sign, the correct solution of Eq. (4.97) is 

.p(x, t |x0) = − 1

D
eκx/D

∫ ∞

x

e−κy/Dq(y, t |x0) dy. (4.98) 

4.A.3 Derivation of Eq. (4.104) 

When substituting the free-space propagator given by Eq. (4.44) and Eq. (4.103) 
into (4.99), we have  

. 

q(x, t |x0) =
∫ ∞

0
[pF (x, t |y) − pF (x, t | − y)] q(y, 0|x0) dy

=
∫ ∞

0
[pF (x, t |y) − pF (x, t | − y)]

(
D

∂

∂y
− κ

)
δ(y − x0) dy

=
∫ ∞

0
pF (x, t |y)D

∂

∂y
δ(y − x0) dy

−
∫ ∞

0
pF (x, t | − y)D

∂

∂y
δ(y − x0) dy

−
∫ ∞

0
pF (x, t |y)κδ(y − x0) dy +

∫ ∞

0
pF (x, t | − y)κδ(y − x0) dy.

Then, using Eqs. (A.92), (A.97), and (A.102), the integration process leads to 

.

q(x, t |x0) = −
∫ ∞

0
δ(y − x0)D

∂pF (x, t |y)

∂y
dy

+
∫ ∞

0
δ(y − x0)D

∂pF (x, y| − y)

∂y
dy

− κ pF (x, t |x0) H(x0) + κ pF (x, t | − x0) H(x0)

= DH(x0)

[
∂pF (x, t | − x0)

∂x0
− ∂pF (x, t |x0)

∂x0

]

+ κ H(x0) [pF (x, t | − x0) − pF (x, t |x0)] ,
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from where 

.

q(x, t |x0) =D H(x0)
∂

∂x0
[pF (x, t | − x0) − pF (x, t |x0)]

+ κ H(x0) [pF (x, t | − x0) − pF (x, t |x0)] .
(4.139) 

One of the conditions of the semi-infinite system is that .x0 > 0, i.e., the particles 
have an initial position on the real side of the domain. For that reason, the Heaviside 
function evaluated in the initial position is 1. On the one hand, .q(x, t |x0) is given 
by 

.q(x, t |x0) =
(

D
∂

∂x0
+ κ

)
[pF (x, t | − x0) − pF (x, t |x0)] . (4.140) 

On the other hand, we know that for the free diffusion propagator 

. 
∂pF (x, t |x0)

∂x0
= −∂pF (x, t |x0)

∂x
,

∂pF (x, t | − x0)

∂x0
= −∂pF (x, t | − x0)

∂x
.

(4.141) 
Therefore, Eq. (4.139) leads to 

. q(x, t |x0) = D
∂

∂x
[pF (x, t | − x0) + pF (x, t |x0)] + κ [pF (x, t | − x0) − pF (x, t |x0)] .

(4.104) 

4.A.4 Derivation of Eq. (4.107) 

The first and second integrals of Eq. (4.105) have a similar structure, so we can 
integrate both signs by parts at the same time using the first relation of the definitions 
in Eq. (4.106), namely, 

.

I±
3 ≡

∫ ∞

x

e−κy/D ∂pF (y, t | ± x0)

∂y
dy

=
[
e−κ/D

∫
∂pF (y, t | ± x0)

∂y
dy

]y=∞

y=x

+ 1

D
κ

∫ ∞

x

e−κy/D

[∫
∂pF (y, t | ± x0)

∂y
dy

]
dy,

(4.142) 

which through Eq. (4.94) becomes 

.I±
3 = −e−κx/D pF (x, t | ± x0) + 1

D
κ

∫ ∞

x

e−κy/D pF (y, t | ± x0) dy. (4.143)
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The remaining integral in Eq. (4.143) is the same integral of the third and fourth 
terms in Eq. (4.142). Thus, it is useful to solve it separately including both signs 
through the second definition in Eq. (4.106), namely, 

.I±
4 ≡

∫ ∞

x

e−κy/D pF (y, t | ± x0) dy. (4.144) 

Introducing into this last integral the expression for the propagator of a free diffusing 
particle, we find that 

. 

I±
4 =

∫ ∞

x

e−κy/D

√
4πDt

exp

[
− (y ∓ x0)

2

4Dt

]
dy

= 1√
4πDt

∫ ∞

x

exp

[
−κy

D
− y2 ∓ 2yx0 + x2

0

4Dt

]
dy

= 1√
4πDt

∫ ∞

x

exp

[
−4κyt + y2 ∓ 2yx0 + x2

0

4Dt

]
dy

= 1√
4πDt

∫ ∞

x

exp

[
−y2 + 2y(2κt ∓ x0) + x2

0

4Dt

]
dy.

Completing the perfect square in the argument of the exponential, we arrive at 

. 

I±
4 = 1√

4πDt

∫ ∞

x

exp

[
−[y + (2κt ∓ x0)]2 + x2

0 − (2κt ∓ x0)
2

4Dt

]
dy

= 1√
4πDt

exp

[
−x2

0 − (2κt ∓ x0)
2

4Dt

]∫ ∞

x

exp

[
−
(

y + (2κt ∓ x0)√
4Dt

)2
]
dy.

By making the change .z = [y + (2κt ∓ x0)]/
√
4Dt , we have  

.I±
4 =

√
4Dt√
4πDt

exp

[
−x2

0 − (2κt ∓ x0)
2

4Dt

]∫ ∞

[x+(2κt∓x0)]/
√
4Dt

e−z2 dz, (4.145) 

where the definition of the complementary error function, Eq. (A.81), is used to  
obtain the following solution: 

.I±
4 = 1

2
exp

[
−x2

0 − (2κt ∓ x0)
2

4Dt

]
erfc

[
x + (2κt ∓ x0)√

4Dt

]
, (4.146) 

a result that allows us to write Eq. (4.143) as follows:
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.I±
3 = −e−κx/D pF (x, t | ± x0) + 1

D
κ I∓

4 . (4.147) 

Then, 

.

I±
3 = −e−κx/D pF (x, t | ± x0)

+ 1

2D
κ exp

[
−x2

0 − (2κt ∓ x0)
2

4Dt

]
erfc

[
x + (2κt ∓ x0)√

4Dt

]
.

(4.148) 

Thus, Eq. (4.105) is 

. 

p(x, t |x0) = −eκx/D I−
3 − eκx/D I+

3 + 1

D
κeκx/D

(
I+
4 − I−

4

)

= −eκx/D

[
−e−κx/D pF (x, t | − x0) + 1

D
κ I+

4

]

− eκx/D

[
−e−κx/D pF (x, t |x0) + 1

D
κ I−

4

]
+ 1

D
κ eκx/D

(
I+
4 − I−

4

)

= pF (x, t |x0) + pF (x, t | − x0)

− 2

D
κ eκx/D

{
1

2
exp

[
−x2

0 − (2κt + x0)
2

4Dt

]
erfc

[
x + (2κt + x0)√

4Dt

]}
.

(4.107) 
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Chapter 5 
Diffusion Between Two Targets 

In this chapter, we will solve a set of diffusion problems within a finite one-
dimensional interval, by means of the separation of variables method (where 
possible) and the Laplace transform. In the separation of variables method, one 
assumes that the solution of the propagator is given by the product of two 
independent functions. When using the Laplace transform, we will write . p(x, s)

as a linear combination of real exponential or hyperbolic functions, which depend 
explicitly on a phase. This phase is determined in such a way that the solution 
satisfies the subsidiary diffusion equation with the imposed boundary conditions, 
i.e., the boundary-value problem. Our main goal is to characterize the system 
with physical parameters such as propagator, flux, survival probability, mean first-
passage time, and splitting probability. 

5.1 Separation of Variables 

Separation of variables is a method of solving ordinary and partial differential 
equations, and it is useful in solving equations arising in mathematical physics, such 
as the diffusion equation, Laplace’s equation, the Helmholtz differential equation, 
and the Schrödinger equation, among others. The method of separation of variables 
relies upon the assumption that if the product of functions of independent variables 
is a constant, each function must separately be a constant. It was first used by 
L’Hospital in 1750. This method reduces an ordinary or partial differential equation 
to two ordinary differential equations, thus simplifying the original problem. In 
order to use the method of separation of variables, we must be working with a 
linear homogeneous partial differential equation with linear homogeneous boundary 
conditions. 
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Now, let’s apply the method to solve the diffusion equation. Consider a Brownian 
particle diffusing along a one-dimensional domain . o, and let the propagator . p(x, t)

be a product of two independent functions, one dependent on the position x, .χ(x), 
and the other dependent on time t , .T (t), where x .∈ o and t .∈ [0,∞). This initial 
assumption allows us to write the following solution: 

.p(x, t) = χ(x) T (t). (5.1) 

When substituting Eq. (5.1) into the diffusion equation, i.e., Eq. (2.13), we  
immediately notice that 

.
D

χ(x)

∂2χ(x)

∂x2 = 1

T (t)

∂T (t)

∂t
. (5.2) 

Since the right-hand side depends only on x and the left-hand side only on t , both 
factors must be equal to a constant, which, for the sake of convenience, can be 
defined as .−λ2D. Consequently, two ordinary differential equations (ODE) arise, 
namely, 

.
d2χ(x)

dx2
+ λ2χ(x) = 0 and

dT (t)

dt
+ λ2D T (t) = 0. (5.3) 

The analytic solutions of Eqs. (5.3) are given by 

.χ(x) = A sin(λx) + B cos(λx) and T (t) = ke−λ2Dt , (5.4) 

respectively, where . A, . B, and k are integration constants. The general solution, as 
an eigenfunction expansion or spectral representation, is a superposition of these 
functions, namely, 

.p(x, t) =
∞Σ

n=0

[An sin(λnx) + Bn cos(λnx)] e−λ2Dt . (5.5) 

Constants .An and . Bn, together with the eigenvalues . λn, are determined by the 
boundary and initial conditions of the problem. Considering only the spatial 
dependence of Eq. (5.5), we define the eigenfunctions of variable x as follows: 

.φn(x) = An sin(λnx) + Bn cos(λnx). (5.6) 

The results obtained so far will be of great use throughout the rest of the chapter 
when solving the diffusion equation under different boundary conditions.
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5.2 Reflecting-Reflecting 

Consider a Brownian particle diffusing along a one-dimensional system into the 
interval .[0, L] in the presence of two reflecting points, one at .x = 0 and the other at 
.x = L (see Fig. 5.1). The boundary conditions (BCs) are zero flux at the endpoints, 
i.e., Neumann BCs, given by 

. J(x, t |x0) · n̂||
x=0,L = ±∂p(x, t |x0)

∂x

||||
x=0,L

= 0, (5.7) 

where . ̂n is the unit normal vector to the reflecting boundary equal to . ̂ei at .x = 0 and 
.−êi at .x = L (see Eq. (4.68)). 

We will use two different methods to solve the diffusion equation under these 
BCs, the boundary-value problem: the separation of variables method and the 
Laplace transform. 

5.2.1 The Separation of Variables Method 

In Sect. 5.1, we found that the eigenfunctions of variable x are given by Eq. (5.6). 
The first derivative of this equation is 

.
∂φn(x)

∂x
= Anλn cos(λnx) − Bnλn sin(λnx). (5.8) 

Since the propagator is a product of independent functions of time and space, the 
BCs in space are directly translated in terms of .φn(x). Therefore, 

.
∂φn(x)

∂x

||||
x=0,L

= 0. (5.9) 

Substituting Eq. (5.6) into the last equation and evaluating at .x = 0 allow us to 
conclude that .An = 0. Additionally, the evaluation of the derivative of .φn(x) at 
.x = L yields 

Fig. 5.1 Schematic representation of a one-dimensional domain .[0, L] with two reflecting points 
at .x = 0 and .x = L (blue bars)
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.
∂φn(x)

∂x

||||
x=L

= −Bnλn sin(λnL) = 0, (5.10) 

meaning that .λn = nπ/L. Substituting the latter two relations into Eq. (5.6) leads to 

.φn = Bn cos
(nπx

L

)
. (5.11) 

Thus, the propagator for the reflecting-reflecting system, given by Eq. (5.5), 
becomes 

.p(x, t) =
∞Σ

n=0

Bn cos
(nπx

L

)
exp

(
−n2π2Dt

L2

)
. (5.12) 

Using the initial condition, .p(x, 0|x0) = δ(x − x0), in the last expression, the 
propagator transforms into 

.p(x, 0|x0) =
∞Σ

n=0

Bn cos
(nπx

L

)
= δ(x − x0). (5.13) 

Now, to determine . Bn, we need to multiply the left-hand side of Eq. (5.13) by 
.cos

(
mπx

L

)
and integrate the result over the interval .[0, L], resulting in 

. 

∞Σ

n=0

Bn

f L

0
cos

(nπx

L

)
cos

(mπx

L

)
dx =

f L

0
cos

(mπx

L

)
δ(x − x0) dx.

(5.14) 
Thereafter,1 

.

∞Σ

n=0

Bn

f L

0
cos

(nπx

L

)
cos

(mπx

L

)
dx = cos

(mπx0

L

)
. (5.17) 

From Eq. (5.17), we find that the family of solutions depends on the values of n and 
m. If .n = m = 0, . Bn is given by 

1 Contributions are null in the regions outside the domain .[0, L], which gives 

.

f 0

−∞
cos

(mπx

L

)
δ(x − x0) dx = 0 and

f ∞

L

cos
(mπx

L

)
δ(x − x0) dx = 0, (5.15) 

leading to 

.

f L

0
cos

(mπx

L

)
δ(x − x0) dx =

f ∞

−∞
cos

(mπx

L

)
δ(x − x0) dx = cos

(mπx0

L

)
. (5.16)
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.B0 = 1

L
. (5.18) 

In contrast, when .n = m /= 0, we find that 

.

∞Σ

n=1

Bn

f L

0
cos

(nπx

L

)2
dx =

∞Σ

n=1

Bn

L

2
δm,n = Bm

L

2
, (5.19) 

which means that for non-zero integers n and m, the coefficient . Bn becomes 

.Bn = 2

L
cos

(nπx0

L

)
. (5.20) 

Finally, in the case where .n /= m, the coefficient turns out to be null. In order to find 
the solution to our present problem, we include both non-zero solutions, namely, 

.p(x, t |x0) = 1

L
+ 2

L

∞Σ

n=1

exp

(
−n2π2Dt

L2

)
cos
(nπx0

L

)
cos
(nπx

L

)
. (5.21) 

The asymptotic value of the propagator in the limit where t tends to infinity is 
. 1/L. In other words, the entire concentration will be distributed uniformly along 
the interval .[0, L]. Representative plots of the propagator .p(x, t |x0) are depicted in 
Fig. 5.2. 

Fig. 5.2 Temporal evolution of the propagator .p(x, t |x0), Eq. (5.21). The initial position of 
Brownian particles, system length, and diffusivity are .x0 = 0.5, .L = 1, and .D = 1, respectively
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5.2.2 The Laplace Transformation Solution 

Alternatively, we can use the Laplace transform to find the solution to the reflecting-
reflecting system. It is generally more practical to use the Laplace transform rather 
than the Fourier transform, given that the propagator may be expressed as a single 
function rather than an infinite series. 

The Laplace transform of the diffusion equation has the following subsidiary 
equation: 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2 . (3.36) 

In order to solve this last equation in the Laplace domain, we must Laplace 
transform the BCs to be applied to the proposed solution of Eq. (3.36). Given that the 
Laplace transform integrates in time and leaves the space coordinate unchanged, the 
BCs for the subsidiary equation have the same structure as in real space. Therefore, 
the Laplace transforms of the BCs for our system are 

. J(x, t |x0) · n̂||
x=0,L = ±D

∂p(x, s|x0)
∂x

||||
x=0,L

= 0. (5.22) 

Physically, they represent zero flux at .x = 0 and .x = L, respectively. The function 
that satisfies such conditions is a hyperbolic cosine function with a modification on 
its argument. Consequently, let’s propose the following solution: 

.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A cosh
[/

s
D

(x − xϕ)
]

for x < x0,

B cosh
[/

s
D

(x − xθ )
]

for x > x0,

(5.23) 

where . xθ and . xϕ are phases, which must be determined by the BCs. Then, . xϕ is 
found by applying the BC at .x = 0, namely, 

.
∂p(x, s|x0)

∂x

||||
x=0

= −A
/

s

D
sinh

(/
s

D
xϕ

)
= 0. (5.24) 

From this last equation, we can assert that 

.xϕ = 0. (5.25) 

Now, the BC at .x = L is used to find . xθ , which leads to 

.
∂p(x, s|x0)

∂x

||||
x=L

= B
/

s

D
sinh

[/
s

D
(L − xθ )

]
= 0, (5.26)
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and consequently, 

.xθ = L. (5.27) 

The remaining constants in Eq. (5.23) can be found by imposing the continuity 
condition on the propagator and its derivative at . x0, the joining conditions. From 
requiring continuity at . x0, given by Eq. (3.39), we have  

.A cosh

[/
s

D
x0

]
= B cosh

[/
s

D
(x0 − L)

]
. (5.28) 

Now, by imposing the discontinuity condition, given by Eq. (3.42), on the propaga-
tor in Eq. (5.23), we find another relation, namely, 

.

/
s

D

{
B sinh

(/
s

D
(x0 − L)

)
− A sinh

(/
s

D
x0

)}
= − 1

D
. (5.29) 

This system of equations is used to determine . A and . B, and they are given by 

.A =
cosh

[/
s
D

(x0 − L)
]

√
sD sinh

(/
s
D

L
) and B =

cosh
[/

s
D

x0

]

√
sD sinh

(/
s
D

L
) . (5.30) 

As a result, the complete solution in Laplace’s space for the reflecting-reflecting 
system is 

.p(x, s|x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cosh
[√

s
D

(x0−L)
]
cosh

(√
s
D

x
)

√
sD sinh

(√
s
D

L
) for x < x0,

cosh
[√

s
D

(x−L)
]
cosh

(√
s
D

x0

)

√
sD sinh

(√
s
D

L
) for x > x0.

(5.31) 

Plots in real space of the latter equation are identical to those depicted in Fig. 5.2.2 

2 It is often impossible to find the inverse Laplace transform function analytically. For such reason, 
numerical methods that provide an approximate solution to the problem have been developed. In 
Appendix 5.A, the reader will find a discussion on the Gaver-Stehfest numerical method, as well 
as the Mathematica code, to perform the inversion numerically.



126 5 Diffusion Between Two Targets

5.3 Final Value Theorem 

The final value theorem is used to relate the Laplace domain expression to the time 
domain solution as time approaches infinity. In this section, we will provide proof 
of the theorem and use it to find the behavior of the propagator in Eq. (5.31) for long 
times. 

Let us suppose that a function .f (t) and its derivative .f '(t) = ∂f (t)/∂t have 
Laplace transforms for all .s > 0. Thus, from Eq. (A.55), 

.L
{
df (t)

dt

}
=
f ∞

0
e−st df (t)

dt
dt = s L{f (t)} − f (0). (A.55) 

Now, taking the limit as .s → 0, we have  

.

lim
s→0

[f ∞

0

df (t)

dt
e−st dt

]
=
f ∞

0

df (t)

dt
lim
s→0

(
e−st

)
dt

= lim
s→0

[s L{f (t)} − f (0)]

(5.32) 

which, by substituting .lims→0 e−st = 1 and using the fundamental theorem of 
calculus, turns into 

. f (t)|∞0 = lim
s→0

sL {f (t)} − f (0). (5.33) 

After the evaluation, we arrive at 

. lim
t→∞ f (t) = lim

s→0
sf (s). (5.34) 

This is the final value theorem, which enables us to find the final value of a function 
.f (t) when .t → ∞ from its Laplace transform .f (s) without needing to find the 
inverse Laplace transform. 

Now, let us make use of the theorem to calculate the values of the propagator 
in Eq. (5.31) when .t → ∞. To take the limit when s goes to 0, we first obtain the 
Taylor series of the product .s p(x, s|x0)|x−

0
around .s = 0, namely, 

. lim
t→∞ p(x, t |x0) = lim

s→0
s p(x, s|x0)

||||
x−
0

= lim
s→0

[
1

L
+ 2L2 + 3x2 − 6Lx0 + 3x2

0

6DL
s + · · ·

]
, (5.35) 

from where we can conclude that
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. lim
t→∞ p(x, t |x0) = 1

L
, (5.36) 

as expected. The reader can verify that the same value is found when using the 
solution for the right-hand side of the domain in Eq. (5.31). 

Finally, it is worth mentioning that the initial value theorem of the Laplace 
transform enables us to calculate the initial value of a function .f (t) from its Laplace 
transform .f (s) without needing to find the inverse Laplace transform of .f (s), and 
it is given by 

. lim
t→0+ f (t) = lim

s→∞ sf (s). (5.37) 

Together, the initial value theorem and the final value theorem are known as the 
limiting theorems. 

5.4 Absorbing-Absorbing: Revisited 

The absorbing-absorbing finite system is presented as follows: Consider a system 
in the interval .[0, L], and place two absorbing targets at .x = 0 and .x = L. 
Accordingly, .p(0, t) = p(L, t) = 0 (see Fig. 5.3). Between the two absorbing 
walls, at . x0, a Brownian particle starts to diffuse and is removed from the system 
when hitting one of the two endpoints. The setting just described is the same as the 
one depicted in the random elevator game, Chap. 2. 

As in the previous section, to solve the boundary-value problem, we will use two 
different methods: the separation of variables and the Laplace transform. 

5.4.1 The Separation of Variables Method 

The utility of the separation of variables method formalism will be illustrated 
again. The general solution to the diffusion equation using this method is given by 
Eq. (5.5), and when applying the absorbing boundary conditions at the endpoints, 
i.e., .p(0, t |x0) = p(L, t |x0) = 0, it transforms into 

Fig. 5.3 Schematic representation of a one-dimensional domain .[0, L] with two absorbing points 
at .x = 0 and .x = L (red circles)
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.p(x, t) =
∞Σ

n=1

An sin(λn x)eλ2Dt , (5.38) 

with .λn = nπ/L. Additionally, the initial condition translates into the following 
relation: 

.p(x, 0|x0) =
∞Σ

n=1

An sin
(nπx

L

)
= δ(x − x0). (5.39) 

To obtain . An, we simply to follow the same steps we used from Eqs. (2.25) to (2.28), 
and then, Eq. (5.38) becomes 

.p(x, t |x0) = 2

L

∞Σ

n=1

exp

(
−π2n2Dt

L2

)
sin
(nπx0

L

)
sin
(nπx

L

)
. (5.40) 

The reader should recognize the difference between the procedure to find the 
propagator written in Eq. (2.28) and the process to solve the diffusion equation by 
means of the separation of variables method. Even though both of them properly 
represent the evolution of the propagator, the solution derived in Chap. 2 comes 
from the assumption of .p(x, t) being a well-behaved function and was solved 
through Fourier analysis, while the separation of variables method provides us with 
a glimpse of the advantage of knowing the spectral decomposition of the propagator. 
Characteristic plots of Eq. (5.40) are depicted in Fig. 2.4. Every other probability 
feature, such as the survival probability or moments of mean first-passage time, is 
computed in the same way as in Chap. 2. 

5.4.2 The Laplace Transform Solution 

In this subsection, we will solve our current problem using the Laplace transform. 
We start by invoking the subsidiary equation, namely, 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2
. (3.36) 

The Laplace transforms of the BCs associated with the absorbing targets are 

.p(0, s|x0) = p(L, s|x0) = 0. (5.41) 

Now, let us propose the following solution:
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.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A sinh
[/

s
D

(x − xϕ)
]

for x < x0

B sinh
[/

s
D

(x − xθ )
]

for x > x0.

(5.42) 

We find the explicit form of . xϕ by evaluating the left-hand side solution at . x = 0
and equating such result to zero, yielding 

.A sinh

(/
s

D
xϕ

)
= 0, (5.43) 

which leads to 

.xϕ = 0. (5.44) 

Now, evaluating the propagator for .x > x0 at .x = L results in 

.B sinh

[/
s

D
(L − xθ )

]
= 0, (5.45) 

from where we find that 

.xθ = L. (5.46) 

Therefore, 

.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A sinh
(/

s
D

x
)

for x < x0

B sinh
[/

s
D

(x − L)
]

for x > x0.

(5.47) 

The continuity condition of the propagator, given by Eq. (3.39), and its derivatives, 
Eq. (3.42), applied to Eqs. (5.47), results in two other relations: 

.A sinh

(/
s

D
x0

)
= B sinh

[/
s

D
(x0 − L)

]
, and (5.48) 

.

/
s

D

{
B cosh

[/
s

D
(x0 − L)

]
− A cosh

(/
s

D
x0

)}
= − 1

D
. (5.49) 

Solving this system of equations for . A and . B, we find that 

.A = −
sinh

[/
s
D

(x0 − L)
]

√
sD sinh

(/
s
D

L
) and B = −

sinh
(/

s
D

x0

)

√
sD sinh

(/
s
D

L
) . (5.50)



130 5 Diffusion Between Two Targets

Finally, substituting these last relations into Eq. (5.48), we find that the solution in 
the Laplace space of the propagator is given by 

.p(x, s|x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− sinh
(√

s
D

x
)
sinh

[√
s
D

(x0−L)
]

√
sD sinh

(√
s
D

L
) for x < x0,

− sinh
(√

s
D

x0

)
sinh

[√
s
D

(x−L)
]

√
sD sinh

(√
s
D

L
) for x > x0.

(5.51) 

Real-space plots of the latter equation are identical to those depicted in Fig. 2.4. 

5.4.3 Survival Probability and Moments of MFPT: Revisited 

As we already know, we can find the survival probability in Laplace’s space when 
integrating the propagator .p(x, s|x0) with respect to x along the entire domain, 
namely, 

. 

S(t |x0) =
f L

0
p(x, s|x0) dx

= lim
ε→0

f x0−ε

0
p(x < x0, s|x0) dx + lim

ε→0

f L

ε+x0

p(x > x0, s|x0) dx

=
f x−

0

0
p(x < x0, s|x0) dx +

f L

x+
0

p(x > x0, s|x0) dx,

(5.52) 
where we define 

.x−
0 ≡ lim

ε→0
x0 − ε and x+

0 ≡ lim
ε→0

x0 + ε. (5.53) 

Performing the integration of Eq. (5.52) results in 

. 

S(s|x0) = 1

s sinh
(/

s
D

L
)
{
cosh

(/
s

D
x

)
sinh

[/
s

D
(L − x0)

] ||||
x−
0

0

− cosh

[/
s

D
(L − x)

]
sinh

(/
s

D
x0

) ||||
L

x+
0

}
.

(5.54) 
After evaluating, we find that
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. 

S(s|x0) = 1

s sinh
(/

s
D

L
)
{[

cosh

(/
s

D
x0

)
− 1

]
sinh

[/
s

D
(L − x0)

]

+
{
cosh

[/
s

D
(L − x0)

]
− 1

}
sinh

(/
s

D
x0

)}
,

(5.55) 
leading to 

.S(s|x0) =
1 − cosh

[/
s
D

(
L−2x0

2

)]
sech

(/
s
D

L
2

)

s
. (5.56) 

If we Taylor-expand the latter equation around .s = 0 using Eq. (A.17), the  
survival probability .S(s|x0) becomes 

.S(s|x0) = x0(L − x0)

2D
+ s(−x4

0 + 2Lx3
0 − L3x0)

24D2
+ · · · (5.57) 

Now we can use Eq. (2.90), i.e., 

.<tn(x0)> = (−1)n+1n
∂n−1S(s|x0)

∂sn−1

||||
s=0

n = 1, 2, 3, · · · , (2.90) 

to compute the moments of MFPT. For instance, the first moment is 

.<t (x0)> = (−1)2S(s|x0)
|||
s=0

= x0(L − x0)

2D
, (5.58) 

and the second moment is 

.<t2(x0)> = (−1)3(2) s
∂S(s|x0)

∂s

||||
s=0

= x0(L − x0)
(
L2 + Lx0 − x2

0

)

12D2 , (5.59) 

which are Eqs. (2.50) and (2.68), respectively. 

5.4.4 Splitting Probability: Revisited 

Furthermore, we can calculate the probability density of mean first-passage time in 
Laplace’s space using the propagator given in Eq. (5.51). To such end, we compute 
the flux at each endpoint using the Laplace transform of Eq. (2.73), namely, 

.J(x, s) = −D
∂p(x, s|x0)

∂x
êx, (5.60)
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from which we find that 

. 

J (0, s|x0) = −D
∂p(x, s|x0)

∂x
êx · (−êx)

||||
x=0

= csch

(/
s

D
L

)
sinh

[/
s

D
(L − x0)

]
,

J (L, s|x0) = −D
∂p(x, s|x0)

∂x
êx · êx

||||
x=L

= csch

(/
s

D
L

)
sinh

[/
s

D
x0

]
.

(5.61) 

On the other hand, the Laplace transform of the first-passage time probability 
density, given by Eq. (2.83), is  

.

f ∞

0
ϕ(x0|t) e−st dt =

f ∞

0
[J (L, t) + J (0, t)] e−st dt (5.62) 

or, equivalently, 

.ϕ(s|x0) = J (L, s|x0) + J (0, s|x0). (5.63) 

Now, substituting the closed expression of Eq. (5.61) into Eq. (5.63), we find that 

.ϕ(s|x0) = csch

(/
s

D
L

){
sinh

[/
s

D
(L − x0)

]
+ sinh

(/
s

D
x0

)}
, (5.64) 

an expression that we can use to obtain the first two moments of MFPT, i.e., 
Eqs. (2.50) and (2.68). 

Since the Laplace transform of the flux reduces to the sum of probabilities 
between .t ∈ [0,∞) when s tends to zero, i.e.,3 

.

lim
s→0

J (x', s|x0) = ± lim
s→0

∂p(x, s|x0)
∂x

||||
x=x'

= ±
f ∞

0
lim
s→0

(
e−st

) ∂p(x, t |x0)
∂x

dt

||||
x=x'

=
f ∞

0
J (x', t |x0) dt = θx'(x0),

(5.65) 

3 The plus-minus sign . ± indicates the direction of the flux at .x' = 0 and .x' = L. For eastward 
flux, we use a minus sign, and for westward flux, we use a plus sign, which is the same convention 
we used to write Eq. (5.61).
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the flux in Laplace space at .x' = 0 and .x' = L becomes the splitting probability at 
the endpoints (see Eq. (2.95)), namely, 

.

θx'(x0) = lim
s→0

J (x', s|x0)

= J (x', s → 0|x0)
(5.66) 

Therefore, when Taylor-expanding the flux of the absorbing-absorbing system 
around .s = 0, given by Eqs. (5.61), and considering just the first order term, then 
.θ0,L(x0) are given by 

. θ0(x0) = J (0, s → 0|x0) = 1 − x0

L
and θL(x0) = J (L, s → 0|x0) = x0

L
,

(5.67) 
as expected. 

5.5 Absorbing-Absorbing: Uniformly Distributed Initial 
Position 

It may be the case that the Brownian particles are initially uniformly distributed 
throughout the domain, rather than positioned in a single point. Consequently, in 
order to obtain the new propagator, we need to integrate Eq. (2.28) over . x0 from 0 
to L, divided by the integral of .dx0 over the entire interval, that is, 

.p(x, t |x0) = 2

L

∞Σ

n=1

exp

(
−π2n2Dt

L2

)
sin
(nπx

L

) f L

0 sin
(

nπx0
L

)
dx0

f L

0 dx0
. (5.68) 

Performing the integral, we have that the propagator with a uniformly distributed 
initial position in the presence of two absorbing boundaries is 

.p(x, t) = 4

πL

∞Σ

n=1

exp

[
− (2n − 1)2π2Dt

L2

] sin
[

(2n−1)πx
L

]

2n − 1
. (5.69) 

Representative plots of the probability distribution .p(x, t), Eq. (5.69), are  
depicted in Fig. 5.4.
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Fig. 5.4 Schematic 
representation of the 
probability distribution 
.p(x, t) in Eq. (5.69) for 
different channel lengths: 
.L = 2 (blue line), . L = 1
(yellow line), and . L = 0.5
(green line) at time .t = 0.01. 
The starting position of the 
particle is uniformly 
distributed, and the diffusion 
coefficient is . D = 1
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5.5.1 Survival Probability and Mean First-Passage Time 

When integrating the propagator in the space coordinate over the domain, we find 
the survival probability, namely, 

. S(t) = 4

πL

∞Σ

n=1

1

2n − 1
exp

[
− (2n − 1)2π2Dt

L2

] f L

0
sin

[
(2n − 1)πx

L

]
dx.

(5.70) 
After performing the integral, we find 

.S(t) = 8

π2

∞Σ

n=1

1

(2n − 1)2
exp

[
− (2n − 1)2π2Dt

L2

]
. (5.71) 

From this last equation, we can conclude that the longest decay time is when .n = 1, 
given by .L2/π2D, as well as when the particles start from a single point. Given that 
the probability density of first-passage time is just minus the derivative in time of 
Eq. (5.71), we have  

.ϕ(t) = 8D

L2

∞Σ

n=1

exp

[
− (2n − 1)2π2Dt

L2

]
. (5.72) 

Representative plots of the survival probability, Eq. (5.71), and the probability 
density of first-passage time, Eq. (5.72), are depicted in Fig. 5.5. 

5.5.2 Moments of MFPT and Splitting Probability 

For the moments of MFPT, we have the following integral:
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Fig. 5.5 Schematic representation of survival probability, Eq. (5.71), and the probability density 
of first-passage time, Eq. (5.72). The starting position of the particles is set at .x0 = 0.5, and  the  
diffusion coefficient is . D = 1

.<tnu > = 8n

π2

∞Σ

m=1

1

(2m − 1)2

f ∞

0
tn−1 exp

[
− (2m − 1)2π2Dt

L2

]
dt. (5.73) 

Using Eq. (A.10), we arrive at 

.

<tnu > = 8n

π2

∞Σ

m=1

1

(2m − 1)2
(n − 1)!

[
(2m − 1)2Dπ2

L2

]−(n−1)−1

= 8

π2

(
L2

Dπ2

)n

n!
∞Σ

m=1

1

(2m − 1)2(n+1)
.

(5.74) 

Using Eq. (A.37) for the sum, the latter equation becomes 

.<tnu > = 8n!
π2

(
L2

Dπ2

)n {[
1 − 2−2(n+1)

]
ζ [2(n + 1)]

}
, (5.75) 

where .ζ(x) is the Riemann zeta function of variable x (see Sect. A.10.5). For the 
first moment, we set .n = 1, leading to 

.<tu> = L2

12D
. (5.76) 

When comparing this solution to the case when the particles start from a 
predetermined . x0, given by Eqs. (2.50), we can see that



136 5 Diffusion Between Two Targets

Fig. 5.6 MFPT as a function 
of . x0 predicted by Eq. (2.50) 
(blue line) and Eq. (5.76) 
(yellow line). The different 
domains predicted by 
Eq. (5.78) are shown by 
shadows. The initial system 
length and diffusivity are set 
to .L = 1 and .D = 1, 
respectively 

.<t> = 6(L − x0)

L2 <tu>. (5.77) 

From this last relation, we can determine the domain for which the particles leave 
the system faster for a predetermined . x0 as compared to the case where they are 
uniformly distributed by setting .6(L−x0)/L

2 > 1. This inequality has the following 
solution: 

.
L

2
− L

2
√
3

< x0 <
L

2
+ L

2
√
3
. (5.78) 

When . x0 is equal to these values, both initial position arrangements will have the 
same MFPT time. Representative plots of the inequality (5.78), as well as the MFPT 
given by Eqs. (2.50) and (5.76), are depicted in Fig. 5.6. 

The splitting probability is computed through Eq. (2.95), namely, 

. θx' = −D
∂

∂x

f ∞

0

4

πL

∞Σ

n=1

exp

[
− (2n − 1)2π2Dt

L2

] sin
[

(2n−1)πx
L

]

2n − 1
dt

||||||
x=x'

.

(5.79) 
After integrating and taking the derivative, we have 

.

θx' = −4D

πL

(
L2

π2D

)
∂

∂x

∞Σ

n=1

sin
[

(2n−1)πx
L

]

(2n − 1)3

||||||
x=x'

= − 4

π2

∞Σ

n=1

cos
[

(2n−1)πx
L

]

(2n − 1)2

||||||
x=x'

.

(5.80)
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Making use of the general result of the sum, Eq. (A.38), the . θx' evaluated at . x' = L

yields 

.θL = 1

2
. (5.81) 

Then, by using the normalization property, .θ0 = 1 − θL, we have  

.θ0 = 1

2
. (5.82) 

5.6 Absorbing-Reflecting 

The absorbing-reflecting finite system is depicted as follows: In an interval .[0, L], 
we place an absorbing boundary at .x = 0 and a reflecting boundary at . x = L

(see Fig. 5.7). Consequently, in this problem, we have to consider mixed boundary 
conditions. In the domain, at . x0, a Brownian particle starts to diffuse and is removed 
from the system as soon as it hits the absorbing target. As in the previous section, we 
will solve this boundary-value problem by using the separation of variables method 
and the Laplace transform. 

It is worth mentioning that when we consider the limit when .L → ∞, a semi-
infinite interval boundary-value problem is recovered. 

5.6.1 The Separation of Variables Method 

The reflecting and absorbing boundary conditions are described by Eqs. (4.27) and 
(4.69), respectively. Therefore, in the separation of variables method, the BCs are 
given by 

.φn(0) = 0 and
∂φn(x)

∂x

||||
x=L

= 0. (5.83) 

Fig. 5.7 Schematic representation of a one-dimensional domain with an absorbing point at . x = 0
(red circle) and a reflecting target at .x = L (blue bar)
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From the absorbing boundary condition, we find that .Bn = 0 in Eq. (5.6). From  
the reflecting boundary condition, we determine that the eigenvalue is . λn = (2n +
1)π/2L, since 

.
∂φn(x)

∂x

||||
x=L

= Anλn cos(λnL) = 0. (5.84) 

This leads to the following solution: 

.p(x, t) =
∞Σ

n=0

An exp

[
− (2n + 1)2π2Dt

4L2

]
sin

[
(2n + 1)πx

2L

]
. (5.85) 

To obtain . A as previously performed, the Dirac delta function as the initial condition 
translates into 

.p(x, 0|x0) = 2

L

∞Σ

n=0

An sin

[
(2n + 1)πx

2L

]
= δ(x − x0), (5.86) 

where 

. δ(x − x0) =
∞Σ

n=0

sin

[
(2n + 1)πx0

2L

]
sin

[
(2n + 1)πx

2L

]
.

Thus, the solution to the propagator of the absorbing-reflecting system is 

. p(x, t |x0) = 2

L

∞Σ

n=0

exp

[
−(2n+1)2π2Dt

4L2

]
sin

[
(2n+1)πx0

2L

]
sin

[
(2n+1)πx

2L

]
.

(5.87) 

At this point, the reader should be aware of the similarity between Eqs. (5.87) 
and (2.28). 

5.6.2 Survival Probability and First-Passage Time 

Using Eqs. (5.52) and (5.87), we find that the survival probability is given by
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. 

S(t |x0) = 2

L

∞Σ

n=0

exp

[
− (2n + 1)2π2Dt

4L2

]
sin

[
(2n + 1)πx0

2L

]

×
f L

0
sin

[
(2n + 1)πx

2L

]
dx

= − 2

L

∞Σ

n=0

{
exp

[
− (2n + 1)2π2Dt

4L2

]
sin

[
(2n + 1)πx0

2L

] [
2L

(2n + 1)π

]

× cos

[
(2n + 1)πx

2L

]L

0

}
.

(5.88) 
If we simplify the above expression, we get 

.S(t |x0) = 4

π

∞Σ

n=0

sin
[

(2n+1)πx0
2L

]

2n + 1
exp

[
− (2n + 1)2π2Dt

4L2

]
. (5.89) 

The probability density of the first-passage time is computed through Eq. (2.34), 
leading to 

.ϕ(t |x0) = − d

dt

⎧
⎨

⎩
4

π

∞Σ

n=0

exp

[
− (2n + 1)2π2Dt

4L2

] sin
[

(2n+1)πx0
2L

]

(2n + 1)

}
⎬

⎭ . (5.90) 

Finally, we arrive at 

. ϕ(t |x0) = Dπ

L2

∞Σ

n=0

(2n + 1) exp

[
− (2n + 1)2π2Dt

4L2

]
sin

[
(2n + 1)πx0

2L

]
.

(5.91) 
This last equation will be used in the next section to calculate the moments of 

MFPT. 

5.6.3 Moments of MFPT 

The first moment of mean first-passage time is found by using Eq. (2.44) and 
applying the techniques outlined in Sect. 2.5, namely,
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.

<t (x0)> = 4

π

∞Σ

n=0

(−1)n
sin
[

(2n+1)πx0
2L

]

2n + 1

f ∞

0
exp

[
− (2n + 1)2π2Dt

4L2

]
dt

= 4

π

∞Σ

n=0

(−1)n
sin
[

(2n+1)πx0
2L

]

2n + 1

[
− 4L2

(2n + 1)2Dπ2

]

× exp

[
− (2n + 1)2π2Dt

4L2

]||||
∞

0
,

(5.92) 

leading to 

.<t (x0)> = 16L2

Dπ3

∞Σ

n=0

sin
[

(2n+1)πx0
2L

]

(2n + 1)3
. (5.93) 

The simplest way to calculate the moments of MFPT is by solving its differential 
equation. For instance, if we want to obtain the first moment, we have to solve 

.D
d2<t (x0)>

dx2
0

= −1, (2.64) 

which has a general solution given by 

.<t (x0)> = A + Bx0 − x2
0

2D
, (2.49) 

subject to the following boundary conditions: 

.<t (0)> = 0 and
d<t (x0)>
dx0

||||
x0=L

= 0, (5.94) 

from which we find that .A = 0 and .B = L/D, yielding 

.<t (x0)> = x0(2L − x0)

2D
. (5.95) 

This equation predicts that .<t (0)> = 0 and has a maximum equal to .L2/2D at L. 
Finally, it is worth noting that the MFPT for the absorbing-reflecting system could 
be obtained the absorbing-absorbing system. The relation between both systems is 
shown in Fig. 5.8, where we can see that in order to map the absorbing-reflecting 
system to the absorbing-absorbing system, we have to set a domain from 0 to 2L in 
the latter. Actually, we can obtain Eq. (5.93) from Eq. (2.46) by substituting L for 
2L. Nevertheless, we could just make this substitution into Eqs. (2.50) and (2.68) to 
find the first two moments of mean first-passage time, namely,
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Fig. 5.8 Comparison of one-dimensional domain systems. The absorbing-reflecting and the 
absorbing-absorbing systems are shown. From this schematic representation, we can see that the 
absorbing-reflecting system of length L is equivalent to the absorbing-absorbing system of length 
2L 

Fig. 5.9 Characteristic plots 
of MFPT, Eq. (5.96), i.e., 
.<t (x0)> (blue line) and 
.<t2(x0)> (yellow line), as a 
function of . x0. The initial 
system length and diffusivity 
are set to .L = 1 and .D = 1, 
respectively 

0.0 0.2 0.4 0.6 0.8 1.0 x0 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

〈t(
x 0
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. <t (x0)> = x0(2L − x0)

2D
, <t2(x0)> = x0(2L − x0)(4L2 + 2Lx0 − x2

0)

12D2 .

(5.96) 
Characteristic plots of Eqs. (5.96) are shown in Fig. 5.9. 

5.6.4 The Laplace Transform Solution 

To solve the absorbing-reflecting system by means of the Laplace transform, we 
start from the subsidiary equation of the diffusion equation, i.e., 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2 , (3.36) 

subject to the Laplace transformed BCs in Eq. (5.83), namely, 

.p(0, s|x0) = 0 and
∂p(x, s|x0)

∂x

||||
x=L

= 0. (5.97) 

The main properties that the propagator has to satisfy for this boundary-
value problem are: For the left-hand side, it has to be zero when evaluated at 
.x = 0, while for the right-hand side, its derivative must vanish at .x = L, so
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there is no flux at such boundary. As previously discussed, the algebra to find 
the propagator can be simplified considerably by choosing the appropriate linear 
combination of hyperbolic function solutions that satisfy the boundary conditions. 
These considerations lead to 

.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A sinh
[/

s
D

(x − xϕ)
]

for x < x0,

B cosh
[/

s
D

(x − xθ )
]

for x > x0.

(5.98) 

Substituting the absorbing BC at .x = 0 in the propagator leads to the relation 

. − A sinh

[/
s

D
xϕ

]
= 0, (5.99) 

from which we can assert that 

.xϕ = 0. (5.100) 

On the other hand, by substituting the reflecting BC, we arrive at 

.
∂p(x, s|x0)

∂x

||||
x=L

= B
/

s

D
sinh

[/
s

D
(L − xθ )

]
= 0, (5.101) 

leading to 

.xθ = L. (5.102) 

The joining condition for the propagator and its derivative, given by Eqs. (3.39) 
and (3.42), respectively, yields the following system of equations: 

.A sinh

(/
s

D
x0

)
= B cosh

[/
s

D
(x0 − L)

]
and (5.103) 

.

/
s

D

{
B sinh

[/
s

D
(x0 − L)

]
− A cosh

(/
s

D
x0

)}
= − 1

D
, (5.104) 

from which we arrive at 

.A =
cosh

[/
s
D

(x0 − L)
]

√
sD cosh

(/
s
D

L
) and B =

sinh
(/

s
D

x0

)

√
sD cosh

(/
s
D

L
) . (5.105) 

Therefore, as expected, the correct solution is
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.p(x, s|x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sinh
(√

s
D

x
)
cosh

[√
s
D

(x0−L)
]

√
sD cosh

(√
s
D

L
) for x < x0,

sinh
(√

s
D

x0

)
cosh

[√
s
D

(x−L)
]

√
sD cosh

(√
s
D

L
) for x > x0.

(5.106) 

5.6.5 Survival Probability and Moments of MFPT: Revisited 

Substituting Eq. (5.106) into Eq. (5.52), we compute .S(s|x0) for the current prob-
lem, namely, 

. 

S(s|x0) =
f L

0
p(x, s|x0) dx

= 1
√

sD cosh
(/

s
D

L
)
{f x−

0

0
sinh

(/
s

D
x

)
cosh

[/
s

D
(x0 − L)

]
dx

+
f L

x+
0

sinh

(/
s

D
x0

)
cosh

[/
s

D
(x − L)

]
dx

}
.

(5.107) 
Performing the integration, we have 

. 

S(s|x0) = 1

s cosh
(/

s
D

L
)
{
cosh

(/
s

D
x

)
cosh

[/
s

D
(x0 − L)

]||||
x−
0

0

+ sinh

(/
s

D
x0

)
sinh

[/
s

D
(x − L)

] ||||
L

x+
0

}
.

(5.108) 
Substituting the limits, we obtain 

. 

S(s|x0) = 1

s cosh
(/

s
D

L
)
{[

cosh

(/
s

D
x0

)
− 1

]
cosh

[/
s

D
(x0 − L)

]

− sinh

(/
s

D
x0

)
sinh

[/
s

D
(x0 − L)

]}
.

(5.109) 
After some simplifications, we arrive at 

.S(s|x0) = 1

s
−

cosh
[/

s
D

(x0 − L)
]
sech

(/
s
D

L
)

s
. (5.110)
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It is worth noting that by using the final limit theorem, from this last expression, we 
obtain that .S(x0) goes to zero at long times. 

Moments of MFPT are computed using Eq. (2.90) after Taylor-expanding 
Eq. (5.110), namely, 

.S(s|x0) = x0(2L − x0)

2D
+ s x0(x0 − 2L)(4L2 + 2Lx0 − x2

0)

24D2 + · · · (5.111) 

When evaluating the latter equation and its derivative at .s = 0, we find the first and 
second moments of mean first-passage time, i.e., 

. <t (x0)> = x0(2L − x0)

2D
and <t2(x0)> = x0(2L − x0)(4L2 + 2Lx0 − x2

0)

12D2
,

(5.112) 
respectively, which are the expressions we obtained in Sect. 5.6.3, namely, 
Eq. (5.96). 

5.6.6 First-Passage Time and Splitting Probability: Revisited 

To find the probability density of first-passage time in Laplace’s space, we first have 
to calculate the flux at each boundary. By applying the Laplace transform of the 
continuity equation, Eq. (5.60), to the solution in Eq. (5.106), we obtain 

.J (0, s|x0) =
cosh

[/
s
D

(x0 − L)
]

cosh
(/

s
D

L
) and J (L, s|x0) = 0. (5.113) 

Substituting the last results into Eq. (5.63) leads to 

.ϕ(s|x0) =
cosh

[/
s
D

(x0 − L)
]

cosh
(/

s
D

L
) . (5.114) 

Finally, the splitting probability is computed as indicated in Eq. (5.66), i.e., 

.θ0(x0) = 1 and θL(x0) = 0, (5.115) 

which simply corroborates the consistency of the results obtained.
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5.7 Partially Absorbing-Reflecting 

The description of diffusion between a partially absorbing boundary and a reflecting 
target in the interval .[0, L] requires a combination of the Neumann BC to describe 
the reflecting point, Eq. (4.69), and the Robin-like BC for the single, partially 
absorbing target, Eq. (4.87) (see Fig. 5.10). Thus, the diffusion equation, Eq. (2.13), 
has to be solved within the following constraints: 

. −D
∂

∂x
p(x, t |x0)

||||
x=0

= κp(0, t |x0) and
∂p(x, t |x0)

∂x

||||
x=L

= 0, (5.116) 

defining this boundary-value problem. 
It is worth remembering that the partially absorbing boundary or radiation 

boundary condition may be viewed as a Brownian particle visiting the boundary 
a certain number of times before it is finally absorbed. On the other hand, as we 
already know, in the limits when . κ goes to infinity and 0, we recover the perfectly 
absorbing and reflecting boundaries, respectively. 

5.7.1 The Separation of Variables Method 

Just as in later systems presented in this chapter, the partially absorbing-reflecting 
system can be solved by means of the spectral representation of the propagator, 
Eq. (5.5), working first in terms of the eigenfunctions by using Eq. (5.6), i.e., 

.φn(x) = An sin(λnx) + Bn cos(λnx). (5.6) 

Invoking the first constraint of Eq. (5.116), i.e., the partially absorbing boundary 
condition yields 

.Bnκ = AnDλn, (5.117) 

while the second BC gives 

.An = Bn tan (Lλn) . (5.118) 

Fig. 5.10 Schematic representation of a one-dimensional domain with a partially absorbing point 
at .x = 0 (yellow circle) and a reflecting target at .x = L (blue bar)



146 5 Diffusion Between Two Targets

By combining the two latter relations, we find 

.
κ

Dλn

= tan (Lλn) , (5.119) 

which is the main equation to find the correct eigenvalue for our problem. 
The dimensionless version of Eq. (5.119) is constructed by defining4 

.λn ≡ ξn

L
. (5.120) 

Thus, a new equation arises to find the characteristic values, namely, 

.
κL

D
= ξn tan (ξn) for n = 1, 2, 3, . . . (5.121) 

There are two limits in which approximate solutions of the latter equation can be 
found: (a) The first is when .κ → ∞, this makes the right side of Eq. (5.121) tend to 
infinity and corresponds to the case in which the target is not partially but perfectly 
absorbent (see Fig. 5.11). In such system, . ξn is determined as .ξn = (2n + 1)π/2L. 
In contrast, (b) the second limit to find an approximate solution is when .κ → 0, 
which means that the particle has only a slight change of being absorbed. For the 
ideal case, where .κ = 0, we should be describing the reflecting-reflecting system 
with .ξn = nπ/L. Following this reasoning, the eigenvalues of our present problem 
must be within the eigenvalues associated with the reflecting-reflecting system and 
the eigenvalues for the absorbing-reflecting system. Additionally, the eigenvalue we 
are looking for is close to zero since . κ is close to being null as well. Therefore, the 
first eigenvalue . κ and . ξ1 are small, i.e., .tan x ≈ x; then, Eq. (5.121) becomes 

.ξ21 = κL

D
(5.122) 

meaning that Eq. (5.120) is now 

.λ1 =
/

κ

LD
. (5.123) 

For higher eigenvalues, (5.121) should be small, and since . ξn may not always be 
a small number for .n ≥ 2, then .tan (ξn) must be, so to contra rest this effect. 
By knowing that .tan (ξn) is zero in any integer multiple of . π , then . ξn must be 

4 To understand which possible values of . ξn are available when changing variables, we appeal to 
Eq. (5.85), meaning that for the absorbing-reflecting system, .ξn = (2n + 1)π .
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Fig. 5.11 Representative 
plots of Eq. (5.121) for the 
behavior of the curve 
.x tan(x), which tends to 
infinity on every . ±(2n + 1)/2
with n being an integer
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) 
slightly different from that value, and such perturbation will be denoted by . γn. This  
statement leads to the following proposal:5 

.ξn = (n − 1)π + γn, for n = 2, 3, 4, . . . (5.124) 

Substituting the latter equation into Eq. (5.121), we obtain 

. [(n − 1)π + γn] tan [(n − 1)π + γn] = κL

D
, (5.125) 

a relation that can be approximated as6 

.(n − 1)πγn ≈ κL

D
. (5.127) 

Solving for . γn yields 

.γn = κL

(n − 1)πD
, (5.128) 

which is indeed small for .n ≥ 2. Consequently, the higher eigenvalues are 
approximated as 

.λn = ξn

L
≈ (n − 1)π

L
. (5.129) 

5 Notice that in this case, n starts at .n = 2 instead of .n = 1, because the solution of the very first 
eigenvalue is small enough to be determined with Eq. (5.123). 
6 Unlike the fundamental period of functions sine and cosine, the tangent and the cotangent 
functions have fundamental period of . π , meaning that for any integer n, 

. tan x = tan(x + nπ). (5.126)
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To find the eigenfunctions . φn, instead of a linear combination of trigonometric 
functions, we propose a cosine function, 

.φn(x) = An cos (λnx − αn) = An cos

[
(n − 1)πx

L
− αn

]
(5.130) 

According to (5.119), . αn can be computed using the tangent and the eigenvalues 
just found. Thus, 

. tanα1 ≈
/

κL

D
and tanαn ≈ κL

(n − 1)πD
for n = 2, 3, 4, . . . (5.131) 

Since .κL/D is small, the angle . αn can be neglected for all n. 

. φ1(x) = A1 cos

(/
κ

LD
x

)
≈ A1,

φn(x) = An cos

[
(n − 1)πx

L

]
for n = 2, 3, 4, . . . (5.132) 

Therefore, the propagator of the partially absorbent-reflecting system, using 
Eq. (5.5) together with Eqs. (5.123) and (5.129), reads 

. 

p(x, t |x0) ≈ A1 exp
(
−λ21Dt

)
+

∞Σ

n=2

An cos

[
(n − 1)πx

L

]
exp

(
−λ2nDt

)

= A1 exp
(
− κ

L
t
)

+
∞Σ

n=2

An cos

[
(n − 1)πx

L

]
exp

[
− (n − 1)2π2

L2
Dt

]
.

(5.133) 
The second term of the latter equation is very similar to Eq. (5.21), so the aftermath 
of the initial condition being .δ(x − x0) is computed straightforward, leading to 

. p(x, t |x0) ≈ exp
(− κ

L
t
)

L
+ 2

L

∞Σ

n=2

exp

[
− (n − 1)2π2

L2
Dt

]
cos

[
(n − 1)πx0

L

]

× cos

[
(n − 1)πx

L

]
. (5.134) 

Representative plots of the time evolution of the propagator in Eq. (5.134), using  a  
permeability of .κ = 0.2, are depicted in Fig. 5.12. We can see that the propagator’s 
behavior is similar to the solution of the absorbing-absorbing system, as we 
expected, since replacing an absorbing endpoint by a reflecting target is equivalent
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Fig. 5.12 Time evolution of the probability distribution, Eq. (5.134), with a trapping rate .κ = 0.2. 
The starting position of the particle is set at .x0 = 0.5, the length is .L = 1, and the diffusion 
coefficient is . D = 1

to increase the space domain when dealing with the diffusion between two absorbing 
walls, as the reader will see in the following sections. 

5.7.2 Survival Probability and First-Passage Time 

The survival probability .S(t |x0) is calculated by integrating Eq. (5.134) along .[0, L], 
i.e., 

. 

S(t |x0) ≈
f L

0

exp
(− κ

L
t
)

L
dx + 2

L

∞Σ

n=2

exp

[
− (n − 1)2π2

L2 Dt

]
cos

[
(n − 1)πx0

L

]

×
f L

0
cos

[
(n − 1)πx

L

]
dx.

(5.135) 
The second integral is identically zero, making the first term the only contribution, 
which leads to 

.S(t |x0) ≈ exp

(
−κt

L

)
. (5.136) 

If we set .κ = 0 in the latter equation, the survival probability for the reflecting-
reflecting system is recovered, i.e., .S(t |x0) = 1. If we identify .1/L = peq(0), 
consequently,
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.S(t |x0) ≈ e−κ peq (0)t . (5.137) 

Then, the decay rate is determined by the equilibrium density at the partially absorb-
ing end target. It is worthwhile to mention that the argument of the exponential is 
the flux at steady state at the absorbing end. 

On the other hand, the probability density of first-passage time is 

.ϕ(t |x0) = −dS(t |x0)
dt

≈ κ

L
exp

(
−κt

L

)
, (5.138) 

which reduces to Eq. (4.86) when .κ = 0. Plots of Eqs. (5.136) and (5.138) for 
different values of the constant . κ are presented in Fig. 5.14. 

5.7.3 Moments of MFPT and Splitting Probability 

Moments for mean first-passage time can be computed either with Eq. (2.41) or with 
Eq. (2.52). Using the survival probability for the first moment, we have that 

.<t (x0)> ≈
f ∞

0
exp

(
−kt

L

)
dt = −L

κ
exp

(
−κt

L

)||||
∞

0
, (5.139) 

.<t (x0)> ≈ L

κ
. (5.140) 

The second moment is 

.<t2(x0)> ≈ 2
f ∞

0
t exp

(
−κt

L

)
dt, (5.141) 

which is integrated by parts, i.e., 

.

<t2(x0)> ≈ 2

[
−Lt

κ
exp

(
−κt

L

)||||
∞

0
+ L

κ

f ∞

0
exp

(
−κt

L

)
dt

]

≈ 2L2

κ2
.

(5.142) 

The splitting probability is found through Eq. (2.95). 

.θx'(x0) = −D
∂

∂x

f ∞

0
p(x, t |x0) dt

||||
x=x'

. (2.95)
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Just by looking at such expression, knowing that we can interchange the order of 
the differential operators,7 we can conclude that 

.θ0(x0) = 0 and θL(x0) = 0. (5.143) 

The reader may notice that .S(t |x0) and .ϕ(t |x0), together with all moments .<tn(x0)>, 
are independent of the initial position . x0! Evidently, the preceding method is not 
accurate physically speaking, why? The mathematical requirement of having a 
small value for the eigenvalue, which is a recurrent feature in our approximations, 
translates into the property of having a small absorbing rate in the system, 
characterizing the diffusion process with a much greater relaxation time that the 
commonly .L2/D. This solution works perfectly for a partially absorbing target 
that has low interaction with Brownian particles, i.e., we are dealing more with a 
reflecting target rather than with a partially absorbing endpoint. 

In the following section, we will approach the same problem using Laplace 
transforms to show the great advantage of this method. 

If a particle hits the wall at .x = 0, there’s only a slight change of being absorbed. 

5.7.4 The Laplace Transform Solution 

Since the results for the moments of mean first-passage time and splitting probabil-
ity, Eqs. (5.140), (5.142), and (5.143), are physically inaccurate, we intend to obtain 
a better answer through the Laplace transforms. 

To solve this problem by means of the Laplace transform technique, we use the 
subsidiary equation, Eq. (3.36), which needs to be solved considering the Laplace 
transform of the BCs, Eq. (5.116), as follows: 

.D
∂p(x, s|x0)

∂x

||||
x=0

= κ p(0, s|x0) and
∂p(x, s|x0)

∂x

||||
x=L

= 0. (5.144) 

Since the propagator must describe the trapping rate on the left-hand side, .x < x0, 
and the zero flux property for the right-hand side, .x > x0, let us work with the 
following general solution:8 

7 In this case, we take the derivative with respect to x and then the integral in time t . 
8 In Eq. (5.145), we added a phase L to the solution for the right-hand side of the domain. This 
modification was helpful to obtain Eqs. (5.23) and (5.27), when imposing hyperbolic functions in 
the description of a reflecting point at .x = L.
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.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A sinh
[/

s
D

(x − xθ )
]

for x < x0,

B cosh
[/

s
D

(x − L)
]

for x > x0,

(5.145) 

By applying the BC for the partially absorbing endpoint to the left-hand side 
solution, we find an equation for phase . xθ , which is 

.A
√

Ds cosh

(/
s

D
xθ

)
= −κA sinh

(/
s

D
xθ

)
(5.146) 

yielding 

.xθ = −
/

D

s
arctanh

(√
sD

k

)
. (5.147) 

From this last equation, we can verify that if .κ → ∞, then .xθ = 0. Consequently, 
we obtain the solution for the absorbing-reflecting system for .x < x0, i.e., 

.A sinh
(/

s
D

x
)
. 

By applying the continuity condition, given by Eq. (3.39), as well as the  
discontinuity condition in Eq. (3.42), to Eq. (5.145), we find a system of equations 
that may be used to determine constants . A and . B, given by 

.A sinh

[/
s

D
(x0 − xθ )

]
= B cosh

[/
s

D
(x0 − L)

]
and (5.148) 

.

/
s

D

{
B sinh

[/
s

D
(x0 − L)

]
− A cosh

[/
s

D
(x0 − xθ )

]}
= − 1

D
. (5.149) 

Solving this system of equations, we have 

. A =
cosh

[/
s
D

(x0 − L)
]

√
sD cosh

[/
s
D

(xθ − L)
] and B =

sinh
[/

s
D

(x0 − xθ )
]

√
sD cosh

[/
s
D

(xθ − L)
] .

(5.150) 

Thus, the solution of the propagator in the Laplace space is 

.p(x, s|x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cosh
[√

s
D

(x0−L)
]
sinh

[√
s
D

(x−xθ )
]

√
sD cosh

[√
s
D

(xθ−L)
] for x < x0

cosh
[√

s
D

(x−L)
]
sinh

[√
s
D

(x0−xθ )
]

√
sD cosh

[√
s
D

(xθ−L)
] for x > x0.

(5.151) 

Representative plots of the propagator in real space are shown in Fig. 5.13.
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Fig. 5.13 Time evolution of the probability distribution, Eq. (5.151), with a trapping rate .κ = 0.2. 
The starting position of the particle is set at .x0 = 0.5, the length is .L = 1, and the diffusion 
coefficient is . D = 1

5.7.5 Survival Probability and Moments of MFPT 

To calculate the survival probability in the Laplace space, we substitute the 
propagator given by Eq. (5.151) into Eq. (5.52), leading to 

. 

S(s|x0) =
f L

0
p(x, s|x0) dx

= 1
√

sD cosh
[/

s
D

(xθ − L)
]

×
{f x−

0

0
cosh

[/
s

D
(x0 − L)

]
sinh

[/
s

D
(x − xθ )

]
dx

+
f L

x+
0

cosh

[/
s

D
(x − L)

]
sinh

[/
s

D
(x0 − xθ )

]
dx

}
.

(5.152) 
After integration and evaluation, we obtain 

. S(s|x0) = 1

s
−

cosh
[/

s
D

(L + xθ − x0)
]

+ cosh
[/

s
D

(x0 + xθ − L)
]

2s cosh
[/

s
D

(xθ − L)
] .

(5.153) 
Now, if we substitute the explicit expression for . xθ given by Eq. (5.147), we arrive  
at the following result:
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.S(s|x0) = 1

s
−

κ cosh
[/

s
D

(L − x0)
]

s
[
κ cosh

(/
s
D

L
)

+ √
sD sinh

(/
s
D

L
)] . (5.154) 

The survival probability in real space is obtained numerically by means of the 
Gaver-Stehfest method. The result is depicted in Fig. 5.14.9 

Moments of mean first-passage time are computed using Eq. (2.90). First, we  
Taylor-expand the survival probability .S(s|x0), leading to 

. 

S(s|x0) = L

κ
+ x0(2L − x0)

2D

−
[

L2

κ2 + L(2L2 + 6Lx0 − 3x2
0)

6Dκ
+ 8L3x0 − 4Lx3

0 + x4
0

24D2

]
s + · · ·
(5.155) 

Thus, when evaluating the last expression at .s = 0, we obtain the first moment of 
MFPT, namely, 

.<t (x0)> = x0(2L − x0)

2D
+ L

κ
. (5.156) 

Using this equation, we can recover the result obtained for MFPT for the 
absorbing-reflecting system by setting .κ → ∞. 

It is worth noting that when .x0 = 0, the MFPT reduces to 

.<t (x0 = 0)> = L

κ
. (5.157) 

This result tells us that once the particle reaches the partially absorbing boundary 
for the first time, it has to keep visiting it a mean time .L/κ before being trapped. 
Now, with this interpretation in hand, a quick glance of Eq. (5.156) shows that the 
MFPT for the partially absorbing-reflecting system is given by the sum of two terms 
with a clear interpretation. From the first term, we have the mean time that it takes 
the particle to reach the partially absorbing boundary for the first time. Then, we 
have the mean time that the particle spends repeatedly returning to this boundary, 
until it becomes trapped. It is important to note that Eq. (5.156) predicts that when 
.κ → ∞, the particle is absorbed on the first attempt. 

The second moment of MFPT is computed by taking the second derivative of the 
survival probability, i.e., 

. <t2(x0)> = 24D2L2 + 4DLκ(2L2 + 6Lx0 − 3x2
0) + x0κ

2(8L3 − 4Lx2
0 + x3

0)

12D2κ2 .

(5.158)

9 See Appendix 5.A for further details on the numerical Laplace inversion. 
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This expression reduces to the well-known result corresponding to the absorbing-
reflecting system when setting the limit .κ → ∞. 

5.7.6 Density of Mean First-Passage Time and Splitting 
Probability 

Now, we compute the flux at . x0 by substituting the propagator given by Eq. (5.151) 
into Eq. (5.60), finding that 

.J (0, s|x0) =
cosh

[/
s
D

(x0 − L)
]
cosh

[/
s
D

xθ

]

cosh
[/

s
D

(xθ − L)
] . (5.159) 

Using the last results in Eq. (5.63) to obtain the probability density of first-passage 
time, we obtain 

. φ(s|x0) =
cosh

[/
s
D

(x0 − L)
]
cosh

[/
s
D

xθ

]

cosh
[/

s
D

(xθ − L)
] . (5.160) 

Representative plots of .ϕ(t |x0) are obtained numerically and shown in Fig. 5.14.10 

The splitting probability is found through Eq. (5.66). Consequently, expanding 
the flux in Eq. (5.159) in power series in s, and setting .s = 0 lead to 
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Fig. 5.14 Schematic representation of survival probability, Eq. (5.154), and the probability density 
of first-passage time, Eq. (5.160), for different values of the trapping rate . κ: .κ = 0.2 (blue line), 
.κ = 0.4 (yellow line), .κ = 0.6 (green line), and .κ = 0.8 (orange line). The starting position of the 
particles is set at .x0 = 0.5, the length is .L = 1, and the diffusion coefficient is .D = 1

10 See Appendix 5.A for further details on the numerical Laplace inversion. 
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.θ0(x0) = 1 and θL(x0) = 0. (5.161) 

These results are obtained for the sole purpose of showing consistency between 
our results. 

5.8 Absorbing-Partially Absorbing 

Consider a Brownian particle diffusing along a finite domain in the presence of a 
perfectly absorbing end at .x = 0 and a partially absorbing one at .x = L, as shown  
in Fig. 5.15. The mathematical BCs for this system are a combination of a Dirichlet 
BC and a Neumann BC, Eqs. (4.27) for .x = 0 and (4.87) for .x = L. Consequently, 

.p(0, t |x0) = 0 and −D
∂p(x, t |x0)

∂x

||||
x=L

= κ p(L, t |x0). (5.162) 

In this case, .n̂ = −êi at .x = L, since the unit normal vector to the partially 
absorbing boundary points westward. 

5.8.1 The Laplace Transform Solution 

This system will be solved using the Laplace method, as done for all other systems 
mentioned earlier in this chapter. Then, we invoke again the subsidiary equation for 
the diffusion equation, i.e., 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2 , (3.36) 

subject to the transformed BCs, namely, 

.p(0, s|x0) = 0, and −D
∂p(x, s|x0)

∂x

||||
x=L

= κp(L, s|x0). (5.163) 

Because the propagator has to be identical to zero at .x = 0, and based on the 
experience we have accumulated so far in proposing solutions in this chapter, let’s 
propose the following solution in the Laplace space: 

Fig. 5.15 Schematic representation of a one-dimensional domain with a perfectly absorbing point 
at .x = 0 (red circle) and a partially absorbing end at .x = L (yellow circle)
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.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A sinh
(/

s
D

x
)

, for x < x0

B sinh
[/

s
D

(x − xθ )
]
, for x > x0.

(5.164) 

We can obtain . xθ by imposing the BC on the solution for the region .x > x0. In this  
process, we find that 

. − B
√

Ds cosh

[/
s

D
(L − xθ )

]
= κB sinh

[/
s

D
(L − xθ )

]
, (5.165) 

leading to 

.xθ = L +
/

D

s
arctanh

(√
sD

κ

)
. (5.166) 

Note that if . κ tends to infinity, .xθ = L, and the solution in Eq. (5.164) reduces to 
the solution of the absorbing-absorbing system in the Laplace space, Eq. (5.47). 

Now, imposing the continuity condition, given by Eq. (3.39), translates into 

.A sinh

(/
s

D
x0

)
= B sinh

[/
s

D
(x0 − xθ )

]
, (5.167) 

and imposing the discontinuity condition at .x = x0, given by Eq. (3.42), yields 

.

/
s

D

{
B cosh

[/
s

D
(x0 − xθ )

]
− A cosh

(/
s

D
x0

)}
= − 1

D
. (5.168) 

Using the last two equations, we can calculate constants . A and . B, finding the 
following solutions: 

.A = −
sinh

[/
s
D

(x0 − xθ )
]

√
sD sinh

(/
s
D

xθ

) and B = −
sinh

(/
s
D

x0

)

√
sD sinh

(/
s
D

xθ

) . (5.169) 

Therefore, the propagator is 

.p(x, s|x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− sinh
(√

s
D

x
)
sinh

[√
s
D

(x0−xθ )
]

√
sD sinh

(√
s
D

xθ

) for x < x0,

− sinh
(√

s
D

x0

)
sinh

[√
s
D

(x−xθ )
]

√
sD sinh

(√
s
D

xθ

) for x > x0.

(5.170)
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Fig. 5.16 Time evolution of the propagator .p(x, t |x0) of the absorbing-partially absorbing system, 
obtained by the numerical inversion of Eq. (5.170) at different times. The initial position, system 
length, diffusivity, and trapping rate are .x0 = 0.5, .L = 1, .D = 1, and .κ = 0.5, respectively 

The reader can directly verify that the latter solution obeys the subsidiary 
equation, Eq. (3.36), which is the Laplace transform of the diffusion equation, in 
both regions. Since computing the inverse Laplace transform of Eq. (5.170) is quite 
complicated, we invert Laplace transform .p(x, s|x0) numerically.11 In Fig. 5.16, we  
show the time evolution of the propagator in real space. 

5.8.2 Survival Probability and Moments of First-Passage Time 

To calculate the survival probability in the Laplace space, we introduce Eq. (5.170) 
into Eq. (5.52), which gives 

. 

S(s|x0) =
f L

0
p(x, s|x0) dx

= − 1
√

sD sinh
(/

s
D

xθ

)
{ f x−

0

0
sinh

(/
s

D
x

)
sinh

[/
s

D
(x0 − xθ )

]
dx

+
f L

x+
0

sinh

(/
s

D
x0

)
sinh

[/
s

D
(x − xθ )

]
dx

}
.

(5.171)

11 See Appendix 5.A for further details on the numerical Laplace inversion. 
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Fig. 5.17 Survival probability .S(t |x0) of the absorbing-partially absorbing system as a function 
of time, Eq. (5.172), for different values of the trapping rate: .κ = 0.2 (blue), .κ = 0.6 (yellow), 
.κ = 1.0 (green), and .κ = 2.0 (orange). The initial position, system length, and diffusivity are 
.x0 = 0.5, .L = 1, and .D = 1, respectively 

After integration and evaluation, we have that 

. S(s|x0) = 1

s
+

sinh
[/

s
D

(x0 − xθ )
]

− cosh
[/

s
D

(L − xθ )
]
sinh

(/
s
D

x0

)

sinh
(/

s
D

xθ

)
s

.

(5.172) 
The survival probability in real space as a function of time is depicted in Fig. 5.17. 
To calculate the moments of MFPT, we have to expand .S(s|x0) in a Taylor series, 

yielding 

. 

S(s|x0)

= x0
[
κL2 − x0(D + κL) + 2DL

]

2D(D + κL)

− sx0
(
8D2L3+5DL4κ+L5κ2−4D2Lx2

0 −6DL2x2
0κ −2L3x2

0κ
2+D2x3

0

)

24D2(D + κL)2

− sx0
(
2DLx3

0κ + L2x3
0κ

2
)

24D2(D + κL)2
+ · · ·

(5.173) 
Introducing Eq. (5.173) into Eq. (2.90), we find that the first and second moments of 
MFPT are given by 

.<t (x0)> = x0
[
κL2 − x0(D + κL) + 2DL

]

2D(D + κL)
and (5.174)
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. <t2(x0)> = L3x0
(
8D2+5DLκ+L2κ2

)−2Lx3
0(D+Lκ)(2D+Lκ)+x4

0(D+Lκ)2

12D2(D + Lκ)2
.

(5.175) 

These results reduce correctly to the first and second moments of mean first-passage 
time for (a) the absorbing-absorbing system when .κ → ∞ and (b) the absorbing-
reflecting system when .κ = 0. 

5.8.3 Probability Density and Splitting Probability 

To calculate the probability density and the splitting probability, we need to know 
the flux at the boundaries. From Eqs. (5.60) and (5.170), we have that the fluxes in 
the Laplace space at the endpoints are 

.J (0, s|x0) = −
sinh

[/
s
D

(x0 − xθ )
]

sinh
(/

s
D

xθ

) and (5.176) 

.J (L, s|x0) =
cosh

[/
s
D

(L − xθ )
]
sinh

(/
s
D

x0

)

sinh
(/

s
D

xθ

) . (5.177) 

If Eq. (5.63) is used to find the probability density of first-passage time in Laplace’s 
space, we find 

. ϕ(s|x0) =
cosh

[/
s
D

(L − xθ )
]
sinh

(/
s
D

x0

)
− sinh

[/
s
D

(x0 − xθ )
]

sinh
(/

s
D

xθ

) .

(5.178) 
The schematic representation of Eq. (5.178) is shown in Fig. 5.18. 

Finally, the splitting probability of the system is computed through Eq. (5.66). 
By expanding the corresponding flux in Taylor series, we have 

. 

J (0, s|x0) =
(
1 − κx0

D + Lκ

)

+ sx0
[
3(D+Lκ)2−2L

(
3D2+3DLκ+L2κ2

)−x2
0κ(D+Lκ)

]

6D(D+Lκ)2
+· · ·

(5.179) 
and
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Fig. 5.18 Schematic representation of the probability density of mean first-passage time, 
Eq. (5.178), for different values of the trapping rate . κ: .κ = 0.2 (blue), .κ = 0.4 (yellow), . κ = 0.6
(green), and .κ = 1.0 (orange). The initial position, system length, and diffusivity are .x0 = 0.5, 
.L = 1, and .D = 1, respectively 

.J (L, s|x0) = κx0

D + Lκ
+ s

[
x3
0κ(D + Lκ) − L2κ(3D + Lκ)

]

6D(D + Lκ)2
, (5.180) 

and after evaluating these expressions at .s = 0, we find that 

.θ0(x0) = 1 − x0κ

D + Lκ
and θL(x0) = x0κ

D + Lκ
. (5.181) 

Representative plots of Eq. (5.181) are shown in Fig. 5.19. 

5.9 Partially Absorbing-Partially Absorbing 

In this section, we describe a diffusing particle in a partially absorbing-partially 
absorbing system. The technique outlined here is the same one we used in the 
last two sections. The reader will be able to appreciate the advantage of using the 
Laplace phase method. 

Consider a particle diffusing along the domain .o ∈ [0, L] in the presence of two 
partially absorbing endpoints, one at .x = −L and another one at .x = L, as shown  
in Fig. 5.20. The BCs of this system are Neumann BCs, given by 

. 

J(x, t |x0) · n̂L

||
x=−L

= D
∂p(x, t |x0)

∂x

||||
x=−L

= κL p(−L, t |x0) and

J(L, t |x0) · n̂R

||
x=L

= −D
∂p(x, t |x0)

∂x

||||
x=L

= κR p(L, t |x0),
(5.182)
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Fig. 5.19 Representative plots of the splitting probability of the absorbing-partially absorbing 
system, Eq. (5.181), for different values of the trapping rate . κ: .κ = 0.1 (blue line), . κ = 0.3
(yellow line), .κ = 0.5 (green line), and .κ = 10.0 (orange line). The system length is .L = 1, and  
the diffusion coefficient is . D = 1

Fig. 5.20 Schematic representation of a one-dimensional domain with two partially absorbing 
endpoints (yellow circles), one at .x = −L and the other at . x = L

where . κL and . κR are the trapping rates associated with the partially absorbing target 
at .x = −L and .x = L, respectively, and .n̂L = −êi and .n̂R = êi , which represent 
the unit normal vectors to their respective boundaries. 

5.9.1 The Laplace Transform Solution 

Again, we approach this problem starting with the subsidiary equation for the 
diffusion equation, namely, 

.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2 , (3.36) 

and the Laplace transform of the BCs in Eq. (5.182), which are given by 

. D
∂p(x, s|x0)

∂x

||||
x=−L

= κL p(−L, s|x0) and

−D
∂p(x, s|x0)

∂x

||||
x=L

= κR p(L, s|x0). (5.183)
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Since we already found the solution for the right-hand side of the absorbing-partially 
absorbing system, Eq. (5.164), let us assume that the propagator is given by 

.p(x, s|x0) =

⎧
⎪⎨

⎪⎩

A sinh
[/

s
D

(x − xα)
]
, for x < x0

B sinh
[/

s
D

(x − xθ )
]
, for x > x0.

(5.184) 

We compute the closed form of . xα and . xθ with the BCs for each of the endpoints 
the same way we did to find Eqs. (5.147) and (5.166), using the BCs, yielding 

. xα = −
[
L +

/
D

s
arctanh

(√
sD

κL

)]
and xθ = L +

/
D

s
arctanh

(√
sD

κR

)
.

(5.185) 

On the other hand, constants . A and . B are found using the continuity and disconti-
nuity equations, i.e., Eqs. (3.39) and (3.42), leading to 

. A =
sinh

[/
s
D

(x0 − xθ )
]

√
sD sinh

[/
s
D

(xα − xθ )
] and B =

sinh
[/

s
D

(x0 − xα)
]

√
sD sinh

[/
s
D

(xα − xθ )
]

(5.186) 
Therefore, the solution of the propagator in Laplace’s space is 

. p(x, s|x0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sinh
[√

s
D

(x0−xθ )
]

√
sD sinh

[√
s
D

(xα−xθ )
] sinh

[/
s
D

(x − xα)
]
, for x < x0

sinh
[√

s
D

(x0−xα)
]

√
sD sinh

[√
s
D

(xα−xθ )
] sinh

[/
s
D

(x − xθ )
]

for x > x0.

(5.187) 
The time evolution of the propagator in real space .p(x, t |x0) is shown in Fig. 5.21. 

5.9.2 Survival Probability and Moments of First-Passage Time 

The survival probability in the Laplace space is obtained by integrating Eq. (5.187) 
along the entire domain. Then, the survival probability reads
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Fig. 5.21 Temporal evolution of the propagator .p(x, t |x0), Eq. (5.187). The trapping rates are 
.κL = 0.1, 10, 100 and .κR = 10. The initial position of Brownian particles, system length, and 
diffusivity are .x0 = 0.0, .L = 1, and .D = 1, respectively 

. 

S(s|x0) =
f L

−L

p(x, s|x0) dx

=
sinh

[/
s
D

(x0 + L − xα − xθ )
]

+ 2 sinh
[/

s
D

(xα − xθ )
]

2s sinh
[/

s
D

(xα − xθ )
]

−
sinh

[/
s
D

(x0 + L + xα − xθ )
]

− sinh
[/

s
D

(L − x0 + xα + xθ )
]

2s sinh
[/

s
D

(xα − xθ )
] .

(5.188) 
The first-passage time is calculated first by expanding the latter equation in a 

Taylor series around .s = 0 and then setting .s = 0. This process yields 

. <t (x0)> = 4D2L+2LκLκR(L2−x2
0)+DκL(3L−x0)(L+x0)+DκR(L−x0)(3L+x0)

2D [D(κL+κR)+2LκLκR]
.

(5.189) 
Representative plots of .S(s|x0) and .<t (x0)> in real space are depicted in Fig. 5.22.
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Fig. 5.22 Schematic representation of survival probability, Eq. (5.188), and the first-passage time, 
Eq. (5.189), for different values of the trapping rate . κL: .κL = 0.1 (blue line), .κL = 0.3 (yellow 
line), .κL = 0.5 (green line), .κL = 10.0 (orange line), and fixed .κR = 0.5. The starting position of 
the particles is set at .x0 = 0.0, the length is .L = 1, and the diffusion coefficient is . D = 1

5.9.3 Probability Density of MFPT and Splitting Probability 

To find the probability density of MFPT, we need to compute the flux at each of the 
endpoints. By using the Laplace transform of Eq. (5.60), we see that 

.J (−L, s|x0) =
cosh

[/
s
D

(L + xα)
]
sinh

[/
s
D

(x0 − xθ )
]

sinh
[/

s
D

(xα − xθ )
] and (5.190) 

.J (L, s|x0) =
cosh

[/
s
D

(L − xθ )
]
sinh

[/
s
D

(x0 − xα)
]

sinh
[/

s
D

(xθ − xα)
] . (5.191) 

Then, using Eq. (5.63), we obtain the probability density of MFPT in Laplace’s 
space, namely, 

. ϕ(s|x0)

=
cosh

[/
s
D

(L+xα)
]
sinh

[/
s
D

(x0−xθ )
]
−cosh

[/
s
D

(L−xθ )
]
sinh

[/
s
D

(x0−xα)
]

sinh
[/

s
D

(xα−xθ )
] .

(5.192) 

The schematic representation of Eq. (5.192) is shown in Fig. 5.23. 
Finally, the splitting probability of the system is obtained by expanding the 

corresponding flux in a Taylor series, namely, 

.J (L, s|x0) = κL [D + κR(L − x0)]

D(κL + κR + 2LκLκR)
+ · · · , (5.193)
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Fig. 5.23 Schematic representation of the probability density of mean first-passage time, 
Eq. (5.192), for different values of the trapping rate . κL: .κL = 0.1 (blue), .κL = 0.3 (yellow), 
.κL = 0.5 (green), and .κL = 10.0 (orange) and fixed .κR = 0.5. The initial position, system length, 
and diffusivity are .x0 = 0.0, .L = 1, and .D = 1, respectively
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Fig. 5.24 Characteristic plots of the splitting probability, Eqs. (5.195), for different values of the 
trapping rate . κL: .κL = 0.1 (blue line), .κL = 0.3 (yellow line), .κL = 0.5 (green line), . κL = 10.0
(orange line), and fixed .κR = 0.5. The system length is .L = 1, and the diffusion coefficient is 
. D = 1

and 

.J (−L, s|x0) = κR [D + κL(L + x0)]

D(κL + κR) + 2LκLκR

+ · · · . (5.194) 

Therefore, the splitting probability is 

. θ−L(x0) = κL [D + κR(L − x0)]

D(κL + κR + 2LκLκR)
and θL = κR [D + κL(L + x0)]

D(κL + κR) + 2LκLκR

.

(5.195) 
If we want to recover the physical results of simpler systems, we need to study 
the limit cases of one or both of the trapping rates . κL and . κR after making the 
transformation .x0 → (L − x0) and .L → L/2. For instance, we could recover the 
splitting probability for the absorbing-partially absorbing system by making . κL →
∞ in Eqs. (5.195). Characteristic plots of .θ−L and . θL are shown in Fig. 5.24.
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5.10 Concluding Remarks 

In this chapter, we extensively solved the diffusion equation in one dimension, when 
diffusion takes place in a finite domain, by means of the separation of variables 
method and the Laplace transform technique. One of the things we learned is that 
it is generally more practical to use the Laplace transform rather than the Fourier 
transform, because the propagator may be expressed as a single function instead of 
an infinite series. On the other hand, the huge advantage of using the separation of 
variables method is that the propagator is obtained in the time domain. In contrast, 
it is rarely possible to invert an equation from Laplace’s space to time. Nevertheless, 
we can use numerical methods to make this inversion, such as the Gaver-Stehfest 
method. 

Although we solved all the possible boundary condition combinations, in order to 
extensively discuss each of their physical properties, we can ultimately summarize 
all our solutions in the one obtained in Sect. 5.9 for the partially absorbing-partially 
absorbing system. 

5.A Numerical Laplace Inversion: Gaver-Stehfest Method 

As the reader may already know, and from our experience in Chap. 5, the Laplace 
transform plays a significant role in mathematical applications and physics. More-
over, it is a powerful tool for solving and analyzing linear differential equations. 
Unfortunately, it is oftentimes impossible to analytically find the inverse Laplace 
transform function, thereby necessitating a numerical approach. There are several 
numerical algorithms in the literature, and each individual method has its own 
applications and is suitable for particular types of functions. In this book, we use 
a very robust approximation, the so-called Gaver-Stehfest method. 

In order to accomplish a numerical Laplace inversion, we define a new complex 
variable .z ≡ st and rewrite the Bromwich integral, i.e., 

.f (t) = L−1{f̂ (s)} = 1

2πi
lim

T →∞

f γ+iT

γ−iT

est f̂ (s) ds, (A.54) 

as follows: 

.f (t) = 1

2πit
lim

T →∞

f γ+iT

γ−iT

f̂
(z

t

)
ez dz. (5.196) 

Now, we approximate the exponential as a rational function 

.ez ≈
nΣ

k=0

wk

αk − z
, (5.197)
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where . wk and . αk are complex numbers, called weights and nodes, respectively. 
Substituting this approximation into Eq. (5.197), and applying the Cauchy integral 
formula given by Eq. (3.123), yields 

.f (t) ≈ 1

t

nΣ

k=0

wk f̂
(αk

t

)
. (5.198) 

This last equation approximates the inverse Laplace transform by a linear combina-
tion of transform values. 

The Gaver-Stehfest approximation is based on a probabilistic derivation and 
considers the case where .f (t) is real-valued and weights and nodes are real. Finally, 
this algorithm approximates the time domain solution given by Eq. (5.198), using  
the following equation: 

.f (t) = ln(2)

t

nΣ

k=1

wk f̂
(αk

t

)
, (5.199) 

with .αk = k ln(2), and 

.wk = (−1)k+ n
2

min(k, n
2 )Σ

j=L k+1
2 ]

j
n
2 (2j)!(

n
2 − j

)
! j ! (j − 1)! (k − j)! (2j − k)!

, (5.200) 

where n is the number of terms used and .Lx] is the floor function, which gives the 
greatest integer less than or equal to x. The precision of this method depends on 
the parameter n and must be an even integer between 4 and 20, which should be 
chosen by trial and error. If n rises, the accuracy of results will initially increase, 
but will later decline due to round-off errors. It is worth noting that this method 
is easy to implement and very accurate when exponential functions are involved. 
This method may fail for functions with oscillatory behavior in the time domain. 
Listing 5.1 shows the method implemented in Mathematica. 

Listing continued on next page 

Listing 5.1 [Gaver-Stehfest.nb]: Mathematica’s implementation of the 
Gaver-Stehfest method to find numerically the inverse Laplace transform, 
where f is the function to invert, t is the time to be evaluated, and n is the 
number of terms used. The number n should be an even integer between 4 
and 20

 1 csteh[n_, k_] = (-1)^(k + n) Sum[
 2 j^(n/2) (2j)! / (
 3 (n/2 - j)! j! (j-1)! (k-j)! (2j-k)!
 4 ), 
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Listing continued from last page 

Listing ended

 5 {j, Floor[(k+1) / 2], Min[k, n/2]}
 6 ];
 7
 8 NLInvSteh[f_, s_, t_, n_] := Log[2] / t Sum[
 9 csteh[n, k] f /. s -> k Log[2] / t,
 10 {k, 1, n}
 11 ] // N 

When using a numerical method, it is always a good idea to compare your results 
with well-known results. To such end, we compared the numerical values obtained 
by applying the Gaver-Stehfest method to equation 

.f (s) = 1√
s + √

s + 1
, (5.201) 

with its analytical inverse Laplace transform, given by 

.f (t) = 1 − e−t

√
2πt3

. (5.202) 

Figure 5.25 illustrates how the numerical and exact solutions compare, while 
Listing 5.2 shows the Mathematica code needed to generate a table of inverted 
values. The tests performed show an excellent agreement between the numerical 
method and the exact analytical solution, with an error of less than 0.5% along the 
entire range. 

Fig. 5.25 The numerical 
solution of Eq. (5.201) 
obtained by using the 
Gaver-Stehfest method (red 
circles) is compared to the 
exact solution (blue line) 
given by Eq. (5.201) 
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Listing 5.2 [Gaver-Stehfest-Example.nb]: Mathematica’s code to gen-
erate the table of numerical values obtained by the inverse Laplace transform 
applying the Gaver-Stehfest method to Eq. (5.200) (red hollow dots in 
Fig. 5.25). The table is calculated from t = 0 to 10, with steps equal to 
0.2

 1 Table[
 2 {
 3 t,
 4 NLInvSteh[1 / ( Sqrt[s] + Sqrt[s + 1] ), s, t 

, 20]
 5 },
 6 {t, 1, 10, 0.20}
 7 ] 8 

Further Reading and References 

C. Constanda, Solution Techniques for Elementary Partial Differential Equations (Chapman & 
Hall/CRC, New York, 2010)



Chapter 6 
Diffusion in the Presence of a Force Field 

In this chapter, we derive the diffusion equation for the case when an external or 
internal force on each of the diffusing particles is applied. This equation is referred 
to in the literature as the Smoluchowski. equation, which is fundamental in the study 
of stochastic dynamics, as it can be applied to a number of problems related to 
physics and chemistry. Moreover, it plays a key role in biology because the most 
ubiquitous mode of transport into the cell is diffusion subject to external forces. 
These forces, among others, might be due to an electric field or a centrifugal force, 
or even result of two-body interactions, once they are derivable from a potential. 

It is worth remembering that the symmetric property in x and . x0 of the propagator 
.p(x, t |x0) in the standard diffusion equation has an important consequence: the 
forward and backward diffusion equations are identical. Although this condition in 
the presence of a force is no longer true, the backward Smoluchowski equation can 
be found in terms of the forward Smoluchowski equation. Moreover, the backward 
operator, .L†(x0), will be shown to be the adjoint operator of the forward operator, 
.L(x). 

6.1 The Smoluchowski Equation 

To generalize the diffusion equation incorporating a force .F(x, t), let us break down 
the total flux into the sum of two terms: 

.J (x, t) = Jdiffusion(x, t) + Jdrift(x, t). (6.1) 

On the one hand, the flux due to diffusion is given by Fick’s first law, Eq. (2.73). 
On the other hand, recalling the flux definition in fluid dynamics, we know that this 
quantity is proportional to concentration and net drift velocity, in turn due to the 
analogy between probability density and concentration. This reasoning leads to 
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.Jdrift(x, t) = v(x, t) p(x, t). (6.2) 

From experimental evidence, we know that net drift velocity and force are 
directly proportional, where the proportionality constant is mobility . μ. Thus, 
.v(x, t) = μF(x, t). This relation can be derived in terms of the conservation of the 
particle’s momentum: the frictional force balanced with the external force. Then, the 
momentum .F(x) ∆t gained by the particle from the external force at time . ∆t should 
be equal to the momentum lost through the frictional force given by .−ζ v(x, t)∆t , 
where . ζ is the friction coefficient. Because mobility is defined as the inverse of the 
friction coefficient, we recover Eq. (6.2). Rewriting the total flux given by Eq. (6.1), 
using Eq. (6.2), and Fick’s first law, leads to 

.J (x, t) = −D
∂p(x, t)

∂x
+ μF(x) p(x, t). (6.3) 

If the force is derivable from a time-independent potential, .U(x), which is only 
dependent on position, then the last equation can be written as 

.J (x, t) = −D

[
∂p(x, t)

∂x
+ μ

D

dU(x)

dx
p(x, t)

]
. (6.4) 

For such a potential, there is an equilibrium probability density .peq(x) ∝ e−βU(x), 
where .β = 1/kβT , . kβ is Boltzmann’s constant, and T is the absolute temperature. 
When time goes to infinity, .p(x, t) tends to .peq(x), and the flux must vanish. 
Then from Eq. (6.4), by taking the derivative with respect to x of the equilibrium 
probability density, we find 

.
dU(x)

dx
β e−βU(x) = μ

D

dU(x)

dx
e−βU(x), (6.5) 

and consequently, 

.μ = βD = 1

ζ
. (6.6) 

This last relation is referred to as the Smoluchowski-Einstein relation. The physical 
properties and consequences of this important result will be discussed in depth later, 
in Sect. 6.4. 

Introducing the Smoluchowski-Einstein relation, Eq. (6.6), into Eq. (6.4) leads 
us to the result 

.J (x, t) = −D

[
∂p(x, t)

∂x
+ β

dU(x)

dx
p(x, t)

]
. (6.7) 

Now, let us represent the flux in this last relation in a more compact way. To such 
end, we rewrite this last equation as follows:
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.J (x, t) = −D e−βU(x)

[
∂p(x, t)

∂x
eβU(x) + β

dU(x)

dx
p(x, t) eβU(x)

]
. (6.8) 

Now, using the chain rule for derivatives, the second term of the right-hand side can 
be written as 

.β
dU(x)

dx
p(x, t) eβU(x) = p(x, t)

deβU(x)

dx
. (6.9) 

By taking these relations into account, we find 

.J (x, t) = −D(x) e−βU(x) ∂

∂x

[
eβU(x) p(x, t)

]
. (6.10) 

It is worth noticing that we wrote the flux in a very general way, namely, we 
are assuming the possibility of a position-dependent diffusivity. Its usefulness will 
become clear later on. 

If we substitute Eq. (6.10) into the continuity equation, Eq. (2.71), we ultimately 
find the relation between the evolution of probability density and force by means of 
its potential, referred to as the Smoluchowski equation, namely, 

.
∂p(x, t)

∂t
= ∂

∂x

{
D(x) e−βU(x) ∂

∂x

[
eβU(x) p(x, t)

]}
. (6.11) 

In the absence of external or internal forces, the diffusion equation is recovered. 
Now, the Smoluchowski operator is defined as follows: 

.L(x) ≡ ∂

∂x
D(x) e−βU(x) ∂

∂x
eβU(x). (6.12) 

Accordingly, the Smoluchowski equation can be written as 

.
∂p(x, t)

∂t
= L(x) p(x, t). (6.13) 

The extrapolation of the Smoluchowski equation to higher dimensions is a 
straight-forward process accomplished by using the nabla operator, namely, 

.L(r) ≡ ∇ · D(r) · e−βU(r) ∇eβU(r), (6.14) 

where now .D(r) is a tensor. 
Before finishing the section, it is worth noting that the generalization to higher 

dimension of the flux is given by 

.J(r, t) = −D [∇p(r, t) + βp(r, t)∇U(r)] . (6.15)
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In fact, substituting this flux into conservation equation, Eq. (2.72), leads us to a 
useful form of the Smoluchowski equation, namely, 

.
∂p(r, t)

∂t
= D∇ · [∇p(r, t) + βp(r, t)∇U(r)] . (6.16) 

In the next section, we will derive the form of the backward Smoluchowski 
operator and its corresponding equation. 

6.2 The Backward Smoluchowski Equation 

In this section, we derive the backward Smoluchowski equation. To such end, the 
first step is to deduce the detailed balance condition, which can be found by means 
of Bayes’ theorem. 

Bayes’ theorem can be obtained from the definition of conditional probability 
.P(A|B): the probability of event A occurring, given that event B has already 
occurred, namely, 

.P(A|B) = P(A ∩ B)

P (B)
, (6.17) 

where .P(A ∩ B) is the probability of both A and B occurring. Similarly, 

.P(B|A) = P(A ∩ B)

P (A)
. (6.18) 

Solving for .P(A ∩ B) and substituting the result into Eq. (6.17), we arrive at  
Bayes’ theorem: 

.P(A|B) = P(B|A) P (A)

P (B)
. (6.19) 

Therefore, Bayes’ theorem for the conditional propagator reads 

.p(x, t |x0) dt = p(x0, t |x) dt p(x) dt

p(x0) dt
(6.20) 

or 

.p(x, t |x0) p(x0) = p(x0, t |x) p(x). (6.21) 

Introducing the equilibrium probability density, .peq(x) ∝ e−βU(x), in this last 
equation, we obtain the detailed balance condition, i.e.,
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.p(x, t |x0) e−βU(x0) = p(x0, t |x) e−βU(x). (6.22) 

Physically, the detailed balance is obtained when the equilibrium is imposed, i.e., 
when the flux is equal to zero. Consequently, from Eq. (6.10), we have  

.eβU(x0) p(x0, t |x) = eβU(x) p(x, t |x0). (6.23) 

This relation guarantees that, at equilibrium, there are no net fluxes between the 
arbitrary chosen points x and . x0. In other words, the probability flux from x to . x0 is 
exactly balanced by the probability flux from . x0 to x. Moreover, the detailed balance 
is a consequence of time reversibility of diffusion trajectories contributing to the 
propagator. What the principle of detailed balance states is that, in equilibrium, there 
is balance between any two pairs of states.1 The result is very powerful, because it 
applies not only to individual states but also to any grouping of them. It is worth 
noticing that if there are no external or internal forces, .p(x, t |x0) is symmetric in 
the variables x and . x0, the same condition that we used in Sect. 2.6 to derive the 
backward diffusion equation. 

In order to obtain the backward Smoluchowski equation, let us rewrite Eq. (6.22) 
as 

.p(x0, t |x) = p(x, t |x0) e−β[U(x0)−U(x)]. (6.24) 

We already know that the propagator satisfies the forward Smoluchowski equation, 
namely, 

.
∂p(x0, t |x)

∂t
= L(x0) p(x0, t |x). (6.25) 

Now, applying the detailed balance condition to both sides of this last equation 
yields 

. 
∂

∂t

{
p(x, t |x0) eβU(x) e−βU(x0)

}
= L(x0)

{
p(x, t |x0) eβU(x) e−βU(x0)

}
,

(6.26) 

which is reduced to 

.
∂p(x, t |x0)

∂t
= eβU(x0) L(x0)

{
e−βU(x0) p(x, t |x0)

}
. (6.27) 

From Eq. (6.27), we can define the backward Smoluchowski operator as

1 Detailed balance as a consequence of the reversibility of collisions, where at equilibrium each 
collision is equilibrated by the reverse collision, was introduced in 1872 by Ludwig Eduard 
Boltzmann. He used it in the proof of the H-theorem. 
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.L†(x0) ≡ eβU(x0) L(x0) e
−βU(x0), (6.28) 

which can be finally written as follows: 

.L†(x0) = eβU(x0)
∂

∂x0
D(x0) e−βU(x0)

∂

∂x0
. (6.29) 

Consequently, 

.
∂p(x, t |x0)

∂t
= L†(x0) p(x, t |x0). (6.30) 

It is worth noticing that Eq. (6.29) is the adjoint operator of (6.12) evaluated at 
.x = x0.2 Lastly, we find that the Smoluchowski backward equation with position-
dependent diffusivity is given by 

.
∂p(x, t |x0)

∂t
= eβU(x0)

∂

∂x0

[
D(x0) e−βU(x0)

∂

∂x0
p(x, t |x0)

]
. (6.31) 

Comparing Eqs. (6.12) and (6.29), the reader can verify that if .U(x) is constant, 
both operators coincide. A simple example that we can study is when the force is 
constant in space and time, F , namely, .U(x) = −Fx. If the velocity is proportional 
to this force by means of mobility, then .U(x) = −v x/(βD). Thus, the backward 
and forward operators become 

.L(x) = D
∂2

∂x2 − v
∂

∂x
(6.32) 

and 

.L†(x0) = D
∂2

∂x2
0

+ v
∂

∂x0
, (6.33) 

respectively. The former recovers the Fokker-Planck equation, Eq. (2.12), which 
will be solved in detail in the following sections. For purposes of simplicity, in this 
example, we set diffusivity as a quantity that is independent of position.

2 See Appendix 6.A for further details on the adjoint operator of the Smoluchowski operator. 
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6.3 Survival Probability and the Moments of MFPT in the 
Presence of a Force Field 

To obtain the evolution equation for the survival probability and moments of mean 
first-passage time (MFPT), in the presence of a force field, we will follow the 
techniques outlined in Sect. 2.6. Nevertheless, in this case, we start by integrating 
Eq. (6.30) with respect to x over the domain .[0, L]; considering two absorbing 
endpoints placed at .x = 0 and .x = L, we find that the evolution equation for 
survival probability is given by 

.
∂S(t |x0)

∂t
= L†(x0) S(t |x0). (6.34) 

To obtain the relation with the MFPT, we multiply this last equation by .ntn−1 and 
integrate with respect to t , namely, 

.

∫ ∞

0
ntn−1 ∂S(t |x0)

∂t
dt =

∫ ∞

0
ntn−1 L†(x0) S(t |x0)dt. (6.35) 

By performing the integrals, we finally find that .〈tn(x0)〉 must satisfy 

.L†(x0)〈tn(x0)〉 = −n〈tn−1(x0)〉. (6.36) 

The equations can be solved sequentially starting from the first moment, .n = 1, 
for which the equation reads 

.L†(x0)〈t (x0)〉 = −1. (6.37) 

Substituting the definition for the Smoluchowski backward operator, given by 
Eq. (6.33), leads to 

.
∂

∂x0

[
D(x0) e

−βU(x0)
∂

∂x0
〈t (x0)〉

]
= −e−βU(x0). (6.38) 

In the absence of bias, and setting the diffusivity to a constant, we recover Eq. (2.64). 
The reader can easily extend this equation to higher dimensions using the nabla 
operator. 

6.4 Fluctuation-Dissipation Theorem 

The fluctuation-dissipation theorem states that the linear response of a given system 
to an external perturbation is expressed in terms of fluctuation properties of the 
system in thermal equilibrium. This theorem is a powerful tool in statistical physics
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and is used to predict the behavior of systems that obey detailed balance conditions. 
In particular, for Brownian motion, we find that 

.D = 1

ζ
kBT , (6.6) 

where . kB is the Boltzmann constant and T the absolute temperature. From this 
relation, we have that random impacts with surrounding molecules generally cause 
two types of effects: a) they act as a random driving force on the Brownian particle, 
and b) they produce frictional force for imposed motion. This means that the 
frictional and the random forces must be related, because both have the same origin. 
This relationship between the systematic and the random parts of microscopic forces 
is one example of the fluctuation-dissipation theorem. One property worthy of notice 
is that friction dissipates energy, i.e., it converts mechanical work into thermal 
energy. 

The Smoluchowski-Einstein relation also provides a useful formula to estimate 
the diffusion coefficient of microscopic particles moving through a fluid, which has 
important theoretical implications. 

Using the Stokes formula, .ζ = 6πηR (derivation of this relation is given in 
Appendix 23.A) for a spherical particle of radius R in a fluid of viscosity . η, Eq.  
(6.6) becomes the Stokes-Einstein-Sutherland relation,3 namely, 

.D = kBT

6πηR
. (6.39) 

After substituting this relation into the diffusivity definition for an isotropic fluid in 
three dimensions, given by Eq. (2.18), we arrive at  

.〈∆r2(t)〉 = kBT

3πηR
t. (6.40) 

In 1909, using this relation, J. B. Perrin estimated the Boltzmann constant and the 
radius of a molecule suspended in water. It should be mentioned that this relation 
served as a verification of the existence of atoms and molecules, which was still not 
fully accepted at that time. 

To illustrate the utility of Eqs. (6.39) and (6.40), we use them to calculate 
the diffusivity and the mean square displacement for the protein myoglobin in 
water at room temperature, .T = 300K. The Boltzmann constant is . 1.381 ×
10−16 cm2 g s−2 K−1, therefore (.300 K) kB = 4.143 × 10−14 cm2 g s−2. The  
values of the radius of myoglobin and the viscosity of water at room temperature 
are .1 × 10−2 g cm−1 s−2 and .20 × 10−8 cm, respectively. Substituting all of these

3 The reader interested in the derivation of this formula can consult the book of Landau and Lifshitz 
Fluid Mechanics 1975. 
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values into Eqs. (6.39) and (6.40), we obtain .D = 1.098 × 10−6 cm2 s−1 and 
.〈∆r2(t)〉 = 2.198 × 10−6 cm s−1. 

The densities for different proteins are practically the same because they are 
comprised of the same amino acids, which are comprised of similar chemical 
groups. Then, for spherical proteins, the relation between their ratio and molecular 
weight (M) is  .R ∝ 3

√
M . Thus, their diffusivity is inversely dependent on the cube 

root of molecular weight. 
Regarding friction forces, we have that the friction force is larger for non-

spherical molecules than for a spherical molecule with the same M . For prolate 
spheroid shapes (like an American football) and oblate ellipsoidal shapes (disk-
like), characterized by a long-axis length a and a short-axis length b, their values 
are only moderately sensitive compared to spherical shapes up to .a/b ≈ 6. The  
increased friction when .a/b > 6 seems counterintuitive, as one would think that the 
motion along the direction of the long axis would be facilitated. While this is true, 
the direction of motion is random, and the molecules also move in the direction of 
the short axis and in every other direction as well. Ultimately, the observed friction 
accounts for average motion over all directions. 

6.5 Diffusion in a Linear Potential: Constant Drift 

In this section, we will solve the Smoluchowski equation with constant drift given 
by the uniform force, .F = v/(βD), by means of different mathematical techniques. 
First, we will solve it using a reduction method, first reducing the Smoluchowski 
equation to a diffusion-like equation by defining two auxiliary functions, and then 
using the Fourier and Laplace transforms. 

As shown in Sect. 6.1, the diffusion equation in the presence of an external 
force is given by Eq. (6.11). Then, by substituting the potential . U(x) = −Fx =
−vx/(βD) into Eq. (6.11), and setting diffusivity as a constant, we find 

.
∂p(x, t)

∂t
= D

∂

∂x

{
exp

(vx

D

) ∂

∂x

[
exp

(
−vx

D

)
p(x, t)

]}
. (6.41) 

The solution to this last equation can be written in terms of the propagator in the 
absence of an external force. In order to accomplish this task, we have to apply two 
reductions. Firstly, we rewrite the propagator as 

.p(x, t |x0) = exp
( vx

2D

)
ψ(x, t |x0), (6.42) 

which makes it possible to rewrite Eq. (6.41) as a Fokker-Planck-like equation, 
namely,
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.
∂ψ(x, t |x0)

∂t
= D

∂2ψ(x, t |x0)
∂x2

− v2

4D
ψ(x, t |x0). (6.43) 

The second step is defining the function 

.q(x, t |x0) ≡ exp

(
v2t

4D

)
ψ(x, t |x0), (6.44) 

which allows us to write Eq. (6.43) as a diffusion-like equation, namely, 

.
∂q(x, t |x0)

∂t
= D

∂2q(x, t |x0)
∂x2 . (6.45) 

Now, we have to solve this diffusion equation subject to an appropriate initial 
condition. Since .p(x, 0|x0) = δ(x − x0), using Eqs. (6.42) and (6.44), the initial 
condition on .q(x, t |x0) is 

.δ(x − x0) = exp

(
−v2t

4D
+ vx

2D

)
q(x, 0|x0). (6.46) 

Following the method outlined in Sect. 3.1, we solve  Eq.  (6.45) subject to the initial 
conditions given in (6.46), by means of the Fourier transform, leading to 

.q(x, t |x0) = 1√
4πDt

exp

[
− (x − x0)

2 + 2x0 v t

4Dt

]
. (6.47) 

Substituting this last equation into Eq. (6.42) and the resulting expression into Eq. 
(6.44), the final result is 

.p(x, t |x0) = 1√
4πDt

exp

[
− (x − x0 − vt)2

4Dt

]
. (6.48) 

The variance generated by this propagator is 2Dt , the same as in free diffusion. 
Meanwhile, the mean, .〈x0(t)〉 = x0 + vt , is modified by the force as a drift with 
constant velocity. This equation reduces to Eq. (3.29) when .v = 0. The evolution of 
this propagator in space and time is depicted in Fig. 6.1. 

6.5.1 Diffusion with Constant Drift Revisited: Integral 
Transforms 

Integral transforms offer an alternative approach when solving problems of diffusion 
in the presence of a force field. In this subsection, we provide the solution to the 
Smoluchowski equation with a constant drift using Fourier and Laplace transforms.
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Fig. 6.1 Time evolution of the propagator .p(x, t |x0) in the presence of a constant drift, Eq. (6.48), 
at different times. The initial position, system length, and diffusivity are .x0 = 0.5, .L = 1, and  
.D = 1, respectively. The velocity drag is set at .v = 4, which is giving the tail effect at the end of 
the domain 

6.5.1.1 Fourier Transform 

Equation (6.41) is the result of implementing the potential . U(x) = −vx/(βD)

into Eq. (6.12). By differentiating with respect to x, as indicated in the general 
expression, we ultimately find the following relation: 

.
∂p(x, t |x0)

∂t
= D

∂2p(x, t |x0)
∂x2 − v

∂p(x, t |x0)
∂x

, (6.49) 

which is the classical diffusion equation with drift: the Fokker-Planck equation. The 
extrapolation of this last equation to higher dimensions is accomplished by means 
of the del4 (. ∇) and Laplace (.∇2 ≡ ∇ · ∇) operators, namely, 

.
∂p(r, t |r0)

∂t
= D ∇2p(r, t |r0) − v · ∇p(r, t |r0), (6.50) 

where . r is the position vector, . r0 the initial position of the particle, and . v the drag 
velocity vector. Considering the three-dimensional problem, we refer to Chap. 2 to 
conclude that 

.D ≡ lim
∆r→0
∆t→0

(∆r)2

6∆t
(2.19)

4 Sometimes called nabla. 
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together with 

.v ≡ − lim
∆r→0
∆t→0

(a − b)
∆r
3∆t

, (6.51) 

referring to an isotropic fluid. 
Now, by Fourier transforming Eq. (6.49), using Eqs. (A.52), we arrive at  

.

∂p(x, t |x0)
∂t

= −D k2p(k, t |x0) + ikv p(k, t |x0)

= (−D k2 + ikv) p(k, t |x0).
(6.52) 

The solution of the resulting ordinary differential equation (ODE) is computed, i.e., 

.p(k, t |x0) = p0 exp
[(

−D k2 + ikv
)

t
]
. (6.53) 

Then, we need to apply the initial condition, namely, 

.p(k, t = 0|x0) =
∫ ∞

−∞
δ(x − x0) e

ikx dx = eikx0 . (6.54) 

Thus, .p0 = eikx0 , meaning that 

.p(k, t |x0) = exp
{[

−D k2 + ik(x0 + v)
]
t
}

. (6.55) 

By comparing Eqs. (3.13) and (6.55), we notice that we can reproduce Eq. (6.55) 
simply by making .x0 → x0 + vt . Thus, the process to inverse transform the last 
equation is basically the same as the one outlined in Sect. 3.1. Therefore, we can 
find the solution to our present problem by making .x0 → x0 + vt in Eq. (3.29), 
namely, 

.p(x, t |x0) = 1√
4πDt

exp

[
− (x − x0 − vt)2

4Dt

]
. (6.56) 

6.5.1.2 Laplace Transform 

When using Laplace transforms, we need to apply the definition in (A.53) to Eq. 
(6.49). This process transforms the Fokker-Planck equation, Eq. (6.49), into the 
following:
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.s p(x, s|x0) − δ(x − x0) = D
∂2p(x, s|x0)

∂x2
− v

∂p(x, s|x0)
∂x

(6.57) 

or, equivalently, 

.D
∂2p(x, s|x0)

∂x2 − v
∂p(x, s|x0)

∂x
− s p(x, s|x0) = 0. (6.58) 

Let us propose the following solution: 

.p(x, s|x0) = A er(x−x0). (6.59) 

By substituting the propagator into the differential equation, we find the character-
istic equation associated with the problem, which is 

.D r2 − vr − s = 0. (6.60) 

The solutions to this second-order equation are 

.r1 = v + √
v2 + 4Ds

2D
and r2 = v − √

v2 + 4Ds

2D
. (6.61) 

It is important to note that .v2 + 4Ds is always greater than zero, which means that 
the correct solution is5 

.p(x, s|x0) =

⎧⎪⎨
⎪⎩
A er1(x−x0) for x < x0,

B er2(x−x0) for x > x0.

(6.62) 

We have to be careful when calculating the integration constants. The continuity 
condition in the starting position remains the same, i.e., 

.p(x, s|x0)
∣∣∣∣
x+
0

= p(x, s|x0)
∣∣∣∣
x−
0

. (3.39) 

Nevertheless, to find the joining condition, we need to integrate Eq. (6.58) from 
.x0 − ϵ and .x0 + ϵ, which lead us to

5 The reader should be aware of the relation between v and the .
√

v2 + 4Ds terms. Since D and s 
are always positive, we can assure that .v <

√
v2 + 4Ds. This implies that the solution for .x > x0, 

i.e., .B er2(x−x0), converges correctly at the limit .x → ∞. 
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. 

∫ x0+ϵ

x0−ϵ

s p(x, s|x0) dx −
∫ x0+ϵ

x0−ϵ

δ(x − x0) dx =D

∫ x0+ϵ

x0−ϵ

∂2p(x, s|x0)
∂x2

dx

− v

∫ x0+ϵ

x0−ϵ

∂p(x, s|x0)
∂x

dx.

(6.63) 

Then, taking the limit when .ϵ → 0, and considering the properties of the Dirac 
delta function, we arrive at 

. − 1

D
= ∂p(x, s|x0)

∂x

∣∣∣∣
x+
0

x−
0

− v p(x, s|x0)
∣∣∣∣
x+
0

x−
0

. (6.64) 

By applying the continuity equation on the propagator, we find that .A = B. 
Moreover, the discontinuity condition in Eq. (6.64) is reduced to6 

. − 1

D
= ∂p(x, s|x0)

∂x

∣∣∣∣
x+
0

− ∂p(x, s|x0)
∂x

∣∣∣∣
x−
0

, (3.42) 

leading us to 

.A = 1√
v2 + 4Ds

. (6.65) 

Thus, we can write a unique solution as 

.

p(x, s|x0) = er2|x−x0|
√

v2 + 4Ds
=

exp

⎡
⎣

(
v − √

v2 + 4Ds
)

|x − x0|
2D

⎤
⎦

√
v2 + 4Ds

(6.66) 

In order to make the inverse Laplace transform of .p(x, s|x0), let us make 

.s' = v2

4D
+ s. (6.67) 

Therefore, the inverse Laplace transform of the propagator, in terms of . s', is  

6 When combining the continuity and discontinuity equations, Eqs. (3.39) and (6.64), we see that 

the term .−v p(x, s|x0)
∣∣∣∣
x+
0

x−
0

is identically zero, since we are already requiring that the propagators 

at the left and at the right are the same when evaluated at .x = x0 from the first condition.
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. 

p(x, t |x0) = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

es't p(x, s'|x0) ds'

= 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

exp

(
s't − v2t

4D

)
p(x, s'|x0) ds'

= exp

(
−v2t

4D
+v|x−x0|

2D

)
1

2πi
lim

T →∞

∫ γ+iT

γ−iT

es't
exp

(
−

√
s'
D

|x−x0|
)

√
4Ds' ds'

= exp

(
−v2t

4D
+ v|x − x0|

2D

)
L−1

{
1√
4Ds' exp

(
−

√
s'
D

|x − x0|
)}

(6.68) 
In fact, we already computed the inverse transform in the latter equation (see Eq. 
(3.44)), and the result is given by Eq. (3.59). Thus, .p(x, t |x0) is 

.p(x, t |x0) = exp

(
−v2t

4D
+ v|x − x0|

2D

)
1√

4πDt
exp

[
− (x − x0)

2

4Dt

]
. (6.69) 

Finally, after rearranging the argument of the exponential, we arrive at 

.p(x, t |x0) = 1√
4πDt

exp

[
− (x − x0 − vt)2

4Dt

]
, (6.70) 

as we expected. 

6.6 Diffusion in a Harmonic Potential 

In this section, we solve the Smoluchowski equation in the presence of a harmonic 
potential, given by 

.U(x) = K

2
x2, (6.71) 

where K is the force or spring constant, subject to the initial condition . p(x, 0|x0) =
δ(x − x0). The forward Smoluchowski equation, Eq. (6.11), describing diffusion on 
such a potential is
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∂p(x, t |x0) 
∂t 

= D
[
∂2p(x, t |x0) 

∂x2 
+ βK x 

∂p(x, t |x0) 
∂x 

+ βK p(x, t |x0)
]

. 

(6.72) 

By following the same technique as in the previous section, we reduce this 
equation to a Fokker-Planck-like equation. In order to accomplish this task, we 

introduce the following dimensionless variables, .τ = DβKt and .ξ = (βK)
1
2 x, 

which transform Eq. (6.72) into 

.
∂p(ξ, τ )

∂τ
= ∂2p(ξ, τ )

∂ξ2
+ ξ

∂p(ξ, τ )

∂ξ
+ p(ξ, τ ), (6.73) 

subject to the initial condition .p(ξ, 0) = δ(ξ − ξ0), where .ξ0 = (βK)
1
2 x0. 

We will solve this equation by the Fourier transform technique. Note that the two 
last terms of the right-hand side in (6.73) can be written as 

.ξ
∂p(ξ, τ )

∂ξ
+ p(ξ, τ ) = ∂

∂ξ
[ξ p(ξ, τ )] , (6.74) 

which Fourier transform is calculated as follows: 

. 

F
{

∂

∂ξ
[ξ p(ξ, τ )]

}
=

∫ ∞

−∞
∂

∂ξ
[ξ p(ξ, τ )] eikξ dξ

=
∫ ∞

−∞

{
∂

∂ξ

[
ξ p(ξ, τ ) eikξ

]
− ikξ p(ξ, τ ) eikξ

}
dξ.

(6.75) 

Now, the first integral can be solved by observing that .p(ξ → ±∞) = 0, namely, 

.

∫ ∞

−∞
∂

∂ξ

[
ξ p(ξ, τ ) eikξ

]
dξ = ξ p(ξ, τ ) eikξ

∣∣∣∣
ξ→+∞

ξ→−∞
= 0. (6.76) 

From (6.75), we identify the second integral of the last equality as 

. − ik

∫ ∞

−∞
ξ p(ξ, τ ) eikξ dξ = −ik F {ξ p(ξ, τ )} = −ik

[
−i

∂p(k, τ )

∂k

]
,

(6.77) 

which was obtained using the relation (A.50). By using  (A.52) and substituting 
(6.77) into Eq. (6.73), we find that its Fourier transform is given by 

.
∂p(k, τ )

∂τ
= − k

∂p(k, τ )

∂k
− k2 p(k, τ ) (6.78)
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or, equivalently, 

.
∂p(k, τ )

∂τ
= − k e− k2

2
∂

∂k

[
e

k2
2 p(k, τ )

]
. (6.79) 

This equation can be reduced in terms of a new auxiliary function defined as 

.ψ(k, τ ) ≡ e
1
2 k2 p(k, τ ). By multiplying both sides of Eq. (6.79) by .e

1
2 k2 , we find 

that .ψ(k, τ ) satisfies 

.
∂ψ(k, τ )

∂τ
= − k

∂ψ(k, τ )

∂k
. (6.80) 

This last equation can be solved by the method of characteristics.7 To such end, 
we need to compare it with 

.a(k, τ )
∂ψ(k, τ )

∂k
+ b(k, τ )

∂ψ(k, τ )

∂τ
= 0, (6.81) 

from which we identify that .a(k, τ ) = k and .b(k, τ ) = 1. Then, the derivatives of 
the parameterized characteristics, using . η as the independent parameter, are 

. k'(η) = a(k(η), τ (η)) = k(η) and τ '(η) = b(k(η), τ (η)) = 1.
(6.82) 

Solving these last differential equations, we find that 

.k(η) = c1 e
η and τ(η) = η + c2, (6.83) 

where . c1 and . c2 are integration constants. The parameter . η can be removed equating 
these last expressions, namely, 

.k = c3 e
τ , (6.84) 

where .c3 = c1e
−c2 . Then, 

.k e−τ = c3 (6.85) 

defines a level curve, also called a characteristic, which allows us to write the general 
solution for Eq. (6.80) in terms of an arbitrary function f , namely,

7 The method of characteristics is a technique for solving partial differential equations. The method 
consists of reducing a partial differential equation (PDE) to a family of ordinary differential 
equations, their solution which can be integrated from certain initial conditions given on a suitable 
hyper-surface, rather than solving the original PDE. 
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.ψ(k, τ ) = f (ke−τ ). (6.86) 

Using the definition of . ψ , the Fourier transform of the propagator takes the form 

.p(k, τ ) = f (ke−τ ) e− 1
2 k2 . (6.87) 

This .f (ke−τ ) function can be found imposing the initial conditions into the 
Fourier transform of .p(ξ, τ ). Consequently, 

.p(k, τ = 0|ξ0) = e− k2
2 f (k) =

∫ ∞

−∞
δ(ξ − ξ0) eikξ dξ = eikξ0 , (6.88) 

or 

.f (k) = eikξ0+ k2
2 . (6.89) 

Substituting this last equation into Eq. (6.87), and evaluating it at .ke−τ , we obtain 
that the propagator’s Fourier transform takes on the following form: 

.p(k, τ ) = exp

[
−k2

2
(1 − e−2τ ) + ikξ0 e−τ

]
. (6.90) 

Using the definition of the inverse Fourier transform given by Eq. (A.48), we find 

.p(ξ, τ |ξ0) = 1

2π

∫ ∞

−∞
exp

[
−k2

2
(1 − e−2τ ) + ikξ0 e−τ

]
e−ikτ dk. (6.91) 

Inverting this transform using Eq. (A.51) yields 

.p(ξ, τ |ξ0) = 1√
2π(1 − e−2τ )

exp

[
− (ξ − ξ0e

−τ )2

2(1 − e−2τ )

]
. (6.92) 

To finish the derivation, we return to the original variables, x and t , and as a 
result, the propagator is given by 

.p(x, t |x0) =
√

βK

2π(1 − e−2βDKt )
exp

[
−βK(x − x0e

−βDKt )2

2(1 − e−2βDKt )

]
. (6.93) 

The evolution of this propagator in time and space is depicted in Fig. 6.2. Comparing 
this last equation with Eq. (3.73), we see that the expectation value of the position 
for this propagator approaches the Boltzmann distribution and is given by 

.〈x(t)〉 = x0e
−βDKt . (6.94)
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Fig. 6.2 Time evolution of the propagator .p(x, t |x0) in the presence of a harmonic potential, 
Eq. (6.93), at different times. The initial position, system length, and diffusivity are .x0 = 0.5, 
.L = 1, and  .D = 1, respectively. Meanwhile, .β = 1, and  the  characteristic factor K is set at 
. K = 15

It is worth noticing that the expression for the mean and mean-squared displacement, 
when t goes to infinity, are given by .〈x〉 = 0 and .〈x2〉 = kB T /K , respectively. This 
latter expression is consistent with the results of the equipartition theorem, i.e., 

.
1

2
K〈x2〉 = kBT

2
. (6.95) 

Contrarily, the mean displacement for short times, .t ⪡ 1/
√

Kβ, is given by . x0, 
which otherwise decreases exponentially to zero regardless of the starting position. 

On the other hand, the variance is given by .[1 − exp(−2βDKt)]/βK . This  
variance increases linearly as .DKβt when .t < 1/

√
Kβ, and then it reaches a plateau 

value equal to .kBT /K . Consequently, for long times, we conclude that Eq. (6.93) 
tends to a standard normal distribution.8 

6.7 Ionic Diffusion Through Membrane: The Nernst 
Potential 

Both the identities and quantities of the different ion species within cells are 
involved in signaling, energy storage, protein function, and other processes. Con-

8 A standard normal distribution, or z-distribution, is a normal distribution with zero mean (.μ = 0) 
and unit standard deviation (.σ = 1). Any normal distribution can be standardized. 
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sequently, one of the essential functions of the cell is regulated ion concentrations. 
These ionic placements within cells has to be controlled both spatially and tempo-
rally. To such end, there are whole families of proteins whose job is to either open 
or close pores in the membrane, allowing ions to enter or exit the cell. 

There are different classes of driving forces that can induce ion channels to 
change their open probability. This driving force can be the voltage applied across 
the membrane, mechanical effects by applying membrane tension, or concentration 
of ligands. Some ion channels open in response to specific ligands binding to the 
channels, for example, and consequently, the driving force is the concentration of 
ligands. 

Now, let us assume that the concentration of . K+ ions is high inside (i) the cell and 
low outside (o) the cell and that the cell membrane contains some open . K+ channels. 
Then, the concentration gradient provides a driving force for the translocation of . K+
ions from inside the cell to the outside through these channels. The translocation of 
these ions generates a voltage across the cell membrane, with the inside of the cell 
at negative electrical potential with respect to the outside. The cell membrane is 
said to be polarized. The flow of ions will stop when the drive to move outward, 
due to the concentration gradient, is balanced by the opposition generated by the 
voltage difference, .(Vo − Vi)ze, where z is the ion valence and e the unit electric 
charge (.e = 1.6×10−19C). The membrane potential at steady state is called the rest 
potential. 

To calculate the rest potential, we need to know the concentration at both ends of 
the channel. To such end, we simplify the ion channel’s shape by considering it as 
a cylinder. Then, the transport of ions through the channel can be approximated as 
a one-dimensional system. Recalling that the detailed balance applies in the steady 
state, the calculations are quite simplified. Therefore, multiplying Eq. (6.24) by the 
number of ions at both ends of the channel leads to (see Eq. (2.16)) 

.c(xi) = c(xo) e
−β[U(xi )−U(xo))]. (6.96) 

From this last equation, we have that the potential difference across the membrane, 
the so-called Nernst potential, is given by 

.∆U = kBT ln

(
c(xi)

c(xo)

)
, (6.97) 

where .∆U = [U(xo) − U(xi))], T is the temperature, and . kB is the Boltzmann 
constant. The value of the Boltzmann constant in joules per kelvin is . 1.380 649 ×
10−23m2 kg s−2 K−1. Equation (6.97) is an important consequence of the 
detailed balance, which indicates that a difference in concentration generates the 
rest potential. Equating Eq. (6.97) with .(Vo − Vi)e and setting the temperature at 
. 37 ◦C (310.15 K) lead to .kBT /e ≈ 27mV. Then, we can say that the difference 
in concentration scale corresponds to a 27 mV voltage potential difference. For a 
typical mammalian, skeletal muscle cells are at . 37 ◦C, and the extracellular and 
intracellular concentrations of sodium (.Na+) and potassium (. K+) ions are 145 and
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12 mM and 4 and 155 mM, respectively. Consequently, the rest potentials for . Na+
and . K+ are 67 and .−98mV, respectively. 

Lastly, it is worth emphasizing that according to Nernst equations, positive ions 
tend to move away from regions of positive potential and toward regions of negative 
potential. Negative charges move the opposite way. 

6.8 Concluding Remarks 

In this chapter, we have computed and derived the fundamental physical properties 
of diffusion in the presence of an external potential, which is independent of time. 
An important result is that the backward Smoluchowski operator is the adjoint 
operator of the forward Smoluchowski operator. We also found that for particles 
diffusing in a potential, detailed balance guarantees the absence of net fluxes at 
equilibrium. It is important to emphasize that the fluctuation-dissipation theorem 
states that the linear response of a given system to an external perturbation is 
expressed in terms of fluctuation properties of the system in thermal equilibrium. 

For the reader’s convenience, listed below are the most important equations to 
depict and define diffusion in the presence of a force field. 

. 
∂p(x, t)

∂t
= ∂

∂x

{
D(x) e−βU(x) ∂

∂x

[
eβU(x) p(x, t)

]}
.

(Smoluchowski forward equation) 

. 
∂p(x0, t)

∂t
= eβU(x0)

∂

∂x0

{
D(x0) e

−βU(x0)
∂

∂x0
p(x0, t)

}
.

(Smoluchowski backward equation) 

.L(x) = ∂

∂x
D(x) e−βU(x) ∂

∂x
eβU(x). (Smoluchowski forward operator) 

. L†(x0) = eβU(x0)
∂

∂x0
D(x0) e

−βU(x0)
∂

∂x0
.

(Smoluchowski backward operator) 

.
∂S(t |x0)

∂t
= L+(x0) S(t |x0). (Survival probability) 

.L+(x0)〈tn(x0)〉 = −n〈tn−1(x0)〉. (Moments of the MFPT)



192 6 Diffusion in the Presence of a Force Field

6.A The Adjoint Operator of the Smoluchowski Operator 

In order to determine the explicit form of the adjoint operator of the Smoluchowski 
operator, we first need to recall the formalisms of functional analysis. 

Consider a Hilbert space . H over a field .F ∈ {R,C}. If  T is a bounded linear 
operator on . H, there is a unique operator .T † ∈ H, such that 

.〈Tf, g〉 = 〈f, T †g〉 ∀ f, g ∈ H. (6.98) 

The operator . T † is called the adjoint operator of T . It is important to note that the 
angle notation in Eq. (6.98) represents the finite scalar product between . Tf and g 
on the left-hand side and between f and .T †g on the right-hand side. 

To find .L†(x), we require two arbitrary functions (propagators): .p(x, t |x0) and 
.q(x, t |x0). The space domain in this case is .Ω := (−∞,∞).9 Therefore, the scalar 
product of .L(x)p(x, t |x0) and .q(x, t |x0) is 

.〈L(x)p(x, t |x0), q(x, t |x0)〉 =
∫ ∞

−∞
L(x)p(x, t |x0)q(x, t |x0) dx, (6.99) 

where the bar on .q(x, t |x0) is denoting a complex conjugate. Substituting the 
Smoluchowski operator as shown in Eq. (6.12) into the latter equation leads to 

. 〈L(x)p(x, t |x0), q(x, t |x0)〉

=
∫ ∞

−∞
∂

∂x

{
D(x)e−βU(x) ∂

∂x

[
eβU(x)p(x, t |x0)

]}
q(x, t |x0) dx. (6.100) 

Integrating by parts yields 

. 〈L(x)p(x, t |x0), q(x, t |x0)〉 = q(x, t |x0)D(x)e−βU(x) ∂

∂x

[
e−βU(x)p(x, t |x0)

] ∣∣∣∣
∞

−∞

−
∫ ∞

−∞
D(x)e−βU(x) ∂

∂x

[
eβU(x)p(x, t |x0)

] [
∂

∂x
q(x, t |x0)

]
dx. (6.101) 

Based on the same physical requirements we used in Chap. 3, we set the probability 
of finding the particle at infinity at any finite time t as null. Thus, both propagators, 
.p(x, t |x0) and .q(x, t |x0), together with their derivatives vanish at such limit, 
meaning that

9 The reader must recognize the difference between Hilbert space . H and the space domain . Ω. 
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. 〈L(x)p(x, t |x0), q(x, t |x0)〉

= −
∫ ∞

−∞
D(x)e−βU(x) ∂

∂x

[
eβU(x)p(x, t |x0)

] [
∂

∂x
q(x, t |x0)

]
dx. (6.102) 

Now, by using the chain rule, we find that 

.
∂

∂x

[
eβU(x)p(x, t |x0)

]
= p(x, t |x0) ∂

∂x
(eβU(x))+eβU(x) ∂

∂x
p(x, t |x0), (6.103) 

a simple result that allows us to write the following equation: 

.

〈L(x)p(x, t |x0), q(x, t |x0)〉

= −
∫ ∞

−∞
D(x)p(x, t |x0) ∂

∂x

(
eβU(x)

)
e−βU(x) ∂

∂x
q(x, t |x0) dx

−
∫ ∞

−∞
D(x)eβU(x) ∂

∂x
p(x, t |x0) e−βU(x) ∂

∂x
q(x, t |x0) dx.

(6.104) 

It is helpful to calculate each of the integrals individually by defining 

.I5 ≡ −
∫ ∞

−∞
D(x)p(x, t |x0) ∂

∂x

(
eβU(x)

)
e−βU(x) ∂

∂x
q(x, t |x0) dx (6.105) 

and 

.I6 ≡ −
∫ ∞

−∞
D(x)eβU(x) ∂

∂x
p(x, t |x0) e−βU(x) ∂

∂x
q(x, t |x0) dx. (6.106) 

The integral . I5, when integrating by parts, becomes 

. 

I5 =

−
{[

p(x, t |x0)eβU(x)−
∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

}∞

−∞

+
∫ ∞

−∞

[
p(x, t |x0)eβU(x) −

∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]

∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx

(6.107) 

The first term of the latter equation is zero because of the behavior of the propagator 
and its derivatives at .±∞. Therefore,
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.

I5 =
∫ ∞

−∞

[
p(x, t |x0)eβU(x) −

∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]
∂

∂x[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx.

(6.108) 

Furthermore, the integral . I6 is computed in the same way, i.e., 

. I6 = −
∫ ∞

−∞
eβU(x) ∂

∂x
p(x, t |x0)

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx. (6.109) 

After integrating by parts, we have 

. 

I6 = −
[
D(x)eβU(x) ∂

∂x
q(x, t |x0)

∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]∞

−∞

+
∫ ∞

−∞

[∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]
∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx,

(6.110) 

which, similarly, reduces to 

. I6 =
∫ ∞

−∞

[∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]
∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx.

(6.111) 

Substituting Eqs. (6.108) and (6.111) into Eq. (6.104) yields 

. 

〈L(x)p(x, t |x0), q(x, t |x0)〉

= I5 + I6

∫ ∞

−∞
p(x, t |x0)eβU(x) ∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx

−
∫ ∞

−∞

[∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]
∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx

+
∫ ∞

−∞

[∫
eβU(x) ∂

∂x
p(x, t |x0) dx

]
∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx.

(6.112)
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Rearranging the last equation, we obtain 

. 〈L(x)p(x, t |x0), q(x, t |x0)〉

=
∫ ∞

−∞
p(x, t |x0) eβU(x)

∂

∂x

[
D(x)e−βU(x)

∂

∂x
q(x, t |x0)

]
dx.

(6.113) 

With the use of Eq. (6.98), we finally arrive, at10 

. 

〈L(x)p(x, t |x0), q(x, t |x0)〉

=
∫ ∞

−∞
p(x, t |x0) eβU(x) ∂

∂x

[
D(x)e−βU(x) ∂

∂x
q(x, t |x0)

]
dx

= 〈p(x, t |x0),L†(x)q(x, t |x0)〉

from which we can conclude that 

.L†(x) = eβU(x) ∂

∂x
D(x)e−βU(x) ∂

∂x
, (6.114) 

as stated in Eq. (6.29). 

Further Reading and References 

B. Cichocki (ed.), Marian Smoluchowski. Selected Scientific Works (Wydawnictwa Uniwersytetu 
Warszawskiego, Warsaw, 2017) 

L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1975) 
G.H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994)

10 The complex conjugate of the whole function inside the integral that multiplies .p(x, t |x0), 
together with the propagator .q(x, t |x0), is real. This is why, only in this specific case, we can 
ignore the complex conjugate operation. 



Chapter 7 
Trapping Particles Influenced by 
External Forces 

In the preceding chapter, we introduced fundamental physical properties of diffusion 
in the presence of an external potential by means of the Smoluchowski equation, 
Eq. (6.11), and worked out two examples of diffusion in the presence of a force 
field, specifically, the linear and harmonic potentials. In this chapter, we will study 
diffusion in the presence of an external field in semi-infinite, finite, and periodic 
systems. This extension has a significant number of applications, including studying 
the conduction pathway for selected ions to trasverse the membrane through ion 
channels in the presence of an external force, which is a critical and ubiquitous 
process in cells. Other examples are chromatography and electrophoresis, where 
the separation of molecular species is based on their size and electrical charge in 
the presence of a uniform electrical field. Moreover, an important approach for 
measuring the rate of motion of molecules is to create a continuous force that 
drives the motion in one direction in a centrifuge, which is used to measure the 
sedimentation coefficient that in turn allows us to measure the viscosity coefficient. 

7.1 Semi-infinite: Perfectly Absorbing Endpoint, 
U(x)  = −Fx  

In the present section, we assume that a constant force F acts on a diffusing particle 
in a semi-infinite one-dimensional domain . Ω with an absorbing wall at .x = 0. As  
we already know, this is equivalent to saying that the particle moves in the presence 
of a scalar potential .U(x) = −Fx, where a perfect absorbing point is placed at 
.x = 0. The description of the diffusion process in this case requires solving the 
Smoluchowski equation subject to the boundary condition (BC) .p(0, t |x0) = 0, for  
which purpose we use the method of images. The main idea behind this method is 
to find a solution in terms of a linear combination of propagator in free space in the 
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presence of a constant drift, Eq. (6.48), in such a way that the solution is canceled 
out at the origin. 

We start by writing the solution of the diffusion system with constant drift, given 
by Eq. (6.48), as follows: 

.p(x, t |x0) = 1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
exp

[
−v2t

4D
+ v(x − x0)

2D

]
. (6.48) 

The factor inside the brace brackets is actually the solution to the free-field and free-
space diffusing particle, which we obtained in Chap. 3 and renamed in Sect. 4.3.4 
as .pF (x, t |x0), namely, 

.pF (x, t |x0) = 1√
4πDt

exp

[
− (x − x0)

2

4Dt

]
. (3.29) 

Thus, the solution to the free-space diffusion with constant drift problem can be 
written as 

.p(x, t |x0) = exp

[
−v2t

4D
+ v(x − x0)

2D

]
pF (x, t |x0). (7.1) 

Now, we make the two transformations mentioned in Sect. 4.3.4 for the propagator 
to describe the image particle, i.e., we take the free-field propagator to negative 
values and move its starting position to .−x0, yielding .−pF (x, t |−x0). This process 
leads us to the propagator for the image particle subject to a constant drift, that is, 

.p(x, t |x0) = − exp

[
−v2t

4D
+ v(x − x0)

2D

]
pF (x, t | − x0). (7.2) 

Therefore, aiming to depict the semi-infinite system with a perfect absorbing 
endpoint at the origin, we add both contributions, Eqs. (7.1) and (7.2), yielding 

.p(x, t |x0) = exp

[
−v2t

4D
+ v(x − x0)

2D

]
[pF (x, t |x0) − pF (x, t | − x0)] , (7.3) 

a solution that satisfies the absorbing BC. By writing the last equation explicitly, 
and recalling that .v = μF = βDF , we finally find 

. p(x, t |x0)

= 1√
4πDt

{
exp

[
− (x − x0−μFt)2

4Dt

]
−e−βFx0 exp

[
− (x + x0 − μFt)2

4Dt

]}
.

(7.4)
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Fig. 7.1 Time evolution of the propagator .p(x, t |x0) of the semi-infinite system in the presence of 
a linear potential and an absorbing point at .x = 0, Eq.  (7.4), at different times. The initial position, 
system length, and diffusivity are .x0 = 0.5, .L = 1, and  .D = 1, respectively. Additionally, the 
force F and parameters . μ and . β are set to .F = 10 and . μ = β = 1

It is worth noting that when .F = 0, this propagator reproduces Eq. (4.31), as  
expected. The temporal evolution of Eq. (7.4) is depicted in Fig. 7.1. 

7.1.1 Survival Probability and First-Passage Time 

From the definition given in Eq. (2.30), the survival probability, .S(t |x0), is  
calculated by integrating Eq. (7.4) over the entire domain . Ω, i.e., .x > 0, namely, 

. S(t |x0)

= 1√
4πDt

∫ ∞

0

{
exp

[
− (x−x0−μFt)2

4Dt

]
−e−βFx0 exp

[
− (x+x0−μFt)2

4Dt

]}
dx.

(7.5) 

To perform the integration, we use Eq. (A.85), leading to 

.S(t |x0) = 1

2

[
erfc

(
−x0 + μFt√

4Dt

)
− e−βFx0erfc

(
x0 − μFt√

4Dt

)]
. (7.6) 

The survival probability, predicted by Eq. (7.6), is illustrated on the left-hand side 
of Fig. 7.2. In the case where .F = 0, Eq.  (7.6) reduces to Eq. (4.57), namely,
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Fig. 7.2 Survival probability predicted by Eq. (7.6) and probability density of mean first-passage 
time, Eq. (7.7), for different values of the external force: .F = 0 (blue line), .F = 1 (yellow line), 
.F = 2 (green line). In all cases, the starting position is set at .x0 = 0.5 and the constant coefficients 
are set equal to 1, i.e., . D = β = μ = 1

.S(t |x0) = erf

(
x0√
4Dt

)
. (4.57) 

This result follows from the properties of the error function. Explicitly, we use the 
identity (A.82) to obtain that .erfc(−x) − erfc(x) = 2 erf(x). 

The probability density of mean first-passage time is computed using Eq. (2.34), 
namely, 

.ϕ(t |x0) = −dS(t |x0)
dt

. (2.34) 

Therefore, using Eq. (A.86) for the derivative of .S(t |x0) with respect to t , we have  

.ϕ(t |x0) = x0√
4πDt3

exp

[
− (x0 + DFβt)2

4Dt

]
. (7.7) 

Representative plots of the probability density of mean first-passage time are shown 
on the right-hand side of Fig. 7.2. 

The first moment of mean first-passage time is calculated according to Eq. (2.41). 
Nonetheless, we have to be careful when integrating. It is appropriate to separate the 
computation into two cases, i.e., when .F < 0 and .F > 0. For positive forces, the 
process is straightforward: 

.

〈tF>0(x0)〉 =
∫ ∞

0
t

{
x0√

4πDt3
exp

[
− (x0 + DFβt)2

4Dt

]}
dt

=
∫ ∞

0

x0√
4πDt

exp

[
−

(
x0 + DFβt√

4Dt

)2
]
dt.

(7.8)
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Using the change of variables .u = √
4Dt , we are able to write it as 

.〈tF>0(x0)〉 = x0

2D
√

π

∫ ∞

0
exp

⎡
⎢⎣−

⎛
⎝x0 + Fβu2

4

u

⎞
⎠

2
⎤
⎥⎦ du. (7.9) 

Then, by making a series of the binomial factor inside the exponential and keeping 
terms up to the second order in u, we arrive at  

.〈tF>0(x0)〉 = x0

2D
√

π
e−Fβx0/2

∫ ∞

0
exp

(
−x2

0

u2
− F 2β2u2

16

)
du. (7.10) 

Using Eq. (A.13) to solve the integral, we arrive at 

.〈tF>0(x0)〉 = e−Fβx0

DFβ
x0. (7.11) 

Similarly, we obtain the first moment of mean first-passage time for negative forces. 
In this case, the integral that we have to compute is the following: 

.〈tF<0(x0)〉 =
∫ ∞

0

x0√
4πDt

exp

[
−

(
x0 − D|F |βt√

4Dt

)2
]
dt, (7.12) 

and through the same process, we find that 

.

〈tF<0(x0)〉 = e|F |βx0

2D
√

π
x0

⎡
⎣1

2

√
π

F 2β2 exp

⎛
⎝−2

√
F 2β2x2

0

16

⎞
⎠
⎤
⎦

= x0

D|F |β .

(7.13) 

To analyze the long time behavior of the survival probability given by Eq. (7.6), 
we need to use the following properties of the complementary error function: 

. lim
x→∞ erfc(x) = 0, (7.14) 

and 

. lim
x→∞ erfc(−x) = 2. (7.15)
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Since the force defines the sign of the argument of the complementary error function 
in Eq. (7.6), once again, we divide the problem into two cases: when .F < 0 and 
.F > 0. The latter drives the particle away from the absorbing target and Eq. (7.6) 
reduces to 

. lim
t→∞ S(t |x0) = 1 − e−βFx0 . (7.16) 

It is worth noting that in this case, the survival probability approaches a constant 
other than zero and reaches a plateau value equal to 1 as .Fx0 increases. This 
means that there is a finite probability that a particle will never reach the absorbing 
endpoint. 
On the contrary, when .F < 0, the force drives the diffusing particle toward the 
absorbing endpoint, and from Eq. (7.6), we find that the survival probability tends to 
zero. In this case, all the particles reach the absorbing target. To obtain an asymptotic 
expression for this case, we substitute the asymptotic relation for a long x, . erfc(x) ≈
e−x2/x

√
π , into Eq. (7.6), finding that 

.S(t |x0) ≈ e−μβF 2t/4

√
πμβ t |F | . (7.17) 

When the force drives the particle toward the absorbing endpoint, the survival 
probability tends to zero more rapidly than when .F = 0. We can see this more 
clearly from the result obtained in Sect. 4.3.5, given by Eq. (4.57), namely, 

.S(t |x0) ≈ x0√
πDt

. (4.57) 

Representative plots of Eqs. (7.17) and (4.57) are shown in Fig. 7.3. 
The probability of a diffusion particle hitting the absorbing boundary for the first 

time when the force drives it toward the absorbing endpoint, the mean first-passage 
time (MFPT), is calculated by integrating Eq. (7.17) over the entire time period, 
leading to 

Fig. 7.3 Survival probability 
distribution predicted by 
Eqs. (7.17) and (4.57) for 
different values of the 
external force: .F = −1 (blue 
line), .F = −2 (yellow line), 
.F = 0. (green line). In 
Eq. (4.57), the starting 
position of the particle is set 
at .x0 = 1. In all cases, the 
coefficient are set equal to 1, 
.D = μ = β = 1 0.0 0.2 0.4 0.6 0.8 1.0 

t 
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

S(
t|x

0)
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.〈t (x0)〉 =
∫ ∞

0

e−μβF 2t/4

√
πμβ t |F | dt = 2

βμF 2 , (7.18) 

which decreases inversely proportional to the square of F . 

7.2 Drift and Diffusion into Partially Absorbing and 
Absorbing Endpoints, U(x)  = −Fx  

The general approach to solve Brownian particle finite-length diffusing systems in 
the presence of special targets, e.g., reflecting, absorbing, and partially absorbing 
endpoints, was introduced in Chap. 5 as the Laplace transform method, where we 
were interested in finding the proper phase to include into the anzats’ argument, 
mainly hyperbolic functions (.sinh or .cosh), so to satisfy both the diffusion equation 
and the boundary conditions (BCs). This technique is quite powerful, since it allows 
us to obtain analytically physical quantities, such as moments of MFPT . 〈tn(x0)〉
and splitting probabilities .θx'(x0) simply by imposing the BCs together with the 
continuity and discontinuity conditions. Nevertheless, its drawback is that most of 
the solutions are found in Laplace’s space. As we have pinpointed before, finding 
the inverse Laplace transform of a function .f (s) can be extremely difficult, reason 
why we appeal to numerical methods (see Appendix 5.A). 

In this section and the next one, we will solve a set of diffusion problems 
within a finite domain . Ω in the presence of a constant drift by means of Laplace 
transform, firsty by making certain considerations in order to simplify the problem 
and secondly by approaching its most general version. 

Consider a Brownian particle diffusing along the interval .[0, L] in the presence 
of a partially absorbing endpoint at .x = 0 and a perfect absorbing target at .x = L, 
as depicted in Fig. 7.4. Our goal is to solve the Smoluchowski equation, Eq. (6.11), 
within the BCs associated with the problem and .U(x) = −Fx. We have used these  
mathematical requirements before (as an example, see Sects. 5.7–5.9 and 6.5). In 
this case, we have 

.p(x, t = 0|x0) = δ(x − x0), (7.19) 

as the initial condition, and 

Fig. 7.4 Schematic representation of a one-dimensional domain with a partially absorbing end at 
.x = 0 (yellow circle) and a perfectly absorbing point at .x = L (red circle)
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. D
∂p(x, t |x0)

∂x

∣∣∣∣
x=0

−DβFp(0, t |x0) = κp(0, t |x0) together with p(L, t |x0) = 0,

(7.20) 
as the BCs. 

In order to simplify the problem, we set the particle’s trajectory to .x0 = 0 and 
make .p(x, t |0) = p(x, t). The primary consideration is to write the propagator as 
follows: 

.p(x, t) = eβFx/2g(x, t). (7.21) 

Now, following a process similar to the one used to go from Eq. (6.42) to Eq. (6.43), 
we find that the Smoluchowski equation, when implementing Eq. (7.21), would be 
giving as 

.
∂g(x, t)

∂t
= ∂2g(x, t)

∂x2
−

(
βF

2

)2

g(x, t). (7.22) 

In this new boundary value problem, all boundary and initial conditions are 
transformed to provide the same structure as Eqs. (7.19) and (7.20), except for the 
partially absorbent boundary condition, in which case it modifies to 

.D
∂g(x, t)

∂t

∣∣∣∣
x=0

− DβF

2
g(0, t) = κg(0, t). (7.23) 

Then, we have to Laplace transform Eq. (7.22). Using  Eq.  (A.55), this yields 

.sg(x, s) − δ(x) = D

[
∂2g(x, s)

∂s2
−

(
FβF

2

)2

g(x, s)

]
, (7.24) 

and, when rearranging, we find that 

.
∂2g(x, s)

∂s
= q2g(x, s) − δ(x)

D
, (7.25) 

with 

.q ≡
√

s

D
+

(
βF

2

)2

, (7.26)
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is the differential equation to be solved. The ansatz will be a hyperbolic function. 
Here, it is convenient to choose the hyperbolic sine function. Since we have gained 
experience from Chap. 5 on computing the proper phase so as to satisfy the system, 
let us propose1 

.g(x, s) = A sinh [q(L − x)] . (7.27) 

To find the constant A, we substitute the latter equation into Eq. (7.23), obtaining 

.A = 1

D
[
q cosh (Lq) +

(
βF
2 + κ

D

)
sinh (Lq)

] . (7.28) 

The complete solution is then 

.p(x, s) = A sinh[q(L − x)]eβFx/2. (7.29) 

Representative plots of the propagator in real space are shown in Fig. 7.5.2 

The survival probability in Laplace and first moment of MFPT are computed as 
indicated in Chap. 2, Eqs.  (2.30) and (2.90), namely, 

. S(s) =
∫ L

0
p(x, s) dx = 2A

[
βF sinh(qL) + 2q cosh(qL) − 2eβFL/2

]
4q2 − β2F 2 ,

(7.30) 
and, by making a Taylor series of .S(s) around .s = 0, we obtain 

. 〈t〉 = S(s)

∣∣∣∣
s=0

= 1 + eβFL(βFL − 1)

βF
[
eβFL(DβF + κ) − κ

] . (7.31) 

The plot of the survival probability, Eq. (7.30), as a function of time, is shown on 
the left-hand side of Fig. 7.6.

1 Note that we have skipped the split solution and therefore the continuity condition. This is 
because the system is composed by Brownian particles that start their trajectory at .x0 = 0, so  
the solution we are looking for is the right-hand side solution, which turns to comprise the whole 
diffusing domain. 
2 It is often impossible to find the inverse Laplace transform function analytically. For such reason, 
numerical methods that provide an approximate solution to the problem have been developed. In 
Appendix 5.A, the reader will find a discussion on the Gaver-Stehfest numerical method, as well 
as the Mathematica code, to perform the inversion numerically. 



206 7 Trapping Particles Influenced by External Forces

0.0 0.2 0.4 0.6 0.8 1.0 x 
0.0 

0.5 

1.0 

1.5 

2.0 

p(
x)
 

t = 0.01 

0.0 0.2 0.4 0.6 0.8 1.0 x 
0.0 

0.5 

1.0 

1.5 

2.0 

p(
x)
 

t = 0.06 

0.0 0.2 0.4 0.6 0.8 1.0 x 
0.0 

0.5 

1.0 

1.5 

2.0 

p(
x)
 

t = 0.10 

0.0 0.2 0.4 0.6 0.8 1.0 x 
0.0 

0.5 

1.0 

1.5 

2.0 

p(
x)
 

t = 0.20 

Fig. 7.5 Frames of the temporal evolution of the propagator .p(x, t), Eq.  (7.29), for different 
values of the drag force F : .F = −3 (blue line), .F = 1 (yellow line), .F = 5 (green line), 
.F = 10 (orange line). The trapping rate is .κ = 10. The initial position of Brownian particles, 
system length, and diffusivity are .x0 = 0.0, .L = 1, and .D = 1, respectively 

7.2.1 Flux and Splitting Probability 

The flux in Laplace space can be found directly through the propagator .p(x, s) (see 
Eq. (5.60)). As such 

.J (L, s) = −D
∂p(x, s)

∂x
êx · êx = qeβFL/2

q cosh(qL) + (
βF
2 + κ

D
) sinh(qL)

. (7.32) 

Furthermore, the splitting probability for the right-hand side endpoint is com-
puted using Eq. (5.66) when making a series of .J (L, s) around .s = 0, i.e., 

.θL = J (L, s)

∣∣∣∣
s=0

= DβF eβFL

eβFL(DβF + κ) − κ
. (7.33) 

As an illustration, let us calculate the conditional probability density of MFPT at the 
right-hand side, .ϕL(s), a physical property that we will explore in detail in Chap. (8). 
In accordance with Eq. (8.6), we have
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Fig. 7.6 Schematic representation of survival probability, Eq. (7.30), and the conditional proba-
bility density of first-passage time, Eq. (7.34), for different values of the force F : .F = −3 (blue 
line), .F = 1 (yellow line), .F = 5 (green line), .F = 10 (orange line). The starting position of the 
particles is set at .x0 = 0.0, the length is .L = 1, the trapping rate is .κ = 10, and the diffusion 
coefficient is . D = 1

.ϕL(s) = J (L, s)

θL

= e−βFL/2
[
eβFLq(DβF + κ) − qκ

]
βF

[
Dq cosh(qL) +

(
DβF
2 + κ

)
sinh(qL)

] . (7.34) 

Characteristic plots of . ϕL in real space are shown on the right-hand side of Fig. 7.6. 
It is worth mentioning that two systems are contained within the partially 

absorbing-absorbing diffusion system with drift: the absorbing-absorbing and the 
reflecting-absorbing settings, meaning that the physical quantities, i.e., . 〈t〉, . θL, 
and .ϕL(s) can be obtained as a special cases of Eqs. (7.31), (7.33), and (7.34), 
respectively. 

7.2.2 Reflecting-Absorbing and Absorbing-Absorbing 

As stated in Sect. 4.2, special cases of the partially absorbing-absorbing system 
can be derived by using the limit values of . κ , namely, .κ → 0, for the reflecting-
absorbing system, and .κ → ∞, for the absorbing-absorbing system, resulting in 

.ϕκ→0
L (s) = eβFL/2q

q cosh(qL) + βF
2 sinh(qL)

, (7.35) 

.〈t〉κ→0 = e−βFL
[
1 + eβFL(βFL − 1)

]
Dβ2F 2 , (7.36) 

together with 

.θκ→0
L = 1, (7.37)
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for the reflecting-absorbing system, and 

.ϕκ→∞
L (s) = e−βFL/2q(eβFL − 1)

βF sinh(qL)
, (7.38) 

.〈t〉κ→∞ = 0, (7.39) 

together with 

.θκ→∞
L = 0, (7.40) 

for the absorbing-absorbing system. 

7.3 Drift and Diffusion into Two Partially Absorbing Points, 
U(x)  = −Fx  

The general problem of particles diffusing in a one-dimensional interval .[0, L], with 
an arbitrary starting position . x0 in the presence of a constant force (see Fig. 7.7), 
can be solved analytically by means of the Laplace transform. The process is quite 
alike to the one we showed in Sect. 5.9. The boundary conditions subject to the 
Smoluchowski equation with .U = −Fx are 

. D
∂p(x, t |x0)

∂x

∣∣∣∣
x=0

= κ1p(0, t |x0) and − D
∂p(x, t |x0)

∂x

∣∣∣∣
x=L

= κ2p(L, t |x0)
(7.41) 

Additionally, the suggested solution for the Smoluchowski equation in Laplace 
space is the following: 

.p(x<, s|x0) = Aer1x + Ber2x for the left-hand side of x0 (7.42) 

and 

.p(x>, s|x0) = Eer1x + Ger2x for the right-hand side of x0 (7.43) 

Fig. 7.7 Schematic representation of a one-dimensional domain with two partially absorbing 
endpoints (yellow circles), one at .x = 0 and the other at .x = L
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where .r1 = v+
√

v2+4Ds
D

, .r2 = v−
√

v2+4Ds
D

, and .A,B,E, andG are constants. 
Using the BCs, combined with the continuity and discontinuity conditions, Eqs. 
(3.39) and (3.42), is possible to find the solution in Laplace space for the propagator, 
flux, survival probability, and, therefore, first-passage time and splitting probability. 
These last two are written below: 

. 

〈t (x0)〉 = D
[
eF(L+x0)μ/Dκ1 + eFx0μ/Dκ2 − eFLμ/D(κ1 + κ2)

]
eFμx0/DFμ

[
eFμL/Dκ1(κ2 + Fμ) + Fμκ2 − κ1κ2

]

+ eFx0μ/Dκ2x0(κ1 − Fμ) + eF(L+x0)μ/Dκ1(L − x0)(κ2 + Fμ)

eFμx0/DFμ
[
eFμL/Dκ1(κ2 + Fμ) + Fμκ2 − κ1κ2

]

+ eFμL/D(−κ1 + Fμ)(κ2 + Fμ)

eFμx0/DFμ
[
eFμL/Dκ1(κ2 + Fμ) + Fμκ2 − κ1κ2

] ,
(7.44) 

.θ0(x0) = eF(L−x0)μ/Dκ1(κ2 + Fμ) − κ1κ2

eFLμ/Dκ1(κ2 + Fμ) + Fκ2μ − κ1κ2
, (7.45) 

and 

. θL(x0) = eF(L−2x0)μ/2Dκ2
[
Fμ + κ1

(
eFx0μ/D − 1

)]
F(κ1 + κ2)μ cosh

(
FLμ
2D

)
+ [2κ1κ2 + F(κ1 − κ2)μ] sinh

(
FLμ
2D

) .

(7.46) 

In the rest of the chapter, we will explore the Smoluchowski equation within 
harmonic and periodic potentials. 

7.4 Perfectly Absorbent Target: Harmonic Potential 

In this section, we consider a particle diffusing in a harmonic potential with a single 
absorbing endpoint placed at the origin, subject to the initial condition . p(x, 0) =
δ(x). We are interested in calculating its survival probability and the MFPT to the 
absorbent target. In this problem, it is possible to find a solution in closed form when 
the absorbing point lies at the minimum of the harmonic potential, which is given 
by 

.U(x) = K

2
x2, (6.71) 

where K is the force constant. To accomplish this, we invoke the method of images. 
As we know from the last section, we need two contributions, one for the real
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Fig. 7.8 Time evolution of the propagator .p(x, t |x0) in the presence of a harmonic oscillator, 
Eq. (7.47), at different times. The initial position, system length, and diffusivity are .x0 = 0.5, 
.L = 1, and .D = 1, respectively. Also, .β = 1 and the characteristic factor K is set at . K = 15

particle and another one for the image particle that, when subtracted, they cancel 
out at the origin, i.e., .x = 0. As shown in Sect. 6.6, the propagator in free space is 
given by 

.pF (x, t |x0) =
√

βK

2π(1 − e−2βDKt )
exp

[
−βK(x − x0e

−βDKt )2

2(1 − e−2βDKt )

]
. (6.93) 

Therefore, the solution proposed by the image method is given by . p(x, t |x0) =
pF (x, t |x0) − pF (x, t | − x0). Consequently 

. 

p(x, t |x0) =
√

βK

2π(1 − e−2βDKt )

{
exp

[
−βK(x − x0 e−βDKt )2

2(1 − e−2βDKt )

]

− exp

[
−βK(x + x0 e−βDKt )2

2(1 − e−2βDKt )

]}
.

(7.47) 

The temporal evolution of the propagator (7.47) is depicted in Fig. 7.8.
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Fig. 7.9 Survival probability 
distribution predicted by 
Eqs. (7.48) (blue line) and 
(7.49) (yellow line), 
respectively. The starting 
position of the particle is set 
at .x0 = 1; the diffusion 
coefficient, the force constant, 
and . β are set equal to one 
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7.4.1 Survival Probability and First-Passage Time 

From the definition given in Eq. (2.30), the survival probability, .S(t |x0), is  
calculated by integrating this last equation over all .x > 0, which gives 

.S(t |x0) = erf

(√
βK

2(eK2DβKt − 1)
x0

)
. (7.48) 

Expanding this last equation in a Taylor series around . x0 for long times (using Eq. 
(A.22)) up to the first order yields 

.S(t |x0) ≈ 2√
π

x0 e2DβKt . (7.49) 

This expression tends to zero exponentially in time, which means that absorption is 
a certain event. In Fig. 7.9, the survival probability given by Eq. (7.48) is compared 
with Eq. (7.49). 

The probability of the diffusing particle hitting the absorbing boundary for the 
first time, or MFPT, is calculated by integrating the survival probability over the 
entire time period. The solution of this integration cannot be obtained in closed 
form from Eq. (7.48) but, rather, by means of numerical integration. The result is 
shown in Fig. 7.10. On the other hand, for a small . x0, integrating Eq. (7.49) yields 

.〈t (x0)〉 =
∫ ∞

0

2√
π

x0 e2Dβkt dt = 2√
π

x0. (7.50) 

Figure 7.10 depicts the MFPT predicted by Eq. (7.50). From this figure, we can 
see that this approximation works reasonably well for small . x0when compared to 
the exact result obtained numerically.



212 7 Trapping Particles Influenced by External Forces

Fig. 7.10 Mean first-passage 
time predicted by numerical 
integration of Eq. (7.48) (blue 
line) and Eq. (7.50) (yellow 
line), respectively. The 
starting position of the 
particle is set at .x0 = 1; the  
diffusion coefficient, the force 
constant, and . β are set equal 
to one 
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7.5 Drift and Diffusion for the Periodic Potential 

U(x)  = V (x) − Fx  

Consider a one-dimensional diffusion in the presence of a periodic potential . U(x) =
V (x)−Fx, where .V (x) = V (x+L) is periodic of period L and .F ≥ 0 is a uniform 
force. Here, we are interested in calculating splitting probability, the probability of 
the particle begin trapped at the left (L) and right (R) endpoints. The propagator 
considered as a function of . x0 satisfies the backward Smoluchowski equation given 
by Eq. (6.31), where .D(x) = D(x + L) is also a periodic function. The initial 
condition is given by .p(x, 0|x0) = δ(x − x0). Because of periodicity, we set the 
boundaries as perfectly absorbing at the ends . xL and . xR . The splitting probability is 
found following an analogous procedure to the one shown in Sect. 2.9. 

First, we take the x-derivative of the backward Smoluchowski equation, expres-
sion (6.31), noting that everything but the propagator depends on x. Now, we obtain 
the flux as stated in Fick’s first law, Eq. (2.73), calculated at the endpoints, namely, 

. 
∂

∂t

∂p(x0, t |x)

∂x

∣∣∣∣
x=xL,xR

= eβU(x0)
∂

∂x0

{
D(x0) e

−βU(x0)
∂

∂x0

∂p(x0, t |x)

∂x

∣∣∣∣
x=xL,xR

}
.

(7.51) 

The latter expression actually represents two equations, one for each endpoint. 
The next step is to multiply the entire equation by the diffusivity evaluated at the 
corresponding endpoint, resulting in 

. 

∂

∂t
D(xL,R)

∂p(x0, t |x)

∂x

∣∣∣∣
x=xL,xR

= eβU(x0)
∂

∂x0

{
D(x0) e

−βU(x0)
∂

∂x0
D(xL,R)

∂p(x0, t |x)

∂x

∣∣∣∣
x=xL,xR

}
,

(7.52)
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which, integrating with respect to time and applying the definition of splitting 
probability, Eq. (2.95), yields 

. J (xL,R, t → ∞) − J (xL,R, t = 0) = eβU(x0)
∂

∂x0

{
D(x0) e

−βU(x0)
∂

∂x0
θL,R(x0)

}
.

(7.53) 

The left-hand side of this last equation is zero because of the boundary conditions 
(see Eq. (2.106)). Then, the ordinary differential equation (ODE) for the splitting 
probability reads 

.
d

dx0

[
D(x0) e−βU(x0)

dθL,R(x0)

dx0

]
= 0, (7.54) 

where .θL(x0) and .θL(x0) are the probabilities of the particle being trapped at the 
left and the right endpoints, respectively, and the boundary conditions given by 
.θL(xL) = θR(xR) = 1. 
Integrating Eq. (7.54) with respect to . x0 gives 

.D(x0) e−βU(x0)
dθL,R(x0)

dx0
= C1, (7.55) 

with . C1 being an integration constant. Now, the general solution can be written in 
terms of an integral, namely, 

.θL,R(x0) = C1

∫
eβU(z)

D(z)
dz. (7.56) 

The integration limits are established to fulfill the boundary conditions . θL(xR) =
θR(xL) = 0, that is, 

.θL(x0) = CL

∫ xR

x0

eβU(z)

D(z)
dz, θR(x0) = CR

∫ xL

x0

eβU(z)

D(z)
dz, (7.57) 

and the integration constants are renamed to avoid ambiguity. These constants can 
be found by means of boundary conditions .θL(xL) = θR(xR) = 1, yielding 

.
1

CL

=
∫ xR

xL

eβU(z)

D(z)
dz,

1

CR

=
∫ xL

xR

eβU(z)

D(z)
dz. (7.58) 

Direct substitution of Eq. (7.58) into Eq. (7.57) gives
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.

θL(x0) =
∫ xR

x0

eβU(z)

D(z)
dz

/∫ xR

xL

eβU(z)

D(z)
dz, and

θR(x0) =
∫ x0

xL

eβU(z)

D(z)
dz

/∫ xR

xL

eβU(z)

D(z)
dz.

(7.59) 

Taking .z → z + L, we have  

. 

∫ x0

x0−L

eβU(z)

D(z)
dz =

∫ x0+L

(x0+L)−L

eβU(z+L)

D(z + L)
d(z + L) =

∫ x0+L

x0

eβU(z+L)

D(z)
dz,

(7.60) 

where we used the periodicity property of .D(z). Noticing that .V (x + L) = V (x), 
then 

.U(z + L) = V (z + L) − (z + L)F = V (z) − Fz − FL = U(z) − FL, (7.61) 

which allows us to write Eq. (7.60) as follows: 

.

∫ x0

x0−L

eβU(z)

D(z)
dz = e−βFL

∫ x0+L

x0

eβU(z)

D(z)
dz (7.62) 

Lastly, setting .xL = x0 − L and .xR = x0 + L in Eq. (7.59) and using the latter 
relation, we explicitly find that the splitting probabilities are given by 

.θR(x0) = 1

1 + e−βFL
, and θL(x0) = e−βFL

1 + e−βFL
. (7.63) 

Counterintuitively, these results are independent of the presence of the periodic 
potential. 

7.6 Concluding Remarks 

Throughout this chapter, we analyzed, computed, and derived the most important 
physical properties of semi-infinite, finite, and periodic systems when particles 
diffuse in the presence of different potentials. Once again, we demonstrated the 
importance of the various methods on solving diffusion problems, namely, the 
method of images and integral transforms. It is important to emphasize that we can 
summarize the solutions of .〈t (x0)〉 and .θx'(x0) for all possible boundary condition 
combinations in finite-length systems in Eqs. (7.44) and (7.46) of Sect. 7.3, by  
studying the limit values of . κ . Probably, the most interesting yet counterintuitive
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result arises when deriving the splitting probability for the periodic potential, which 
turns out to be independent of any periodicity feature. 

In the following chapter, we will dive into the mathematical description of 
conditional processes. 

Further Reading and References 

B. Cichocki (ed.), Marian Smoluchowski. Selected Scientific Works (Wydawnictwa Uniwersytetu 
Warszawskiego, Warsaw, 2017) 

G.H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994)



Chapter 8 
Splitting and Breaking Brownian 
Pathways: Conditional Processes 

The importance of conditional probabilities arises in the analysis of models where 
there may be more than one pathway that can be taken by a Brownian particle. In 
such a case, the properties that characterize the system depend on the particular 
pathway taken. For example, the ion channels provide a conduction pathway for 
specific ions to translocate the cell membranes. Ionic transport through the cell 
membrane is an essential process occurring ubiquitously in cells. Even though the 
structure of an ion channel is very complex, we can think about the transport of an 
ion as a one-dimensional diffusion process between two absorbent boundaries, of 
crossing the free energy barriers as a result of the concentration gradient, structure, 
and interactions. Evidently, if an ion enters the channel, two pathways can be 
followed: a) return to the entry side or b) translocate to the opposite side. Then, 
we can ask: What is the probability that the particle will come out of the selected 
side without visiting the other side? What is the average time it will take to do it? 
And, what is the survival probability? Conditional probability plays a key role in 
answering these questions. 

8.1 Conditional Propagators: A First Glance 

Let us consider a system in the interval .[0, L] and place two absorbing targets at 
.x = 0 and .x = L, and let’s suppose that we are interested in finding the conditional 
propagator, .p0(x, t |x0), for the subset of particles which are ultimately trapped at 
the origin (see Fig. 5.3). In such a case, we would need to exclude the particles 
that would have been absorbed in .x = L. In other words, we are interested in the 
diffusing particles with trajectories starting at . x0 that are trapped at .x = 0 and that 
never cross .x = L. Consequently, we can replace the trapping boundary at . x = L

by a perfect reflecting boundary at L. This conditional propagator is governed by 
the following diffusion equation: 
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.
∂p0(x, t |x0)

∂t
= D

∂2p0(x, t |x0)
∂x2

, (8.1) 

subject to the following boundary conditions: 

.p0(0, t |x0) = 0 and − D
∂p0(x, t |x0)

∂x

∣
∣
∣
∣
x=L

= 0. (8.2) 

The solution to this boundary problem is the absorbing-reflecting propagator 
obtained in Chap. 5, given by Eq. (5.87), namely, 

. p(x, t |x0) = 2

L

∞
∑

n=0

exp

[

− (2n + 1)2π2

4L2 Dt

]

sin

[
(2n + 1)

2L
πx0

]

sin

[
(2n + 1)

2L
πx

]

.

(5.87) 

Its means properties are discussed in Sect. 5.4. 

8.2 Conditional Probability Fluxes and Densities of the 
First-Passage Time 

Two of the main physical properties that characterize diffusion when taking place 
into a domain bounded by absorbing ends are the conditional probability fluxes 
and densities of the first-passage time or, in other words, these properties at 
each absorbing boundary. Using Fick’s first law, Eq. (2.74), we can calculate the 
conditional fluxes at the desired absorbing end. The flux, evaluated at .x = 0 and 
.x = L, is  

.J (0, t) = D
∂p(x, t |x0)

∂x

∣
∣
∣
∣
x=0

, (8.3) 

.J (L, t) = −D
∂p(x, t |x0)

∂x

∣
∣
∣
∣
x=L

, (8.4) 

Now, considering these last two equations together with Eq. (2.83), we are able 
to find the expressions for the conditional probability density of first-passage time, 
yielding 

.ϕ0(x0|t) = J (0, t)
∫ ∞
0 J (0, t) dt

= J (0, t)

θ0(x0)
, (8.5)
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and 

.ϕL(x0|t) = J (L, t)
∫ ∞
0 J (L, t) dt

= J (L, t)

θL(x0)
, (8.6) 

where the denominators are the splitting probabilities, .θ0(x0) and .θL(x0), which 
normalize those probability densities. It is worth noting that .ϕ(x0|t) given by Eq. 
(2.83) is normalized, but once we split the trajectories into their final fate, they are 
not normalized. In the rest of the chapter, we will use these results to calculate the 
mean conditional times. 

8.3 Conditional Mean First-Passage Time 

The conditional mean first-passage time is the mean time it takes a particle reach 
one of the boundaries without hitting the opposite boundary first. These conditional 
times are calcuated from their definition, using Eqs. (8.5) and (8.6). Consequently, 
when Brownian particles reach the absorbing boundary at .x = 0 or .x = L, these 
conditional times are given by 

.〈t0(x0)〉 =
∫ ∞
0 t J (0, t) dt
∫ ∞
0 J (0, t) dt

=
∫ ∞
0 t J (0, t) dt

θ0(x0)
, (8.7) 

and 

.〈tL(x0)〉 =
∫ ∞
0 t J (L, t) dt
∫ ∞
0 J (L, t) dt

=
∫ ∞
0 t J (L, t) dt

θL(x0)
. (8.8) 

From these last two equations and the relation of the mean first-passage time 
(MFPT) with the total flux, Eq. (8.8), we arrive at  

.〈t (x0)〉 = θ0(x0)〈t0(x0)〉 + θL(x0)〈tL(x0)〉. (8.9) 

To obtain the closed form of the conditional mean first-passage times given 
by Eqs. (8.7) and (8.8), we need the fluxes and the splitting probabilities. These 
properties were calculated for this system in Sects. 2.7.2 and 2.9 and are given 
by Eqs. (2.78) and (2.79) and by Eqs. (2.99) and (2.102), respectively. Then, for 
.〈t0(x0)〉, we have
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. 

〈t0(x0)〉 = L

L − x0

∫ ∞

0
t

[

D
2π

L2

∞
∑

n=1

n exp

(

−π2n2Dt

L2

)

sin
(nπx0

L

)
]

dt

= 2πD

(L − x0)L

∞
∑

n=1

n sin
(nπx0

L

) ∫ ∞

0
t exp

(

−π2n2Dt

L2

)

dt.

(8.10) 

Applying Eq. (A.10) to the remaining integral, we obtain 

.〈t0(x0)〉 = 2L3

π3D

1

(L − x0)

∞
∑

n=1

sin
(

nπx0
L

)

n3
. (8.11) 

By substituting the result of the series, Eq. (A.35), into the latter equation, we arrive 
at 

.〈t0(x0)〉 = x0(2L − x0)

6D
. (8.12) 

Now, for .〈tL(x0)〉, we have the following expression: 

. 〈tL(x0)〉 = L

x0

∫ ∞

0
t

[

−D
2π

L2

∞
∑

n=1

(−1)n n exp

(

−π2n2Dt

L2

)

sin
(nπx0

L

)
]

dt.

(8.13) 

By using Eq. (A.10), we obtain 

.〈tL(x0)〉 = − 2L3

Dx0π3

∞
∑

n=1

(−1)n

n3
sin

(nπx0

L

)

. (8.14) 

To complete the computation, we make use of the fundamental theorem of calculus 
to give a closed solution to the sum, namely, 

.

〈tL(x0)〉 = − 2L3

Dx0π3

∞
∑

n=1

(−1)n

n3

∫ {
∂

∂x0

[

sin
(nπx0

L

)]}

dx0

= 2L2

Dx0π2

∫
[ ∞

∑

n=1

(−1)n−1

n2
cos

(nπx0

L

)
]

dx0,

(8.15) 

an expression that allows us to use the result obtained from Eq. (A.36) for the series, 
yielding
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Fig. 8.1 Representative plots 
of conditional and 
unconditional first moment of 
mean first-passage time, i.e., 
.〈t0(x0)〉 Eq. (8.12) (blue line), 
.〈tL(x0)〉 in Eq. (8.17) (yellow 
line) and .〈t (x0)〉 in Eq. (2.50) 
(green line). System length 
and diffusivity are set to 
.L = 1 and .D = 1, 
respectively
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.〈tL(x0)〉 = 2L

x0D

∫
(

1

12
− x2

0

4L2

)

dx0. (8.16) 

Then, after performing the integral in this last equation, we find that 

.〈tL(x0)〉 = L2 − x2
0

6D
. (8.17) 

Figure 8.1 depicts the conditional and unconditional first moments of MFPT. 
If we set .x0 = 0 in Eq. (8.17), we obtain the translocation time, also known as 

direct transit time: the trajectory drawn by the particle that trascolates, i.e., leaves 
the starting point and goes to the other end without returning to the starting point. 
Then, the direct-transit time is given by 

.〈tdt 〉 = L2

6D
. (8.18) 

In the next section, we will relate this quantity with the MFPT and discuss its 
implications. 

8.3.1 Direct-Transit Time and Looping Time 

In the previous section, we focused on studying Brownian diffusion between 
one absorbing and one reflecting boundary. Now, we will focus on the diffusing 
particles that start at the reflecting boundary and end their trajectory as soon as 
the absorbing boundary is reached for the first time. To gain new insights into the 
escape dynamics, we analyze the “fine structure” of these trajectories. Specifically, 
we divide trajectories into two segments: the transition path segment and the looping 
segment. The transition path segment, also referred to as the direct-transit segment, 
is the final part of the trajectory that leaves the starting point for the last time and 
goes to the opposite end without returning to the starting point. The remaining part
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Direct-Transit 

time 

Looping time 

First-Passage time 

Absorbing boundary 

Reflecting boundary 

0 

Fig. 8.2 Position dependence on time of a Brownian particle in a one-dimensional domain, 
obtained by Brownian dynamics simulations. The Brownian particle’s trajectory starts at the 
reflecting boundary at .x = L (continous green line) and ends when it reaches the perfect absorbing 
boundary at .x = 0 (dashed blue line). The trajectory is divided into two parts: the looping and 
the transition path segments. The duration of these two segments is separated by dashed lines. The 
total duration of the trajectory is given by the first-passage time. The looping segment (show in 
green) starts and ends at the starting point without touching the absorbing boundary. The transition 
path segment (shown in red) is the final part of the trajectory that leaves the initial position for the 
last time and goes directly to the absorbing boundary 

of the trajectory is the looping segment, where a number of loops that start and end 
at the same starting point are completed. When both path segments are put together, 
the complete scenario is recovered (see Fig 8.2). Consequently, the MFPT is related 
to the mean looping time and mean direct-transit time by 

.〈tfp〉 = 〈tl〉 + 〈tdt 〉. (8.19) 

In Sect. 8.2, we found that the mean time for the transition path segment is 
given by Eq. (8.18). In Sect. 5.6.3, we found that the MFPT for a segment with 
an absorbing boundary at .x = 0 and a reflecting end at .x = L is given by Eq. 
(5.96), namely, 

.〈t (x0)〉 = x0(2L − x0)

2D
. (5.96) 

Now, if the particle’s initial position is at the reflecting boundary, i.e., .x0 = L, we  
find that 

.〈tfp〉 = L2

2D
(8.20) 

Consequently, the mean loping time is given by 

.〈tl〉 = L2

3D
. (8.21)
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In conclusion, the particle spends .2/3 of the MFPT looping and .1/3 of the MFTP 
translocating. This “fine structure” has wide applications in experiments with single 
biological nanopores, pulling proteins and nucleic acid folding studies, and single-
molecule fluorescence spectroscopy. 

8.4 Conditional Survival Probabilities 

Let us consider a system in the interval .[0, L] with two absorbing targets, one at . x =
0 and the other at .x = L. In this instance, we are interested in finding the conditional 
survival probability, .S0(t |x0), for the subset of particles that are ultimately trapped 
at the origin. The crucial point in calculating this quantity is that at very long times, 
this probability does not go to zero. This is because all the particles that are trapped 
in .x = L would be survivors of becoming trapped in .x = 0 and vice versa. In 
fact, the fraction of particles trapped in .x = L is the splitting probability .θL(x0). 
Consequently 

. lim
t→∞ S0(t |x0) = θL(x0). (8.22) 

To find .S0(t |x0), let’s assume that we know the survival probability when the 
absorbing boundary at .x = L is replaced by a reflecting boundary, .S(t |x0). Because 
we are interested in the particles that reach .x = 0, we have to subtract from this 
quantity, .θL(x0). Then, from the definition of conditional probability, Eq. (6.17),1 

we have 

.S0(t |x0) = S(t |x0) − limt→∞ S0(t |x0)
θ0(x0)

= S(t |x0) − θL(x0)

1 − θL(x0)
, (8.23) 

where .θ0(x0) is the fraction of particles that leave the system through the absorbing 
boundary at .x = 0. 
With this definition in hand, we are able to define the nth moment of the conditional 
time to be trapped in terms of the conditional survival probability (see Eq. (2.52)). 
In other words 

.〈tn0 (x0)〉 = n

∫ ∞

0
tn−1S0(t |x0) dt, where n = 1, 2, 3, .. (8.24)

1 Conditional probability .P(A|B) is the probability of an event A occurring given that event B has 
already occurred. This quantity is given by .P(A|B) = P(A ∩ B)/P (B), where  .P(A ∩ B) is the 
probability of both A and B occurring. In our case, the conditional probability is the probability 
of the particle surviving until time t (.P(A)) and eventually being trapped at .x = 0 (.P(B)), which 
is equal to .S(t |x0) − limt→∞ S0(t |x0), with .P(B) representing the probability of being trapped at 
the origin, i.e., .θ0(x0) = 1 − θL(x0). 
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Subsequently, we will provide the steps to find the differential equation that governs 
the nth moment of the conditional time .〈tn0 (x0)〉. The first step is to recall that, 
because of the detailed balance, .S0(t |x0) satisfies the backward Smoluchowski 
equation, namely, 

.
∂S0(t |x0)

∂t
= L†(x0) S0(t |x0), (8.25) 

where .L†(x0), in the more general form, is given by (6.29), namely, 

.L†(x0) = eβU(x0)
∂

∂x0
D(x0)e

−βU(x0)
∂

∂x0
. (6.29) 

The second step is to multiply both sides of Eq. (8.23) by .θ0(x0) and operate on the 
resulting equation by .L†(x0), yielding 

.L†(x0)θ0(x0)S0(t |x0) = L†(x0)
{

S(t |x0) − θL(x0)
}

= L†(x0)S(t |x0). (8.26) 

To find that .L†(x0)θL(x0) = 0, we have to take the limit when t goes to infinity 
in Eq. (8.25) and make use of Eq. (8.22). Equation (8.26) gives the differential 
equation that governs the evolution of the splitting probability. Direct substitution 
of Eq. (8.25) into Eq. (8.26) results in 

.L†(x0)θ0(x0)S0(t |x0) = ∂S(t |x0)
∂t

. (8.27) 

Lastly, by multiplying this last equation by .n tn−1 and integrating over time from 
0 to infinity, we find that .〈tn(x0)〉 must satisfy 

.L†(x0)
{

θ0(x0)〈tn0 (x0)〉
}

= −nθ0(x0)〈tn−1(x0)〉. (8.28) 

The left-hand side is obtained by observing that 

. lim
t→∞ S(t |x0) − S(0|x0) = lim

t→∞ S(t |x0) = −θ0(x0), (8.29) 

because of the boundary conditions. It is worth noting that the splitting probability 
satisfies the following differential equation: 

.L†(x0)θ0(x0) = 0. (8.30) 

From Eq. (8.28), it follows that the conditional first moment of the MFPT is given 
by 

.L†(x0){θ0(x0)〈t0(x0)〉} = −θ0(x0). (8.31)
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Finally, let’s calculate the conditional mean first-passage time for a free particle 
using Eq. (8.31). For such purpose, we substitute .U(x0) = 0, .D(x0) = D, and 
.θ0(x0) = (x0−L)/L, given by Eq. (2.102), into Eq. (8.31). This leads to the relation 

.D
d2

dx2
0

[(
x0 − L

L

)

〈t (x0)〉
]

= −x0 − L

L
, (8.32) 

After integrating this last equation twice with respect to . x0, we find 

.

(
x0 − L

L

)

〈t (x0)〉 = −x3
0 − 3Lx2

0

6D
+ Ax0 + B. (8.33) 

Constants A and B are obtained by the boundary conditions, i.e., 

.〈t0(0)〉 = 0 and
∂〈t0(x0)〉

∂x0

∣
∣
∣
∣
x0=L

= 0, (8.34) 

leading to .A = L2/3D and .B = 0. Substituting these two values into Eq. (8.33), 
we find 

.〈t0(x0)〉 = x0(2L − x0)

6D
, (8.35) 

as expected. 

8.4.1 Direct-Transit Time and Looping Time in the Presence of 
a Constant External Force 

In this section, we will study direct-transit time and looping time in the presence 
of an constant external force, when diffusion takes place into a domain of length 
L, bounded by one reflecting and by one absorbing boundary, placed at . x = 0
and .x = L, respectively (see Sect. 7.2.2). For such purpose, we will focus on 
the densities of their respective first-passage times. As we know, these probability 
densities can be obtained through the flux. When replacing the reflecting boundary 
for an absorbing endpoint, we obtain the properties of the direct-transit path. 
As calculated in Sect. 7.2.2, the first-passage direct-transit probability density in 
Laplace space is given by (see Eq. (7.38)) 

.ϕF
dt (s) =

q sinh
(

F̃ /2
)

(F̃ /2L) sinh (Lq)
, (8.36)
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where .F̃ = βFL is the dimensionless biasing force and .q =
√

s/D + (F̃ /2)2. The  
mean direct-transit time, .〈tdt 〉, is defined as 

.〈tFdt 〉 =
∫ ∞

0
t ϕF

dt (t) dt (8.37) 

and can be found by making a series around small-s of the Laplace transform in Eq. 
(8.36), namely, 

.ϕF
dt (s) = 1 +

L2
[

2 − F̃ coth
(

F̃
2

)]

DF̃ 2
s + · · · (8.38) 

By using Eq. (2.94), the result is 

.〈tFdt 〉 = L2

2D

(F̃ /2) coth (F̃ /2) − 1

(F̃ /2)2
, (8.39) 

where .〈tdt 〉 = L2/2D. It is worth mentioning that the first factor is the MFPT from 
the reflecting boundary along the interval of length L to its absorbing boundary 
in the absence of bias, given by Eq. (8.20). The F-dependence of .〈tdt (x0)〉 shows 
that the mean direct-transit time is a symmetric function of F that monotonically 
decreases as the absolute value of the biasing force increases. Its maximum value 
at .F = 0 is .L2/6D, and its asymptotic behavior as . |F | goes to infinity is given by 
.L/(Dβ|F |) (see Fig. 8.3). 

To find the distribution of the looping time, we make use of the fact that the total 
duration of the escape trajectory, which is the first-passage time from the reflecting 
to the absorbing boundary, .〈tfp(x0)〉, is the sum of the duration of its looping and 
direct-transit segments, .〈tFfp〉 = 〈tFl 〉 + 〈tFdt 〉 (see Eq. (8.19)). Then, the probability 
density of the first-passage time is the convolution of the probability densities and 
of the direct-transit and looping times, namely, 

.ϕF
fp(t) =

∫ ∞

0
ϕF

dt (t − t ')ϕF
l (t ') dt '. (8.40) 

The Laplace transform of this relation is .ϕF
fp(s) = ϕF

dt (s)ϕ
F
l (s), and hence, we have 

.ϕF
l (s) = ϕF

fp(s)

ϕF
dt (s)

. (8.41) 

From Eq. (7.35), we know that, in simplified notation 

.ϕF
fp(s) = qeF̃ /2

q cosh (Lq) + (F̃ /2L) sinh (Lq)
. (8.42)
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Fig. 8.3 The dimensionless 
.2D〈tFdt 〉/L2 (green line), 
.2D〈tFl 〉/L2 (red line), and 
.2D〈tFfp〉/L2 (blue line), given 
by Eqs. (8.39), (8.45), and  
(8.44), respectively, are 
shown. The values used are 
.D = β = 1
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Substituting this last equation, together with Eq. (8.36), into Eq. (8.41), we arrive at  

.ϕF
l (s) = 2eF̃ F̃

L(eF̃ − 1)
[

F̃
L

+ 2q coth(Lq)
] (8.43) 

Additionally, Eq. (7.36) can be written as follows: 

.〈tFfp〉 = L2

D

F̃ − 1 + e−F̃

F̃ 2
. (8.44) 

From this last equation, we observe that the MFPT is determined by the mean 
looping time when .F → −∞, while, when .F → ∞, it is determined by the mean 
direct-transit time. This behavior is depicted in Fig. 8.3. 

The force dependence of the MFPT is the sum of the mean looping and direct-
transit times, and therefore 

.〈tFl 〉 = 〈tFfp〉 − 〈tFdt 〉 = L2

D

1 + e−F̃ + F̃ (1 − coth (F̃ /2))

F̃ 2
. (8.45) 

This equation shows that the mean looping time monotonically decreases with F 
(see Fig. 8.3). In the absence of bias, this mean time is .L2/(3D), as expected (see 
Eq. (8.21)). Its asymptotic behavior as F goes to infinity is given by . 2/[D(βF)2]
and, when F goes to minus infinity, is given by .2eF̃ /[D(βF)2]. The exponential 
increase of the mean looping time is a consequence of the fact that the particle 
diffuses in a deep potential well, and to escape, it has to overcome a high energy 
barrier.
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8.5 Concluding Remarks 

In this chapter, we have calculated the fundamental physical properties of condi-
tional probabilities when particular pathways are taken by Brownian particles as 
well as their mathematical representation. To gain new insights into the escape 
dynamics, we analyze the “fine structure” of these trajectories. Specifically, we 
divide trajectories into two segments: a looping segment, when a particle unsuccess-
fully tries to escape returning to the trap bottom again and again, and a direct-transit 
segment, when it finally escapes moving without touching the bottom. Analytical 
expressions are derived for the Laplace transforms of the probability densities of 
the duration of the two segments. 

In the presence of bias, the mean looping time monotonically increases as F 
decreases, approaching exponential F -dependence at large negative forces pushing 
the particle toward the trap at .x = 0. In contrast to this intuitively appealing 
behavior, the mean direct-transit time shows rather counterintuitive behavior: it 
decreases as the force magnitude, . |F |, increases, independently of whether the force 
pushes the particles to the trap at .x = 0 or to the exit from the trap, having a 
maximum at .F = 0. 

For the reader’s convenience, listed below are the most important equations to 
depict and define diffusion that we have obtained so far, which will be frequently 
used throughout this book: 

.∇2θi(r0)〈tni (r0)〉 = − n

D
〈tn−1

i (r0)〉θi(r0) (Conditional Moments of MFPT) 
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Chapter 9 
Diffusion with Stochastic Resetting 

9.1 Introduction 

The stochastic resetting processes, whereby the position of the particle is reset 
to a fixed location at a random sequence of times, are frequently observed in 
phenomena related to physics, chemistry, biophysics, and scientific computation. 
In the latter, it has been applied as a useful strategy to optimize search algorithms in 
hard combinatorial problems. In particular, it has been used to show that resetting 
can significantly reduce the first arrival time of a diffusive particle to a target by 
mitigating large fluctuations that can occur when resetting is absent. Such strategies 
have been shown to be favorable in a variety of contexts such as animal foraging, 
a flexible polymer translocating through a narrow pore, and the target search of 
proteins on DNA molecules. Other interesting observations include a whole family 
of properties associated with optimal processes under resetting, as well as the 
existence of a universal strategy for effective resetting. 

A common example of a diffusive process with resetting is depicted in the act 
of searching for a lost object. Normally, the search starts where the object is most 
likely to be. Later on, we randomly walk around the place. If we do not find it after 
a reasonable amount of time and if we are far away enough that the chances of 
finding the object are slim, we usually give up, and we will most likely return to the 
place of origin, to start the search again. Another example in which we use a search 
strategy similar to the previous one is when we are asked to find an object that is 
different from others, like in the Where’s Willy books (see Fig. 9.1). We can also 
observe the stochastic resetting process in the animal kingdom. For example, bears 
and other burrowing mammals go out in search of food only to eventually return 
to their burrow after a successful or unsuccessful search. One additional example is 
presented in the mass extinction processes. 
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Fig. 9.1 The goal for this puzzle is to find the single Mayan zero (mih) that is different from all the 
others. Sometimes, the search strategy is to start at the first icon and move randomly, and if we don’t 
find the target after a while, return to the starting point to continue the search. The Mayan numeral 
system was the system to represent numbers and calendar dates in the Mayan civilization. It was 
a vigesimal (base-20) positional numeral system. The dash-and-dot number system, which formed 
the basis of Mayan numeration, was in use in Mesoamerica as from 1000 B.C. The numbers had 
different representations. In head-style notation, each of the numbers is expressed by a distinctive 
type of head, and each has its own essential characteristic that distinguished it from all the others 

9.2 Diffusion Equation with Stochastic Resetting 

In this section, we will demonstrate how to obtain an equation describing the 
evolution of the propagator for a diffusive particle, taking the stochastic resetting 
into account. To such end, we will write the master equation for the processes taking 
place in a discrete one-dimensional lattice. Let’s start by calculating the probability 
of reaching j after .n + 1 steps. This implies that the Brownian particle had to be at 
.j − 1 or .j + 1 after n steps. But for now, let’s allow this particle at .j − 1 and . j + 1
to make a jump to the resetting position . jr , with rate r and probability .rAt (see 
Fig. 9.2). The dimension of r is .T −1. Now, in order to calculate the probability 
of being at j after .n + 1 steps, we have to subtract all trajectories that end at 
. jr . Therefore, when stochastic resetting is added to diffusion, the processes are 
governed by the following master equation: 

. pn+1(j) − rAt

2
pn+1(jr ) − rAt

2
pn+1(jr )

= 1 − rAt

2
pn(j + 1) + 1 − rAt

2
pn(j − 1). (9.1) 

For the purpose of obtaining the continuous approach, we must rewrite Eq. (9.1) 
in terms of .j → x, .j ± 1 → x ± Ax, .n → t , and .n + 1 → t + At , yielding 

. p(x, t + At) = 1 − rAt

2
p(x + Ax, t) + 1 − rAt

2
p(x − Ax, t)

+ rAt p(xr , t + At). (9.2)
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Fig. 9.2 Schematic representation of the one-dimensional lattice of a random walk under stochas-
tic resetting 

After Taylor expanding this last equation around .Ax = 0 and .At = 0 and keeping 
terms up to linear order on the left-hand side, we have 

.

p(x, t) + At
∂p(x, t)

∂t

= 1 − rAt

2

[
p(x, t) + Ax

∂p(x, t)

∂x
+ (Ax)2

2

∂2p(x, t)

∂x
+ · · ·

]

+ 1 − rAt

2

[
p(x, t) − Ax

∂p(x, t)

∂x
+ (Ax)2

2

∂2p(x, t)

∂x2
+ · · ·

]

+ rAt

[
p(xr , t) + At

∂p(xr , t)

∂t
+ · · ·

]
.

(9.3) 

By simplifying the above expression and keeping terms up to second order in . Ax, 
it takes the form of 

. 
∂p(x, t)

∂t
≈

[
(1−rAt)

(Ax)2

2At

∂2p(x, t)

∂x2

]
−r p(x, t) + r p(xr , t) + rAt

∂p(xr , t)

∂t
.

(9.4) 

Taking the limit when . Ax and . At go to zero from this last equation, we can conclude 
that the diffusion coefficient is naturally defined as 

.D ≡ lim
Ax→0
At→0

(1 − rAt)
(Ax)2

2At
= lim

Ax→0
At→0

(Ax)2

2At
. (9.5) 

Finally, we find that the differential equation which governing the diffusion under a 
stochastic resetting is given by 

.
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
− r p(x, t) + r p(xr , t). (9.6) 

The first term on the right-hand side of Eq. (9.6) refers to diffusion, the second 
term stands for the Brownian particles that are at position x at time t with rate 
r and finally reach . xr , and the third term considers the gain of particles arriving
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Fig. 9.3 Typical position dependence on time (solid yellow line) obtained by performing a one-
dimensional Brownian dynamics simulation. This trajectory was taken at random from the 25,000 
that were simulated. Particles start at .x0 = 0 and reset stochastically to its initial position . xr =
x0 = 0 at rate .r = 0.6. The resetting times are marked by red circles, while the trajectory from 
the former position to . xr is depicted by a red arrow. When running simulations, we considered 
an overdamped point-like Brownian particle, diffusivity as .D = 1 and .At = 1 × 10−6, so that  
.
√
2DAt << 1. The overdamped dynamics of the particle is modeled by the Langevin equation 

at the resetting point . xr at time t . The schematic space-time trajectory of a one-
dimensional Brownian motion under resetting is shown in Fig. 9.3. 

To have a deeper understanding of the physics of a reset, we will focus only on 
the resetting processes. For such purpose, we only keep the second term of Eq. (9.6), 
namely, 

.
∂pr(x, t)

∂t
= −r pr(x, t), (9.7) 

where .pr(x, t) is the probability density of leaving position x at time t to reach . xr . 
The solution of this last equation, since .p(t = 0) = 1, is given by 

.pr(t) = e−rt . (9.8) 

On one hand, this distribution returns a random time exponential distributed with 
mean . 1/r . On the other hand, the exponential distribution is the probability 
distribution of the time between events in a Poisson process.1 This means that the 
interval of time between two consecutive resetting times is given by 

1 The master equation for a Poisson process is a particular case of the random walk in which a=0 
(see Eq. (2.5)). If position j , or one event, increases randomly by unit at an average rate of .b = λ, 
then 

.pn+1(j) = λ pn(j − 1). (9.9)
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.p(k) = e−rt (rt)k

k! , (9.10) 

where k is the number of occurrences of the event (.k = 1, 2, 3, ...). This distribution 
is applied to rare events that have a very small probability of occurring. In our 
problem, Eq. (9.10) gives the probability of having k resetting events within an 
interval time from 0 to t . For example, if .r = 4 resettings per second and we want to 
calculate the probability of having 5 resettings in 10 seconds, then .k = 5 and . rt = 4
s.−1

.×10 s .= 40. 
In the next section, we will solve the diffusion equation under stochastic resetting 

in the steady state. 

9.3 Steady-State Solution 

As we anticipated, we will solve the diffusion equation with stochastic resetting, 
Eq. (9.6), in the steady state, which is attained as .t → ∞. In other words, we intend 
to solve 

.D
∂2p(x, t)

∂x2
− r p(x, t) + r p(xr , t) = 0, (9.11) 

subject to the following initial condition: .p(x, t = 0) = δ(x − x0). For the sake 
of simplicity and having in mind that we will solve this differential equation in 
the Laplace space, by following the same steps as depicted in Sect. 3.2, it is useful 
to describe the particles’ arrival to . xr as a Dirac delta function and set .xr = x0. 
Therefore, Eq. (9.11) is modified to 

.D
∂2p(x, t |x0)

∂x2 − r p(x, t |x0) = −r δ(x − x0). (9.12) 

For .x /= x0, the Dirac delta function is zero, and we recover the homogeneous 
equation which general solutions are given by .e±α0x , where 

.α0 ≡
/

r

D
. (9.13) 

The solution to Eq. (9.12) is constructed from a linear combination of the 
real exponential functions that satisfy the following boundary conditions (BCs): 
.p(x, t) → 0 as .x → ±∞, and .p(x, t) is continuous at .x = x0. By imposing 
these conditions, we find that 

.p(x|x0) = Ae−α0|x−x0|. (9.14)
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Fig. 9.4 The stationary 
probability densities . p(x)

given by Eq. (9.15) for 
.α0 = 1 (blue line) and . α0 = 2
(yellow line), .xr = x0 = 0, 
and .D = 1

-4.0 -2.0 0.0 2.0 4.0 x 
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

p(
x)
 

Constant A is fixed by using the discontinuity equation associated to the problem, 
which is obtained in the exact same way we obtained Eq. (3.42). Therefore, . A =
α0/2, so that 

.p(x|x0) = α0

2
e−α0|x−x0|. (9.15) 

Note that Eq. (9.15) is a nonequilibrium stationary state. This means that there is 
circulation of probability even in the one-dimensional geometry. At all points, there 
is always a diffusive flux of probability in the direction away from . x0 and a nonlocal 
resetting flux in the opposite direction from all points .x /= x0 to . x0 (see Fig. 9.4). 

9.4 Mean First-Passage Time Under Resetting: Semi-Infinite 
Line 

Let us assume that a diffusive process with resetting take places in a one-
dimensional system in the presence of a perfect absorbing target at the origin, .x = 0. 
The mean first-passage time (MFPT) can be calculated from the survival probability 
density under resetting, i.e., .Sr(t |x0, xr ), or, in compact notation, .Sr(t |x0), namely, 

.<Tr(x0)> = −
f ∞

0
t
∂Sr(t |x0)

∂t
dt =

f ∞

0
Sr(t |x0) dt, (9.16) 

Following the same steps as we did in Sect. 2.6 to obtain the differential equation 
that governs .Sr(x0, t |xr), namely, integrating Eq. (9.6), using the analog of the 
backward equation for resetting, from 0 to infinity with respect to x, we have  

.
∂Sr(t |x0)

∂t
= D

∂2Sr(t |x0)
∂x2 − rSr(t |x0) + rSr(t |xr). (9.17)
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By making .r = 0 in the previous expression, the equation describing the function in 
the absence of resetting is recovered (see Eq. (2.59)). Now, to obtain the expression 
for the MFPT, we substitute Eq. (9.17) into (9.16) and integrate it over time, leading 
to 

. 

f ∞

0

∂Sr(t |x0)
∂t

dt = D
∂2

∂x2
0

f ∞

0
Sr(t |x0) dt−r

f ∞

0
Sr(t |x0) dt+r

f ∞

0
Sr(t |xr) dt.

(9.18) 

Since .Sr(t → ∞|x0) = 0, .Sr(t = 0|x0) = 1, and given that the differential 
and integral operators either commute or are reduced because of the fundamental 
theorem of calculus, we finally obtain 

.D
∂2<Tr(x0)>

∂x2
0

− r<Tr(x0)> + r<Tr(xr )> = −1. (9.19) 

Once again, if .r = 0, Eq. (9.19) turns into the equation for the MFPT in free 
diffusion, Eq. (2.48). This equation is a nonhomogeneous ordinary differential 
equation (ODE), and its solution is given by 

.<Tr(x0)> = Aeα0x0 + Be−α0x0 + 1 + r<Tr(xr)>
r

. (9.20) 

The boundary condition which states that .T (x0) is finite as .x0 → ∞ implies .A = 0, 
and the boundary condition .T (x0 = 0) = 0 fixes B. Thus 

.<Tr(x0)> = 1 + r<Tr(xr)>
r

[
1 − e−α0x0

]
. (9.21) 

Setting .xr = x0, we ultimately arrive at 

.<Tr(x0)> = 1

r

[
eα0x0 − 1

]
, (9.22) 

where .α0 ≡ √
r/D. 

It is worth noting that for fixed . x0, the MFPT is finite for .0 < r < ∞, and 
it diverges when .r → 0 as . 1/r , as expected, and .x0

√
r/D → ∞ when r goes 

to infinity. The latter conclusion is drawn from the fact that, as the particle is 
continuously restarting, it stays close to . xr and is unlikely to hit the absorbing target 
(see Fig. 9.5). Additionally, we can see that the MFPT times r is the total average 
resetting per particle before being trapped. Then, from Eq. (9.22), we have that  this  
important physical parameter is given by .eα0x0 − 1. 

Since the MFPT diverges as r goes to zero and infinity, there must be a 
minimum with respect to r , denoted by . r∗. This  . r∗ is an optimal rate to which 
the minimum value of the MFPT is observed. This critical phenomenon occurs if



236 9 Diffusion with Stochastic Resetting

Fig. 9.5 The mean 
first-passage time, given by 
Eq. (9.22), is plotted as a 
function of r for fixed 
.xr = x0 = 3 (blue line), 
.xr = x0 = 4 (yellow line), 
and .D = 1. In both cases, a 
minimum is shown at 
.r∗ = 0.28218 s−1 and 
.r∗ = 0.158726 s−1, 
respectively. The MFPT 
diverges as r goes to zero and 
infinity 
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the first derivative of Eq. (9.22) with respect to r is zero, yielding 

.e−γ − 1 = −γ

2
, (9.23) 

where .γ ≡ α0x0. The solution of Eq. (9.23) is given by . γ ∗
0 = 2 + W(−2e−2) ≈

1.59362, where .W(z) is the Lambert function, with .z > −e−1, then .r∗ = Dγ ∗2
0 /x2

0 . 
Optimal resetting is inversely proportional to the square of the initial position. 
This last result is quite significant as it allows us to establish rates to perform 
optimal search processes, surely one of the most important features of diffusion 
with resetting. 

9.5 Renewal Equation Approach for Poissonian Resetting 

In this section, we will see that, once we calculate the survival probability density 
for a diffusive particle that follows the initial conditions and BCs, we can write 
their distribution when stochastic resetting is added. In other words, we can write 
.Sr(x0, t |xr) in terms of .S(t |x0). Also, we can show that the MFPT is related to the 
unconstrained problem by means of the renewal equation approach, namely, 

.Sr(t |x0) = e−rt S0(t |x0) + r

f t

0
Sr(t − τ |x0) e−rτ S0(τ |xr) dτ, (9.24) 

where we introduced the notation for the survival probability density in the absence 
of resetting .S(t |x0) as .S0(t |x0). The benefits are clearly demonstrated below. To 
understand each term in this equation, we need to think of the different possible 
trajectories followed by survival particles at time t . Additionally, it is important to 
remember that the probability of no resetting event having occurred up to time t is 
.e−rt (see Eq. (9.8)). This holds for Poissonian resetting with a constant rate r .
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Fig. 9.6 Time-dependent trajectories obtained by performing a one-dimensional Brownian 
dynamics simulation are shown. The simulated system consists of a semi-infinite line in which the 
diffusive particles experience stochastic resetting with rate r at time intervals given by a Poisson 
distribution. As soon as the particle reaches the absorbing target . xT (dashed green line), it is 
removed from the system, and the time at which this occurs defines the MFPT. The two possible 
trajectories of the particles that have not reached . xT at time t are shown in the panels. The particle’s 
initial position is placed at the same position to which it is reset, i.e., .xr = x0 (dashed gray line). 
The left panel shows the trajectory of a particle that diffuses without having experienced any reset 
until time t (black solid line). The right panel shows the trajectory of a particle whose last reset 
was at time . τ (solid yellow line), i.e., from time . τ to t this particle has not experienced any other 
reset. From this panel, we can see that . τ can take values from 0 to t , imposing the limits for the 
integral in Eq. (9.24). When running simulations, the parameters are the same as in Fig. 9.3 

The first term on the right-hand side stands for trajectories starting at . x0 where 
there has been no resetting up to time t , depicted by a solid black line on the left-side 
panel of Fig. 9.6. Furthermore, we have that the first factor inside the integral stands 
for all trajectories starting at . x0 for which the last reset was at time . τ , depicted on 
the right-side panel of Fig. 9.6 by the solid yellow line starting from the origin up to 
. τ . Then, the particles continue their journey with a trajectory now starting at . xr with 
no reset from . τ to t . This last part of the trajectory is represented by the last two 
factors inside the integral and is depicted in Fig. 9.6 by the yellow solid line going 
from . τ up to t , starting for the last time at . xr . 

Now, to write .Sr(t |x0) in terms of .S0(t |x0), let us redefine the Laplace transform, 
using the variable r instead of s, as follows: 

.Sr(s|x0) ≡
f ∞

0
e−rt Sr (t |x0) dt. (9.25) 

Laplace transforming the renewal equation, Eq. (9.24), yields 

.Sr(s|x0) = S0(r + s, x0) + rS0(r + s|xr) Sr(s|x0). (9.26) 

Then, solving for .Sr(s|x0), we finally have 

.Sr(s|x0) = S0(r + s|x0)
1 − rS̃0(r + s|xr)

. (9.27)
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This is a very general and useful result for Poissonian resetting, relating the Laplace 
transform of the survival probability when .r = 0 to that in the presence of resetting. 

Once we know .Sr(s|x0), we can relate the MFPT with .S0(r + s|x0) using the 
definition given in Eq. (9.16), namely, 

.<Tr(x0)> =
f ∞

0
Sr(t |x) dt = Sr(s = 0|xr). (9.28) 

This last expression is very useful and allow us to calculate the MFPT with resetting 
from the survival probability setting .r = 0 in Laplace’s space. As an example, let’s 
find the MFPT for a Brownian particle diffusing in a one-dimensional system with 
an absorbing target at .xT = 0 and with .xr = x0 > 0. The survival probability 
density when .r = 0 is  given by Eq. (4.57). Laplace transforming it, using Eq. (A.72), 
we find that 

.Sr(s, x0) = 1 − e−αrsx0

s + r(1 − e−αrsx0)
, (9.29) 

with .αrs = √
s/D. By introducing this result into Eq. (9.28) and setting .s = 0, 

Eq. (9.22) is obtained when .x0 = 0, as expected. 

9.6 Mean First-Passage Time Under Resetting: 
Absorbing-Absorbing 

In this section, we consider a Brownian particle initially located at . x0, diffusing 
between two perfect absorbing boundaries in the one-dimensional interval .[0, L]. 
In addition, the particle stochastically resets to the initial position .xr = x0 at a 
constant rate r (see Fig. 9.7). For such a system, we are interested in the first-
passage properties as well as the survival probability density. Aiming to compute 
these physical quantities, we will solve Eq. (9.17) with the corresponding boundary 
conditions, .Sr(t |x0 = 0) = Sr(t |x0 = L) = 0, and substitute the result into 
Eq. (9.28) to calculate the MFPT. 

Laplace transforming Eq. (9.17), which manifestly satisfies the boundary condi-
tions .Sr(0|x0) = 1, leads to 

.D
∂2S̃r (s|x0)

∂x2
0

− (s + r)Sr(s|x0) = −1 − rS̃r (s|xr). (9.30) 

Equation (9.30) is a nonhomogeneous ordinary differential equation, and its general 
solution is given by
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Fig. 9.7 Time-dependent trajectories are shown. These are obtained by performing a one-
dimensional Brownian dynamics simulation, using the same parameters as in Fig. 9.3. The  
simulated system consists of a line segment from 0 to L, where the diffusive particles experience 
stochastic resetting at rate r and at time intervals given by a Poisson distribution. As soon as the 
particle hits any of the two absorbing ends at 0 or L (dashed green lines), it is removed from the 
system. This event defines the MFPT when several realizations are made 

.Sr(s|x0) = A cosh (αsx0) + B sinh (αsx0) + 1 + rS̃0(s|xr)

r + s
, (9.31) 

where .αs ≡ √
(r + s)/D. Constants A and B can be obtained from the initial 

conditions, .Sr(s|x0 = 0) = Sr(s|x0 = L) = 0, namely, 

.

A = − 1 + rS̃0(t |xr)

s + r
,

B =
[
cosh (αsL) − 1

sinh (αsL)

]
1 + rS̃0(t |xr)

s + r
.

(9.32) 

Inserting these two last equations into Eq. (9.31) and setting .xr = x0, we finally find 
that 

.Sr(s|x0) = 1 − gr(s, x0)

s + rgr(s, x0)
, (9.33) 

where 

.gr(x0, s) = sinh [αs(L − x0)] + sinh (αsx0)

sinh (αsL)
. (9.34) 

Introducing this result into (9.28) leads to 

.<Tr(x0)> = 1 − gr(x0, 0)

rgr(x0, 0)
. (9.35)
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Fig. 9.8 The mean first-passage time given by Eq. (9.36) is plotted as a function of r for fixed 
.L = 5 (blue line) and .L = 3 (yellow line), when .x0 = 1 and .D = 1. In the former case, a 
minimum is shown at .r∗ = 2.275402, while in the latter, it does not exist. The MFPT does not 
diverge as r goes to zero, and it does diverge when r goes to infinity 

Further simplifications lead us to the following expression: 

.<Tr(x0)> = 1

r

[
sinh(Lα0)

sinh[(L − x0)α0] + sinh(x0α0)
− 1

]
. (9.36) 

The MFPT as a function of r is depicted in Fig. 9.8. Its main characteristic is that 
there are values for which . r∗ exists, while in other cases, it does not. In such a case, 
the presence of resetting increases the MFPT and the minimum value is when .r = 0. 
This shows important diversity in the output. 

In the next section, we will focus on describing a mathematical formalism to 
obtain . r∗ and its value. 

9.7 Optimal Restart Rate 

From the theory of first-passage time under resetting, it is well known that restarting 
minimizes the MFPT if .CV > 1, where CV stands for the ratio between the 
standard deviation .σ(<T (x0)>) and the mean first-passage time .<T (x0)> in the 
absence of restart, namely, 

.CV ≡ σ(<T (x0)>)
<T (x0)> > 1. (9.37) 

Applying this criterion, we can find the domain that the Brownian particle with 
resetting, in the presence of two absorbing boundaries, minimizes the MFPT, i.e., 
the domain where . r∗ exists. To such end, we first calculate .σ 2(T (x0)), which is 
given by
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.σ 2(T (x0)) = <T (x0)
2> − <T0(x0)>2, (9.38) 

where the first and the second moments are given by (2.50) and (2.68), namely, 

.<T (x0)> = x0(L − x0)

2D
, (2.50) 

and 

.<T 2(x0)> = x0(L − x0)
(
L2 + Lx0 − x2

0

)
12D2

. (2.68) 

Substituting these equations into Eq. (9.38) and then the obtained expression into 
(9.37), we find 

.CV =
/

L2 − 2x0(L − x0)

3x0(L − x0)
. (9.39) 

This last expression is greater than one when 

.5u2 − 5u + 1 > 0, (9.40) 

where the dimensionless quantity u is given by .u = x0/L. This inequality 
determines the domain where a restart expedites the completion of the underlying 
process. The solution of Eq. (9.40) is given by 

.D = [(0, u−) ∪ (u+, 1)], (9.41) 

where 

.u± = 5 ± √
5

10
. (9.42) 

Then, . r∗ exists if u belongs to the domain . D. 
Now, we will describe the procedure leading to an explicit expression to calculate 

. r∗. To such end, Eq. (9.36) must be rescaled in terms of u and a new dimensionless 
variable . β given by 

.β ≡ L

2
α0, (9.43) 

leading to
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.<Tr(x0)> = L2

4Dβ2

[
sinh 2β

sinh (2β − x0α0) + sinh (x0α0)
− 1

]
. (9.44) 

Then, after some algebraic work, this last equation can be rewritten as 

.<Tr > = L2

4D
G(β, u), (9.45) 

where 

.G(β, u) = 1

β2

[
cosh (β)

cosh [(1 − 2u)β] − 1

]
. (9.46) 

To find the optimal restart rate, . r∗, one sets 

.
∂G(β, u)

∂β

||||
β=β∗

= 0, (9.47) 

leading to the following transcendental equation: 

.2+sech(β−2uβ) {β sinhβ + coshβ [(2u − 1) tanh(β − 2u) − 2]} = 0. (9.48) 

This means that, once we set u, we can find . β∗. Then, from the definitions of u and 
. β, we find that 

.r∗ = 4β∗2

L2 D. (9.49) 

In summary, once . x0 and L have been set, we have to check if u belongs to . D; 
if so, then . r∗ exists. To find its numerical value, we first have to calculate . β∗ using 
Eq. (9.48) and finally substitute it into Eq. (9.49). 

We will end this section with a practical example where we will use the same 
numerical values as in Fig. 9.8: firstly, let us set .L = 3, .xr = x0 = 1, and .D = 1. 
Then, .u = x0/L = 1/3, which is not an element of . D; therefore, there is no . r∗. 
Let’s remember that . D is approximately .[(0, 0.276393) ∪ (0.723607, 1)]. In  the  
second case, we set .L = 5, .xr = x0 = 1, and .D = 1. Then .u = 1/5 = 0.2 ∈ D, 
and consequently, . r∗ exists. Thirdly, by numerically solving Eq. (9.48), we find that 
.β∗ = 3.771109. Therefore, using Eq. (9.49) we arrive to .r∗ = 2.27540. All of these 
results are in perfect agreement with those shown in Fig. 9.8.
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9.8 Semi-Infinite Revisited: x0 = xr ∪ x0 /+= xr 

Consider a Brownian particle with initial position . x0 diffusing in a semi-infinite 
one-dimensional system with a perfect absorbing point . xT at the origin. In addition, 
the particle is stochastically reset to . xr with a constant rate r , which could now be 
different from . x0. For such a system, we are interested in the first-passage properties 
as a function of . x0 and . xr . In this section, we will generalize the results obtained in 
Sect. 9.4. 

The most general expression for the MFPT is given in Eq. (9.21), and from 
Eq. (9.22), we know that the MFPT with an initial position . xr reads 

.<Tr(xr)> = 1

r

[
eα0xr − 1

]
. (9.50) 

Substituting this last expression into Eq. (9.21), the generalization of the MFPT is 
obtained, namely, 

.<Tr(x0, xr )> = eα0xr
[
1 − e−α0x0

]
r

. (9.51) 

As we already know, there has to be a minimum for the MFPT in r , i.e., . r∗. Once 
again, . r∗ is the optimal rate to which the minimum value of the MFPT is observed, 
as shown in Fig. 9.9. 

The optimal rate . r∗ is calculated by setting the first derivative of Eq. (9.51) with 
respect to r equal to zero. This yields 
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Fig. 9.9 The mean first-passage time given by Eq. (9.51) is plotted as a function of r for fixed 
.x0 = 3 and .xr = 2 (solid green line), .xr = 3 (solid blue line), and .xr = 4 (solid yellow line). The 
diffusivity is .D = 1. In all cases, a minimum is shown at .r∗ = 0.816199, .r∗ = 0.282182, and  
.r∗ = 0.130708, respectively. The MFPT diverges as r goes to zero and infinity
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Fig. 9.10 The optimal rate 
. r∗, calculated from 
Eq. (9.53), is plotted as a 
function of . x0 setting . xr = 1
(solid blue line). The domain 
given by Eq. (9.55) for . xr = 1
and .D = 1 is . 1 ≤ r∗ ≤ 4
(dashed green line). The 
crossing point is given by 
.xc = 0.615068 and 
.r∗
u = 1.85172 (dashed red 
line)
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(9.52) 
As the reader may see, this equation is transcendental, and we can only solve 

it numerically. However, we can obtain the domain of the solutions by taking the 
limits when . x0 goes to zero and infinity. In the latter case, Eq. (9.52) reduces to 

.e
√

r
D

xr

(/
r

D
xr − 2

)
= 0. (9.53) 

Then, .r∗ = 4D/x2
r . When . x0 goes to zero, we proceed as follows: we make a Taylor 

series of Eq. (9.52), keeping terms up to linear order and then take the limit when . x0
approaches to 

.α2
0
x0xr

2
= α0 (x0 − xr) + 1, (9.54) 

therefore, .r∗ = D/x2
r . We conclude that the domain in which restart expedites the 

completion of the underlying process is given by 

.
D

x2
r

≤ r∗ ≤ 4D

x2
r

. (9.55) 

In Fig. 9.10, we can see the behavior predicted by our analysis. 
Finally, we want to answer the following question: what is more efficient, to start 

all Brownian particles at a single point or to distribute them between the absorbing 
and resetting points? In order to answer this question, when placing the absorbing 
target at the origin, we have to integrate Eq. (9.51) from 0 to . xr , namely, 

.<Tr(xr )> = 1

xr

f xr

0

eα0xr
[
1 − e−α0x0

]
r

dx0 = 1 + eα0xr ( α0xr − 1)

xr r3/2
. (9.56)
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Fig. 9.11 The mean first-passage time given by Eq. (9.56) is plotted as a function of r for . xr = 1
(solid blue line), .xr = 1.5 (solid yellow line), and .xr = 2 (solid green line). The diffusivity is 
.D = 1. The minimums are shown at .r∗ = 1.85172, .r∗ = 0.82298, and .r∗ = 0.4629, respectively. 
The MFPT diverges as r goes to zero and infinity 

The optimal rate . r∗ at which the minimum value of the MFPT is observed occurs 
when the first derivative of Eq. (9.56) with respect to r is zero. This yields 

.
1

2
γ 2∗
r − 3

2
γ ∗
r − 3

2
e−γ ∗

r + 3

2
= 0, (9.57) 

where .γ ∗
r = √

r/Dxr . This last equation has a unique solution given by . γ ∗
r =

1.36078, and then, .r∗ = 1.85172D/x2r . Finally, it is worth noting that the existence 
of a crossing point between the uniformly distributed initial positions and a single 
initial position given by .xc = 0.615068 xr can be found numerically. Below this 
point, it is more efficient to place all the random walkers at . x0; otherwise, it is more 
efficient to distribute them uniformly (see Fig. 9.11). 

9.9 Concluding Remarks 

Throughout this chapter, we have shown that when a one-dimensional diffusion 
process takes place in the presence of an absorbing target with resetting, theMFPT is 
finite, contrary to the case where resetting is not present. Additionally, we showed 
that the survival probability density and the MFPT under resetting have a simple 
connection with the survival probability density without resetting in a Laplace 
domain. Finally, we provided the condition that must be fulfilled for the existence 
of the optimal restart rate . r∗, namely, .CV > 1. 

The most important equations that were obtained in this chapter are listed below:
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. 
∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
− r p(x, t) + r p(xr , t)

(Diffusion equation with resetting) 

. 
∂Sr(x0, t |xr)

∂t
= D

∂2

∂x2
0

Sr(x0, t |xr) − rSr(x0, t |xr) + rSr(xr , t |xr)

(Survival probability with resetting) 

. 
∂2<Tr(x0)>

∂x2
0

− r<Tr(x0)> + r<Tr(xr )> = −1

(Mean First-Passage time with resetting) 

.Sr(s|x0) = S0(xr )

1 − rS0(xr )
(Survival probability with resetting) 

.<Tr(x0)> = S0(xr )

1 − rS0(xr )
(Mean First-Passage time with resetting) 
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Chapter 10 
Langevin Equation and Brownian 
Dynamics Simulations 

The objective underlying the intention to simulate Brownian motion on a computer 
is to accurately replicate the empirical observations obtained from an experiment 
in a laboratory. For example, we might want to replicate the trajectories of the 
pollen grains in water, which are moving stochastically, as observed by Robert 
Brown, or perhaps, we might like to describe the colloidal particles seen under the 
microscope by J. B. Perrin (see Fig. 1.8). To such end, computationally speaking, 
we have to discretize the diffusion processes in order to calculate the position of the 
Brownian particles for every time interval . ∆t . Each new position is generated as a 
random number with a Gaussian distribution as the one given by Eq. (3.73), which 
captures the physical essence of the process. Then, the continuous Brownian motion 
is generated by the cumulative summation of a sequence of normally distributed 
random displacements. 

Numerous processes at the macromolecular scale occur in the mesoscopic 
regime,1 where thermal motion drives diffusion and kinetics. Within this context, 
Brownian dynamics simulations (BDSs) offer a computer method ideally suited 
for such a regime, wherein explicit solvent molecules are replaced instead by a 
stochastic force. The technique takes advantage of the large separation in timescales 
between the rapid motion of solvent molecules and the more slower motion of 
diffusing particles. Additionally, the ability to coarse-grain out these fast modes of 
the solvent allows us to simulate considerably larger timescales than in a molecular 
dynamics simulation (MDS). 

Further elaborating on the framework of computational tools, a key component 
of BDSs involves the integration of a stochastic differential equation to generate 
trajectories of diffusing particles. The method naturally incorporates time, enabling 
the study of the temporal dynamics and evolution of complex fluids. For instance, 
in colloidal or particle suspension systems, the motion of particles influences the 

1 The mesoscopic regime is an intermediate scale between the microscopic and macroscopic 
ranges, i.e., between the atomic or molecular scale and human observable scale. 
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solvent, leading to alterations in the velocity field. Consequently, these changes 
in velocity induce modifications to the viscous drag force exerted on neighboring 
particles. This interplay, mediated by the solvent, is known as hydrodynamic 
interaction. These interactions, together with external forces, such as magnetic or 
electric fields, can be included in BDSs through the use of an interaction tensor 
contained in the diffusion tensor. 

Brownian dynamics simulations have been used to study the physics of different 
kinds of macromolecules and soft matter and allow us to model several different 
spatiotemporal processes, such as the rheological behavior of polymers, the dynam-
ics of proteins and DNA, the flow behavior of colloids, the structural dynamics of 
liquid crystals, the dynamics of carbon nanotubes, models of intracellular calcium 
dynamics, and signal transduction in Escherichia coli chemotaxis. They can also be 
used to compute biomolecular association rate constants, dock molecules to predict 
the structure, and investigate the effects of macromolecular crowding on molecular 
association and biomolecular recognition processes accounting for hydrodynamic 
interactions, among others. 

In this chapter, we aim to elucidate the details behind writing computational 
codes and running a BDS. Given that the generation of random numbers serves as 
a crucial component in BDSs, we will start by providing a comprehensive overview 
of all essential elements pertaining to this topic. Then, the derivation and analysis 
of the Langevin equation are presented. Lastly, with these theoretical foundations 
on hand, we will show the main steps in the process of writing code and performing 
BDSs. 

10.1 Discrete Equations of Brownian Dynamics 

As previously established, our computational experiments must be carried out by 
means of the Langevin equation while taking into account all the relevant physical 
considerations. To such end, we present the equipartition theorem to then derive and 
analyze the Langevin equation. 

10.1.1 Equipartition Theorem 

The equipartition theorem was first formulated by James Clerk Maxwell in the mid-
1900s. The modern and most general formulation uses the Hamiltonian, which is a 
way of expressing the theorem in terms of the Hamiltonian of a system. Here, we 
are going to present a heuristic derivation of it. 

A couple of ubiquitous forms of energy exhibited in physical systems are kinetic 
and potential energies. Both of these energies are occasionally written as a quadratic 
formula depending on their respective coordinates. Some of kinetic energy include 
translational, rotational, or vibrational energies. Conversely, only some potential
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energies can be written in this quadratic representation, e.g., the harmonic potential. 
Moreover, every degree of freedom will make a contribution to the total energy, 
meaning that if we only have translational motion in two dimensions, then there 
will be two contributions. Nevertheless, it is worth noting that, in its most general 
form, the theorem states that non-quadratic forms also contribute proportionally to 
the final outcome. 

Consider a system in thermal equilibrium such that the probability of such system 
being in a certain state i, with energy . εi , is given by the Boltzmann factor, namely, 

.p(x) ∝ e−β εi , (10.1) 

where .p(x) is a probability distribution function (PDF), and it is not normalized. 
Normalization can be achieved by integrating across the entire domain, specifically 

.p(x) = e−βεi∫ ∞

−∞
e−βεi dx

. (10.2) 

Additionally, the average energy can be computed as the expected value of the 
distribution, namely, 

.〈E〉 =
∫ ∞

−∞
E p(x) dx. (10.3) 

A particular form for the system’s energy is now needed, so we will assume that it 
is built from contributions of quadratic forms, as stated earlier, leading to 

.E =
n∑

i=1

αi x2
i . (10.4) 

It is worth noting that, since . xi are system variables, we calculate the average energy 
by performing an n-dimensional integral. Consequently 

. 〈E〉 =
∫ ∞

−∞
· · ·

∫ ∞

−∞

n∑
i=1

[
αi x2

i

]
exp

⎡
⎣−β

n∑
j=1

αj x2
j

⎤
⎦

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−β

n∑
k=1

αi x2
k

]
dx1 · · · dxn

dx1 · · · dxn.

(10.5) 

As the denominator is a definite integral, it becomes a constant in terms of the outer 
integrals’ integration variables and can be taken out of all of them. Furthermore, the 
external sum can be factorized out of the integrals, that is,
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.〈E〉 =
n∑

i=1

∫ ∞

−∞
· · ·

∫ ∞

−∞
αi x2

i exp

⎡
⎣−β

n∑
j=1

αj x2
j

⎤
⎦ dx1 · · · dxn

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−β

n∑
k=1

αi x2
k

]
dx1 · · · dxn

. (10.6) 

Moreover, the denominator can be rewritten as the product of n-independent 
integrals of exponentials, namely, 

. 

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−β

n∑
k=1

αi x2
k

]
dx1 · · · dxn

=
∫ ∞

−∞
e−β α1 x21 dx1

∫ ∞

−∞
e−β α2 x22 dx2 · · ·

∫ ∞

−∞
e−β αn x2n dxn. (10.7) 

Regarding the numerator, we must consider that every exponential can be factored 
out to become the integrand of a variable integral, which will be identical to one in 
the denominator. The only term that will be different is the i-term of the sum, i.e., 

. 

∫ ∞

−∞
· · ·

∫ ∞

−∞
αi x2

i exp

⎡
⎣−β

n∑
j=1

αj x2
j

⎤
⎦ dx1 · · · dxn

=
∫ ∞

−∞
e−β α1 x21 dx1 · · ·

∫ ∞

−∞
αi x2

i e
−β αi x2i dxi · · ·

∫ ∞

−∞
e−β αn x2n dxn.

(10.8) 

From Eqs. (10.7) and (10.8), we can identify .n − 1 common factors that are 
simplified, reducing to 

.〈E〉 =
n∑

i=1

∫ ∞

−∞
αi x2

i e
−β αi x2i dxi

∫ ∞

−∞
e−β αi x2i dxi

. (10.9) 

Finally, using the Gaussian integrals given in Appendix A.5, we obtain 

.〈E〉 =
n∑

i=1

α
1

2

√
π

α3 β3

√
π

α β

=
n∑

i=1

1

2β
, (10.10)
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resulting in 

.〈E〉 = n
1

2
kBT . (10.11) 

This is an outstanding result that, together with the initial considerations, can be 
expressed as: If any degree of freedom of a system can be expressed as a quadratic 
form, then every one of them contributes equally to the average energy of the system 
that is in contact with a thermal bath at temperature T , and the contribution of each 
is .kBT /2. 

10.1.2 Langevin Equation 

To obtain the Langevin equation, let us start with one-dimensional Newton’s second 
law: 

.F(t) = m
dv(t)

dt
, (10.12) 

where .F(t) is the force generated by the medium (solute) components and is exerted 
over a particle of mass m. For a Brownian particle, there is a velocity-dependent 
friction force, which is given by 

.ff (t) = ζ v(t), (10.13) 

with . ζ being the friction coefficient with the dimensions of .MT −1. In 1851, Stokes 
showed . ζ to be 

.ζ = 6πηa (10.14) 

for a spherical particle, a formula that is derived in Appendix 23.A, where . η is 
the viscosity and a is the particle’s radius. Moreover, the Einstein-Smoluchowski 
equation for mobility is the inverse of the drag coefficient and reads as 

.μ ≡ v(x, t)

F (x)
= v(x, t)

−dU(x)

dx

= 1

ζ
= βD. (10.15) 

Then, the Netwonian equation of motion for the Brownian particle is 

.m
dv(t)

dt
= −ζ v(t), (10.16)
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where the minus sign of the drag force tells us that its action is opposite to the 
particle’s motion. The steps to solve the equation are written out in detail in 
Sect. 10.1.2.1, and its solution is 

.v(t) = v0 exp

[
− ζ

m
t

]
, (10.17) 

where a long time after reaching thermal equilibrium, the velocity predicted by 
Eq. (10.17) is zero. Nevertheless, we know from the equipartition theorem that a 
particle under those assumptions should have a mean square velocity of 

.〈v(t)2〉eq = 1

m
kBT , (10.18) 

and so, another force must be involved in the physical process. The missing 
component is attributed to a purely random force present in the system. This 
stochastic force is denoted by .ξ(t) and arises from the collisions between the 
medium particles and the Brownian particle, also called random walker. Upon 
closer examination, it is important to note that the force should change very quickly 
following collisions with the surrounding media particles, that is, in an infinitesimal 
amount of time, but this is not necessarily true. To capture the essence of the 
phenomenon, we can choose to state its statistical properties, which can provide 
a more accurate description of the physical reality. The first of them would be 
the average stochastic force, which does not have any particular preference for 
magnitude or direction, so the average over different collisions (realizations) must 
be null; hence 

.〈ξ(t)〉 = 0. (10.19) 

Also, there is no relation between the force at different times. Every value of the 
force for a certain time t is independent of the force exerted at any other time . t '. 
Then, the Dirac delta function helps us provide an accurate description through the 
property stated in Eq. (A.91) of Appendix A.10.3, leading to 

.〈ξ(t) ξ(t ')〉 = C δ(t − t '), (10.20) 

where factor . C is the strength of the fluctuating force and will be determined later. 
Furthermore, Eq. (10.20) is named an autocorrelation function, which means that 
the Brownian motion is a Markovian process, i.e., without memory. Consequently 

.F(t) = −ζ v(t) + ξ(t), (10.21) 

and the Langevin equation reads
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.m
dv(t)

dt
= −ζ v(t) + ξ(t). (10.22) 

Moreover, since 

.v(t) = dx(t)

dt
, (10.23) 

we are able to write Eq. (10.22) as two ordinary differential equations (ODEs), a 
form commonly presented in the literature as 

.
dx(t)

dt
= v(t) and m

dv(t)

dt
= −ζ v(t) + ξ(t), (10.24) 

which can be written as follows: 

.m
d2x(t)

dt2
= −ζ v(t) + ξ(t). (10.25) 

In the case of systems subjected to external forces, an extra term can be added to 
obtain a generalized version of the Langevin equation, namely, 

.m
d2x(t)

dt2
= −ζ v(t) + ξ(t) + Fext (t). (10.26) 

10.1.2.1 Analysis of Velocity 

Equation (10.24) is an inhomogeneous linear differential equation that can be solved 
by the integrating factor technique, namely, 

.v(t) = vh(t) + vp(t), (10.27) 

which is the solution to the homogeneous equation, .vt (t), plus a particular solution 
to the inhomogeneous case, .vp(t). First, let us write the Langevin equation in its 
standard form, namely, 

.
dv(t)

dt
+ ζ

m
v(t) = 1

m
ξ(t). (10.28) 

The solution .vh(t) is found through the simplification of the latter equation, i.e., 

.
1

v(t)

dv(t)

dt
= − ζ

m
. (10.29) 

By integrating this last equation in time, we obtain
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. ln v(t) = − ζ

m
+ A, (10.30) 

where . A is the integration constant. Taking the exponential in both sides of the last 
expression and reducing the constants, the solution of the homogeneous equation 
becomes 

.vh(t) = B exp

(
− ζ

m
t

)
. (10.31) 

If at some specific time .t = 0, the value of the velocity is known and well defined, 
e.g., 

.v(0) = v0, (10.32) 

constant . B can be determined, leading to 

.vh(t) = v0 exp

(
− ζ

m
t

)
. (10.33) 

To complete the process, a particular solution to the inhomogeneous equation must 
be computed. As a first step, the integrating factor should be identified as 

. exp

(∫
ζ

m
dt

)
= exp

(
ζ

m
t

)
, (10.34) 

which multiplied by Eq. (10.28) leads to 

.
dvp(t)

dt
exp

(
ζ

m
t

)
+ ζ

m
vp(t) exp

(
ζ

m
t

)
= 1

m
ξ(t) exp

(
ζ

m
t

)
. (10.35) 

This last equation can be written by using the chain rule, i.e., 

.
d

dt

[
vp(t) exp

(
ζ

m
t

)]
= 1

m
ξ(t) exp

(
ζ

m
t

)
. (10.36) 

The integration yields 

.

∫ t

0

d

dt '

[
vp(t ') exp

(
ζ

m
t '
)]

dt ' = 1

m

∫ t

0
ξ(t ') exp

(
ζ

m
t '
)

dt ', (10.37) 

where . t ' is a dummy variable. In addition, we must impose the initial condition 
which satisfies Eq. (10.32) since we have Eqs. (10.27) and (10.33), namely 

.vp(0) = 0. (10.38)
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Note that this initial condition is different from that of the homogeneous solution. 
Thus, the particular solution of the inhomogeneous equation is 

.vp(t) = 1

m

∫ t

0
ξ(t ') exp

[
− ζ

m
(t − t ')

]
dt '. (10.39) 

Finally, we can write the complete solution for the velocity, Eq. (10.27), which is 

.v(t) = v0 exp

(
− ζ

m
t

)
+ 1

m

∫ t

0
ξ(t ') exp

[
− ζ

m
(t − t ')

]
dt '. (10.40) 

The usefulness of Eq. (10.40) does not stem from the equation itself, but rather from 
its mean value. Since .ξ(t) is a random Gaussian process, the integral in the last 
equation cannot be solved in terms of the usual integration techniques. The reason 
for this is that, because .ξ(t) does not have a certain or deterministic value for a fixed 
t , it will change for every realization of the walk, making it impossible to perform 
the integration. 

To obtain actual information about the system, Eqs. (10.19) and (10.20) should 
be invoked as they are written, that is, as averages or mean values. Then, the average 
of the velocity can be obtained, namely, 

.〈v(t)〉 = v0 exp

(
− ζ

m
t

)
+ 1

m

∫ t

0
〈ξ(t ')〉 exp

[
− ζ

m
(t − t ')

]
dt '. (10.41) 

It is worth remembering that the average is taken over different realizations 
(particles), and not over time, allowing us to calculate the mean value inside the 
time-dependent integral. Recalling Eq. (10.19), the average velocity for a Brownian 
particle is 

.〈v(t)〉 = v0 exp

(
− ζ

m
t

)
, (10.42) 

where the relaxation time of the system can be defined as 

.τr ≡ m

ζ
. (10.43) 

10.1.2.2 Correlation of Velocities and the Diffusion Coefficient 

The correlation between velocities is calculated as follows: Let us take the product 
of Eq. (10.40) for two different times and then calculate the average, leading to 

.〈v(t1) v(t2)〉 = v20 exp

[
− ζ

m
(t1 + t2)

]
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+ 
1 

m2

∫ t2 

0

∫ t1 

0
〈ξ(t '1) ξ(t '2)〉 exp

[
− 

ζ 
m

(
t1 − t '1 + t2 − t '2

)]
dt '1 dt '2, 

(10.44) 

where using the correlation function in Eq. (10.20) yields 

. 〈v(t1) v(t2)〉 = v20 exp

[
− ζ

m
(t1 + t2)

]
+ C

m2 exp

[
− ζ

m
(t1 + t2)

]

×
∫ t2

0

∫ t1

0
δ(t '1 − t '2) exp

[
+ ζ

m

(
t '1 + t '2

)]
dt '1 dt '2. (10.45) 

Using the property in Eq. (A.92) of Dirac’s delta function, this last equation is 
transformed into 

. 〈v(t1) v(t2)〉 = v20 exp

[
− ζ

m
(t1 + t2)

]
+ C

m2 exp

[
− ζ

m
(t1 + t2)

]

×
∫ t2

0
exp

[
2

ζ

m
t '2
]
dt '2. (10.46) 

The remaining integral is solved to obtain 

. 〈v(t1) v(t2)〉 = v20 exp

[
− ζ

m
(t1 + t2)

]
+ C

m2 exp

[
− ζ

m
(t1 + t2)

]

× m

2ζ

{
exp

[
2

ζ

m
t2

]
− 1

}
, (10.47) 

which simplifies to 

. 〈v(t1) v(t2)〉 = v20 exp

[
− ζ

m
(t1 + t2)

]

+ C
2mζ

{
exp

[
− ζ

m
(t1 − t2)

]
− exp

[
− ζ

m
(t1 + t2)

]}
. (10.48) 

This is the correlation equation for the velocities of the Langevin equation. 

10.1.2.3 Long Time Limit 

Once the system has evolved for a sufficiently long period of time, we will assume 
that it has reached a steady state. Consequently, the exponential terms where the 
times . t1 and . t2 are summed will tend to zero, namely,
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.〈v(t1) v(t2)〉eq = C
2mζ

exp

[
− ζ

m
(t1 − t2)

]
, (10.49) 

where, after taking .t1 = t2 = t , it becomes 

.〈v(t)2〉eq = C
2mζ

. (10.50) 

Using the consideration of an equilibrium state, the energy equipartition can be 
applied to the system, so then 

.〈E〉 = 1

2
kB T , (10.51) 

which is considering one degree of freedom. Since the kinetic energy is 

.〈E〉 = 1

2
m〈v(t)2〉eq, (10.52) 

then, by solving for .kB T , it leads to 

.kBT = m〈v(t)2〉eq. (10.53) 

Equating this last expression with Eq. (10.50), we find 

.C = 2kBT ζ. (10.54) 

This result is an example of the fluctuation-dissipation theorem, which was dis-
cussed in Sect. 6.4. Furthermore, it fixes the amplitude of the fluctuations shown in 
Eq. (10.20). Hence, the stochastic force autocorrelation function becomes 

.〈ξ(t ') ξ(t '')〉 = 2kBT ζ δ(t ' − t ''). (10.55) 

10.1.2.4 Analysis of Position 

Upon obtaining an expression for the velocity of a Brownian particle, we can use it 
to obtain an equation describing its position by integrating Eq. (10.40) with respect 
to time, namely, 

. 

∫ t

0

dx(t '')
dt ''

dt '' = v0

∫ t

0
exp

(
− ζ

m
t ''
)
dt ''

+ 1

m

∫ t

0

∫ t ''

0
ξ(t ') exp

[
− ζ

m
(t '' − t ')

]
dt ' dt '', (10.56)
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where the integration order can be inverted as both integration regions go from 0 to 
t using its own dummy variable, leading to 

. x(t) − x(0) = −v0
m

ζ

[
exp

(
− ζ

m
t

)
− 1

]

+ 1

m

∫ t

0
ξ(t ') exp

[
ζ

m
t '
] ∫ t

0
exp

[
− ζ

m
t ''
]
dt '' dt '. (10.57) 

Given that the initial condition for position is 

.x(0) = x0, (10.58) 

then, the particle’s position is given by 

. x(t) = x0 + v0
m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ 1

ζ

∫ t

0
ξ(t ')

{
1 − exp

[
− ζ

m
(t − t ')

]}
dt '.

(10.59) 

Once again, the integral cannot be performed by the usual methods because of the 
stochastic force . ξ(t), but its mean value can be calculated using the property given 
in Eq. (10.19), which establishes that mean Gaussian noise is null, so then 

. 〈x(t)〉 = x0 + v0
m

ζ

[
1 − exp

(
− ζ

m
t

)]
, (10.60) 

where, again, the relaxation time is 

.τr = m

ζ
. (10.61) 

For the case where .t ⪢ τr , the exponential term vanishes, so that 

.〈x(t)〉 = x0 + v0
m

ζ
, t ⪢ τr . (10.62) 

This result is valid for a long time range. 

10.1.2.5 Displacement Variance 

The variance of a random variable Y is defined as 

.σ 2
Y ≡

〈
(Y − 〈Y 〉)2

〉
= 〈Y 2〉 − 〈Y 〉2. (10.63)
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If the one-dimensional displacement of the diffusive particle is .x(t) − x0, then its 
variance is given by 

. σ 2
x =

〈
{[x(t) − x0] − 〈x(t) − x0〉}2

〉
=
〈
[x(t) − x0 − 〈x(t)〉 + x0]

2
〉
. (10.64) 

From this last equation, we see that the variance of the displacement is the same as 
the variance of the position. Using Eq. (10.63), the latter equation results in 

.σ 2
x = 〈x(t)2〉 − 〈x(t)〉2. (10.65) 

Now, we substitute Eqs. (10.59) and (10.60) into Eq. (10.65). For the sake of clarity, 
let us calculate each term separately. First, we square position .x(t) and take the 
average, namely, 

. 

〈x(t)2〉 = x2
0 + 2x0v0

m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ v20

m2

ζ 2

[
1 − exp

(
− ζ

m
t

)]2

+ 1

ζ 2

∫ t

0

∫ t

0
〈ξ(t '') ξ(t ')〉

×
{
1 − exp

[
− ζ

m
(t − t ')

]}{
1 − exp

[
− ζ

m
(t − t '')

]}
dt '' dt '.

(10.66) 

Integrating this last equation and using Eq. (10.20) while considering that the mean 
stochastic force is zero, .〈ξ(t)〉 = 0, we arrive at the following relation: 

. 〈x(t)2〉 = x2
0 + 2 x0 v0

m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ v20

m2

ζ 2

[
1 − exp

(
− ζ

m
t

)]2

+ C
ζ 2

∫ t

0

{
1 − exp

[
− ζ

m
(t − t ')

]}2

dt '. (10.67) 

Now, the second term on the right-hand side of Eq. (10.65) is 

. 〈x(t)〉2 = x2
0 + 2 x0 v0

m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ v20

m2

ζ 2

[
1 − exp

(
− ζ

m
t

)]2
.

(10.68) 

Substituting these last two expressions into Eq. (10.65) and after some manipulation, 
we find 

. σ 2
x = C

ζ 2

∫ t

0

{
1 − exp

[
− ζ

m
(t − t ')

]2}
dt '. (10.69)
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By performing the integration, we obtain 

.σ 2
x = C

ζ 2

{
t − 2m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ m

2ζ

[
1 − exp

(
−2ζ

m
t

)]}
. (10.70) 

Using Eq. (10.54), this last expression results in 

. σ 2
x = 2kBT

ζ

{
t − 2m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ m

2ζ

[
1 − exp

(
−2ζ

m
t

)]}
.

(10.71) 

From Eq. (6.6), we can identify that the common factor in this last equation is the 
diffusion coefficient. As a result, the variance can be written as follows: 

.σ 2
x = 2D

{
t − 2m

ζ

[
1 − exp

(
− ζ

m
t

)]
+ m

2ζ

[
1 − exp

(
−2ζ

m
t

)]}
. (10.72) 

10.1.2.6 Overdamped Langevin Equation 

An important limiting study case is where the acceleration term in the Lagenvin 
equation can be dropped due to high friction between the medium and the diffusing 
particles, making the inertia term irrelevant. Mathematically, we can describe this 
assumption as follows: 

.|ζv(t)| =
∣∣∣∣ζ dx(t)

dt

∣∣∣∣ ⪢
∣∣∣∣md2x(t)

dt2

∣∣∣∣. (10.73) 

Introducing this relation into the Langevin equation, Eq. (10.25), results in 

.
dx(t)

dt
= 1

ζ
ξ(t). (10.74) 

Integrating this equation with respect to time yields 

.

∫ t

0

dx(t ')
dt '

dt ' = 1

ζ

∫ t

0
ξ(t ') dt '. (10.75) 

Using the initial condition given in Eq. (10.58), we arrive at  

.x(t) − x0 = 1

ζ

∫ t

0
ξ(t ') dt '. (10.76) 

From this equation, we have that the mean position is given by
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.〈x(t)〉 = x0 + 1

ζ

∫ t

0
〈ξ(t ')〉 dt ' = x0. (10.77) 

Using the property that the average random force is null and setting .x0 = 0, we find 

.〈x(t)〉 = 0. (10.78) 

Furthermore, the variance in displacement for the overdamped Langevin equation, 
or for a Brownian particle, is 

.σ 2
x =

〈
[x(t) − 〈x(t)〉]2

〉
= 〈x(t)2〉, (10.79) 

or 

. σ 2
x = 1

ζ 2

∫ t

0

∫ t

0
〈ξ(t '') ξ(t ')〉 dt '' dt ' = 1

ζ 2

∫ t

0
C δ(t ' − t '') dt ''dt ' = C

ζ 2

∫ t

0
dt,

(10.80) 

which together with the Eq. (10.54), yields 

.σ 2
x = 2kBT

ζ
t = 2Dt, (10.81) 

and consequently 

.D = σ 2
x

2t
=

〈
[x(t) − 〈x(t)〉]2〉

2t
. (10.82) 

Remarkably, this is the same result obtained by Einstein, i.e., Eq. (1.10). Also, it was 
derived as the variance of Gaussian distribution without any physical consideration, 
i.e., Eq. (3.72). Furthermore, Eq. (10.82) will play a key role calculating the 
diffusion coefficient in diffusive system simulations. Nontheless, readers should 
note that the square of the quantities involved can result in the phenomenon known 
as catastrophic cancellation due to floating point arithmetics used in computer 
systems and alternative methods to calculate the variance will need to be considered. 

10.1.3 Brownian Dynamics Simulations 

Brownian dynamics simulation focuses on a particle’s motion that obeys the 
overdamped Langevin equation, namely, 

.|ζv(t)| =
∣∣∣∣ζ dx(t)

dt

∣∣∣∣ ⪢
∣∣∣∣md2x(t)

dt2

∣∣∣∣. (10.73)
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Under this consideration, the (overdamped) Langevin equation reads 

.
dx(t)

dt
= 1

ζ
ξ(t) + 1

ζ
Fext (t), (10.83) 

where .Fext corresponds to the external forces. 
The stochastic nature of .ξ(t) prevents us from obtaining a solution for the 

differential equation using the usual techniques. We must remember that our goal is 
to simulate the system, and given that a computer can only handle discrete values, 
the discretization of Eq. (10.83) must be done by writing it as a finite difference 
function. By setting .xn ≡ x(t), the particle’s position at time .t + ∆t is given by 

.xn+1 = x(tn + ∆t). (10.84) 

Now, after making the Taylor series of the last expression, we obtain 

.xn+1 = xn + ∆t
dx

dt
+ . . . . (10.85) 

Then, truncating the series up to order .O(∆t2) allows us to write the derivative as 
follows: 

.
dx

dt
→ 1

∆t
(xn+1 − xn). (10.86) 

Substituting this last relation into Eq. (10.83) gives 

.xn+1 = xn + ∆t

ζ
ξ(t) + ∆t

ζ
Fext (t). (10.87) 

Working with the external forces and using Eq. (10.15), we see that 

.
∆t

ζ
Fext (t) = β D ∆t Fext (t). (10.88) 

The stochastic term of Eq. (10.87) is truly a force with the corresponding dimen-
sions, but it is convenient to split it into a deterministic factor, which will carry the 
dimensionality of the force, and an adimensional stochastic factor generated by a 
pseudorandom number generator. 

We already deduced an important property of Brownian motion, namely, the 
standard deviation, or 

.σ = √
2D∆t, (10.89) 

whose dimensions are
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.[σ ] = L. (10.90) 

Now, a standard normal distribution .N(μ = 0, σ = 1) can be transformed into 
another normal distribution with different parameters by 

.N(μ, σ) = μ + σN(0, 1) = σN(0, 1). (10.91) 

Due to the thermal bath, from Eq. (10.91), we can see that the displacement of 
particles is given by .ση(t), where .η(t) is a random number, which can be described 
by the normal distribution in Eq. (10.91). Therefore, 

.ξ(t) =
√

2ζ

β∆t
η(t), (10.92) 

where the dimensions of the square root are 

.

[√
2ζ

β∆t

]
= MLT −2, (10.93) 

which is dimensionaly equivalent to a force. Then, .η(t) has no dimensions, and 
.η(t) ∼ N(0, 1). Finally, using Eqs. (10.89), (10.92), and (10.87) yields 

.xn+1 = xn + √
2D∆t η(t) + β D ∆t Fext (t). (10.94) 

This is the cornerstone result that allows us to obtain the next step, .xn+1, of a random 
walker by means of the previous step, . xn. This equation gives us the trajectory of a 
diffusing particle through time. 

10.2 Random and Pseudorandom Numbers 

The measurement of randomness is a complicated process. However, statistics 
addresses this issue by quantifying certain properties, including correlation, peri-
odicity, and dimensional distribution. Moreover, the generation of artificial random-
ness, and therefore of random numbers, is considerably difficult, and its production 
demands a distinctive combination of rigorous formal mathematics, creativity, and 
intuition. Primarily, the absence of true random number generators (TRNGs) lies in 
the attempt to obtain randomness through computational deterministic algorithms. 
In order to overcome this challenge, deterministic algorithms are used to generate 
pseudorandom numbers (PRNs). They are “random” in the sense that, on average, 
they pass statistical tests regarding their distribution and correlation and differ from 
true random numbers in that they are generated by an algorithm rather than a truly 
random process. Early developments in generating PRNs trace back thousands of
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years, illustrating the persistent search for unpredictability throughout time. For 
a concise historical overview of PRNs, the reader is referred to a brief historical 
review2 made by Pierre L’Ecuyer in 2017. 

The use of pseudorandom number generators (PRNGs) is employed in a variety 
of applications including gambling, computer simulation, statistical sampling, 
encryption, and digital signature creation, as well as other areas where the ability 
to generate random numbers is critical. 

10.2.1 Middle Square Method 

In 1949, John von Neumann proposed the middle square method as a PRNG. 
Although this method is no longer viable due to the availability of far superior 
techniques, its historical significance as the pioneering effort in random number 
generation remains noteworthy. 

The idea of this method is to use an n-digit starting value, or seed, to generate 
n-digit PRNs with an arithmetic procedure. The algorithm is shown below: 

1. Set an n-digit as the seed number, and let it be the first number in the PRN 
sequence. 

2. Square the last number in the PRN sequence, which will probably result in a 
2n-digit number. 

3. If the result is not a 2n-digit number, then left-pad with zeros. 
4. Take the middle n-digits as the next PRN in the sequence. 
5. Repeat from the step 2. 

Let us give a couple of examples where (a) we choose a seed that generates 
several PRNs without apparent repetition and (b) we show the limited applicability 
of the method. In the first example, we start with 4321 as the seed and we proceed 
to execute the above steps as follows: 

• 4321 is the seed and the first number in the PRN sequence. 
• Square the last number in the sequence: .43212 = 18671041. 
• As 18671041 has 8 digits (twice the number of digits of 4321), there is no need 

to left-pad with zeros. 
• Take the middle four digits of 18671041, which are 6710, and make them part of 

the PRN sequence. 
• Square the last number in the sequence: .67102 = 45024100. 
• As 45024100 has 8 digits, there is no need to left-pad with zeros. 
• Take the middle four digits of 45024100, which are 0241, and make it part of the 

PRN sequence. 
• Square the last number in the sequence: .2412 = 58081.

2 History of Uniform Random Number Generation, P. L’Ecuyer, Proceedings of the 2017 Winter 
Simulation Conference (2017), Art. 13. DOI: 10.5555/3242181.3242195. 
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• As 58081 does not have 8 digits, we need to left-pad with zeros to obtain 
00058081. 

• Take the middle four digits of 00058081, which are 0580, and make them part of 
the PRN sequence. 

• .PRN sequence: 4321, 6710, 241, 580. 
• Square the last number in the sequence: .5802 = 336400. 
• As 336400 does not have 8 digits, we need to left-pad with zeros to obtain 

00336400. 
• Take the middle four digits of 00336400, which are 3364, and make them part of 

the PRN sequence. 
• Square the last number in the sequence: .33642 = 11316496. 
• As 11316496 has 8 digits, there is no need to left-pad with zeros. 
• Take the middle four digits of 11316496, which are 3164, and make them part of 

the PRN sequence. 
• .PRN sequence: 4321, 6710, 241, 580, 3364, 3164. 
• And so on...3 

The next illustrative example will show the weakness of the method when setting 
24 as the seed: 

• 24 is the seed and the first number in the PRN sequence. 
• Square the last number in the sequence: .242 = 576. 
• As 576 does not have 4 digits (twice the number of digits of 24), we need to 

left-pad with zeros to obtain: 0576. 
• Take the middle two digits of 0576, which are 57, and make them part of the 

PRN sequence. 
• Square the last number in the sequence: .572 = 3249. 
• As 3249 has 4 digits, there is no need to left-pad with zeros. 
• Take the middle four digits of 3249, which are 24, and make them part of the 

PRN sequence. 
• .PRN sequence: 24, 57, 24. 

From the last example, we see that only two different numbers (including the 
seed), .24, 57, can be obtained from the middle square method by using 24 as the 
seed. 

10.2.2 Linear Congruential Generator 

Since von Neumann’s proposal, several attempts were made to generate random 
numbers, and the analysis of their properties and failures was studied in depth. In 
1951, Derrick Lehmer published a new method for a PRNG consisting of generating

3 The 71th number in the PRN sequence is 8100, causing the method to enter a loop: 
.8100, 6100, 2100, 4100, 8100. 
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a large number of PRNs before the sequence repeats. The new approach to generate 
PRNs was named Lehmer random number generator, sometimes found as Park-
Miller random number generator, and became the first in a new kind of algorithms, 
otherwise known as linear congruential generators (LCGs). Its main attribute is that 
the period can be long and known under certain circumstances. The method is based 
on the following equation: 

.xk+1 = a + b xk modm, (10.95) 

where mod is the modulo function.4 For example, the expression 5 mod 2 would 
evaluate to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1. 
The term a is an element of high multiplicative order5 modulo m, and the seed . x0
is coprime6 to m. The maximum number for 32 bits unsigned integers is .232 − 1, 
while .231 − 1 is the largest for signed integers. The seed, . x0, is the first number in 
the sequence of the PRNs and must be fixed at start. 

Since Eq. (10.95) contains the modulus operation, the sequence will repeat after 
m iterations, at the most. This is the period of the generator. Certaintly, this period 
can be shorter and directly depends on the chosen values of a, b, and m. In practice, 
the generated numbers are normalized, that is, they are mapped to the interval . (0, 1)
by calculating the ratio of the generated number with m. 

When using the LGCs, the choice of constants is fundamental to getting a 
long period (i.e., a large set of non-repeating sequences) and uniformly distributed 
pseudorandom numbers into the interval. As a naive approach to the “quality” of the 
numbers, let us consider the number line, where we place the generated numbers 
that must not have any preference for a particular location or set of locations on 
the line, and visually, there will be no clusters of numbers. If we only generate a 
few numbers, we will not be able to appreciate their distribution and will thus be 
perceived as random. 

By extrapolating this idea to a three-dimensional box, we can draw a point for 
each triplet of generated numbers. The behavior of the points will be different for 
“bad” and “good” choices of constants for the LGC, as shown in Figs. 10.1 and 10.2. 
On the left-side panels of the mentioned figures, the numbers generated from “bad” 
alternatives of constants are depicted, from which we can see how the points in 
space are aligned into planes. Meanwhile, on the right-side panels of the plots, we 
draw the numbers coming from a “good” choice of the constants; those points look 
intuitively random.

4 In computing, the modulo function, mod, takes as arguments two real numbers and returns the 
remainder from the division of the integer part of the first argument (the dividend) by the integer 
part of the second argument (the divisor). For example, mod(10,3) = 1. 
5 The multiplicative order of a modulo n is the smallest positive integer k such that .ak1 mod n. 
6 In number theory, two integers a and b are coprime if the only positive integer that is a divisor of 
both is 1. 
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10.2.2.1 An Implementation of an LCG 

All the codes presented in this book are written in FORTRAN. Old versions of the 
language used to rely on a so-called congruential PRNG, known for giving bad 
quality random numbers, so it is best to avoid it. The GNU Compiler Collection 
(GCC) contains a FORTRAN compiler best known as GFortran, which in early 
versions implemented the old FORTRAN 77 standard rand() function, as of 
version 4.2.4 (2008), it came out with a new-brand random_number() subroutine 
that implements the George Marsaglia’s infamous KISS (Keep It Simple Stupid) 
algorithm. Starting from GCC 7.5.0 (late 2019), GFortran is equipped with the 
xorshift1024* algorithm to generate uniformly distributed PRNs, which can be 
used even in multithreaded programs, a valuable feature these days. In contrast, 
the Intel© FORTRAN compiler implements L’Ecuyer’s portable combination of 
two congruential methods, offering a bit less flexibility and reliability. Despite the 
above, because of the scope of this book, any of the available PRNGs are suitable to 
do the job. 

Let us build a working example of an LCG by taking some values from 
popular implementations. It is worth noting that some of them, like glibc, Java  
implementations, and POSIX standards, truncate the output of the algorithm to 
obtain statistically better values. In our implementation, we do not use such 
truncation for purposes of simplicity and practicality. 

In order to understand the difference between “good” and “bad” PRNGs, we list 
the code of the c++11 standard implementation of the function called minstd_rand. 
We will show that when setting .a = 0, .b = 48271, and .m = 231−1 = 2147483647, 
“good” PRNs are generated, whereas when setting .a = 1, .b = 1, 229, and .m = 232, 
“bad” PRNs are generated.7 The Fortran implementation is shown in Listing 10.1. 

Listing continued on next page 

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ lcg-cpp11.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
!
! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
!
! From the book:
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !

Listing 10.1 [lcg-cpp11.f90]: Fortran 90 implementation of C++11 
standard minstd_rand function, an LCG-type generator.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 

7 In 1999, L’Ecuyer provided a table with “good” values of a, b, and  m. For further details, see 
Tables of linear congruential generators of different sizes and good lattice structure, P. L’Ecuyer, 
Math. Comp. 68 (1999), 249–260. DOI: 10.1090/S0025-5718-99-00996-5. 
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Listing continued on next page 

Listing continued from last page

 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code that implements
 15 ! the minstd function specified in the cpp11
 16 ! standard. It generates 10,000 numbers and compares
 17 ! the result with the one stated in the standard.
 18 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 19
 20 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 21 ! To compile with GFortran, you must include the
 22 ! helpers.f90 module.
 23 ! gfortran helpers.f90 lcg_cpp11.f90
 24 ! Then you can run the program:
 25 ! ./a.out
 26 !
 27 ! After running, a file called «minstd_numbers.dat»
 28 ! is generated, and can be plotted with any software
 29 ! of your choice. To do this using gnuplot, execute:
 30 ! gnuplot -p -e 'plot "minstd_numbers.dat"'
 31 ! -p means that the plot must persist until the
 32 ! user closes it explicitly.
 33 ! -e is used to specify the instructions
 34 ! for using gnuplot directly in the commandline.
 35 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 36
 37 program lcg_cpp11
 38
 39 ! Load the helpers module, which contains functions,
 40 ! constants, and more...
 41 use helpers
 42
 43 ! Every data type must be explicitly stated.
 44 implicit none
 45
 46 ! Declare and initialize our LCG parameters
 47 ! as constants.
 48 integer(kind=i32), parameter :: a = 0
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Listing continued on next page 

Listing continued from last page

 49 integer(kind=i32), parameter :: b = 48271
 50 ! We must write the result. If we try to calculate it,
 51 ! the compiler drops an error because 2^31 overflows the
 52 ! capacity of an integer, even if 2^31 - 1 fits.
 53 integer(kind=i32), parameter :: m = 2147483647
 54
 55 ! How many numbers will be generated.
 56 integer(kind=i32), parameter :: n = 10000
 57 ! According to c++11 standard, the 10,000th generated
 58 ! number must be 399268537 when the initial seed is 1.
 59 integer(kind=i64), parameter :: xstd = 399268537
 60
 61 ! A unit number for the file where the numbers
 62 ! will be saved. Fortran >= 2003 will
 63 ! assign this automatically in the open call.
 64 integer(kind=i32) :: FUNIT
 65
 66 ! Number in the sequence. Initially this must be
 67 ! the seed.
 68 integer(kind=i64) :: x = 1
 69
 70 ! A counter
 71 integer :: i
 72
 73 ! Open a file to write the normalized numbers
 74 open(newunit=FUNIT, file='minstd_numbers.dat')
 75
 76 do i=1, n
 77 x = a + mod(b * x, m)
 78
 79 ! You must not forget that «x», and «m» are integers
 80 ! and Fortran will be perform integer arithmetic.
 81 ! You must multiply one of the operands by a real
 82 ! factor.
 83 write(FUNIT,*) 1.0_dp * x / m
 84 end do
 85
 86 ! Close the file
 87 close(unit=FUNIT)
 88
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Listing continued from last page 

Listing ended

 89 if(x == xstd) then
 90 print *, 'The 10000 number from seed 1 is correct: ' &
 91 // nstr(x)
 92 else
 93 print *, &
 94 'Something goes wrong, the last number should be ' &
 95 // nstr(xstd) // ' and not ' // nstr(x)
 96 end if
 97
 98 end program lcg_cpp11 

Compiling and Running of Listing 10.1

 1 # Compile
 2 gfortran helpers.f90 lcg-cpp11.f90
 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output
 8 The 10000 number from seed 1 is correct: 

399268537
 9
 10 # Plot
 11 gnuplot -p -e 'plot "minstd_numbers.dat"' 

10.2.3 Inverse Transform Sampling 

Now, we will provide all the mathematical tools needed to obtain a generator of 
Gaussian or normal random numbers. Based on the assumption that we can generate 
uniformly distributed PRNs of good enough quality, we are able to transform them 
into normally distributed PRNs by means of pseudorandom number sampling. This  
method consists of generating sample numbers at random from any probability 
distribution that follows a certain distribution. For continuous distributions, there are
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Fig. 10.1 Comparison between two LGC implementations in a three-dimensional box. On the 
left-hand side, we show the points corresponding to a “bad” choice of constants [. a = 1, b =
1, 229,m = 232]. In contrast, on the right, we depict the points generated with a “good” choice 
of constants (minstd [.a = 0, b = 48, 271,m = 231 − 1]). When there are very few points, the 
randomness is apparent for both sets, but as soon as more points are added, the not-so-random 
distribution of the points for a “bad” choice of the LGC constants is apparent 

different methods, such as the ratio of uniforms, slice sampling, rejection sampling, 
the convolution generator, and inverse transform sampling, among others. 

For our purposes, we will use the inverse transform sampling method. Let us 
define U as a uniformly distributed random variable within the interval .(0, 1) and 
consider a continuous distribution function of the form 

.FX(x) = P {X ≤ x} = P
{
F−1(U) ≤ x

}
, (10.96) 

where the random variable .X = F−1(U) and the uniformly distributed random 
numbers U within the interval .(0, 1), .Unif(0, 1). From probability theory, we know 
that if F is a cumulative density function (CDF), then it is a monotonic increasing 
function, so if we have .x1 ≤ x2 inside its domain, then .F(x1) ≤ F(x2); hence 

.FX(x) = P
{
F
(
F−1 (U)

)
≤ F(x)

}
= P {U ≤ F(x)} = F(x). (10.97) 

The last equality holds by the knowledge that U is uniformly distributed. This 
procedure allows us to generate a random variable X, which will be distributed 
as F by means of a uniformly distributed random number U , and then applying 
the transformation .X = F−1(U). Consequently, we have a method for generating 
random numbers from any probability distribution by using its inverse cumulative
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Fig. 10.2 Comparison between two LGC implementations in a three-dimensional box. On the left-
hand side, we show the points corresponding to a bad choice of constants [. a = 1, b = 1, 229,m =
232]. In contrast, on the right-hand side, we depict the points generated with a good choice of 
constants (minstd [.a = 0, b = 48, 271,m = 231 − 1]). When there are very few points, the 
randomness is apparent for both sets, but as soon as more points are added, the not-so-random 
distribution of the points for a bad choice of the LGC constants is apparent 

distribution, or in other words, we can generate X from .F−1(U). Hereafter, we 
assume that our computer can generate independent realizations of a random 
variable U uniformly distributed in .(0, 1), on demand. 

Let us exemplify the method. Assume X is an exponential random variable with 
probability density .λe−λy , for .y > 0. Our goal is to generate random numbers with 
such a distribution. To such end, first, we compute the CDF, namely, 

.F(x) =
∫ x

0
λe−λy dy = 1 − e−λx. (10.98) 

Solving for the inverse (solving for x), where 

.x = F
(
F−1(y)

)
, (10.99) 

yields 

.x = F
(
F−1(y)

)
= 1 − exp

(
−λF−1(y)

)
. (10.100) 

From this last equation, we have that
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.X = F−1(y) = −1

λ
ln (1 − y) . (10.101) 

In practice, we first generate .U ∼ Unif(0, 1), and then set 

.Xi = −1

λ
ln (1 − Ui) . (10.102) 

Finally, we have to evaluate this function according to the amount of random 
numbers desired, using one . Ui in each step. 

10.2.4 Box-Müller Method 

A popular transformation that transforms uniformly distributed numbers into nor-
mally distributed ones is the Box-Müller algorithm. This algorithm, named after 
George E. P. Box and Mervin E. Müller, is made of square roots and logarithmic 
calculations and is capable of generating pairs of independent standard normal 
random variables. It is worth noting that if a large amount of PRNs is needed, 
this transformation becomes slower than others, such as Kinderman and Monahan’s 
ratio method or the Ziggurat transformation by Marsaglia and Tsang. 

If we wish to apply the inverse transform sampling to obtain a normally 
distributed numbers,8 a closed form of a Gaussian probability distribution function 
(PDF) cannot be obtained in terms of elementary functions. Furthermore, its CDF 
is given by 

.I = 1√
2π

∫ ∞

−∞
e− 1

2 x2 dx. (10.103) 

Despite this limitation, we can take the integral squared 

.I 2 = 1√
2π

∫ ∞

−∞
e− 1

2 x2 dx
1√
2π

∫ ∞

−∞
e− 1

2 y2 dy, (10.104) 

which under a transformation to polar coordinates becomes 

.I 2 = 1

2π

∫ 2π

0
dθ

∫ ∞

0
r e− 1

2 r2 dr. (10.105) 

Solving the integral for . θ and using the variable change .τ = r2/2, and .dτ = r dr , 
we have

8 A Note on the Generation of Random Normal Deviates, G. E. P. Box and Mervin E. Müller, Ann. 
Math. Statist. 29 (2): 610–611. DOI: 10.1214/aoms/1177706645. 
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.I 2 =
∫ ∞

0
e−τ dτ = 1. (10.106) 

The same technique used to solve the I integral, also known as a Gaussian integral, 
can be used to obtain the inverse transform sampling for normally distributed 
numbers. We start by writting a PDF for a two-dimensional Gaussian distribution, 
namely, 

.f (x, y) = 1√
2π

e− 1
2 x2 1√

2π
e− 1

2 y2 = 1

2π
e− 1

2 (x+y)2 , (10.107) 

which can be written in polar coordinates as 

.f (r, θ) = 1

2π
e− 1

2 r2 . (10.108) 

Originally, x and y were uniformly distributed in the .[0, 1] interval, so the new 
variable . θ must be uniformly distributed along its own domain, .[0, 2π ], and this can 
be written in terms of .U1 ∼ Unif(0, 1), yielding 

.θ = 2πU1, (10.109) 

which can be understood as a scale transformation. Now, we need to obtain the CDF, 
which is 

.F(r, θ) = 1

2π

∫ 2π

0

∫ r

0
r ' e− 1

2 r
'2
dr ' dθ = 1 − e− 1

2 r2 . (10.110) 

Then, we can apply the inversion, but we must not forget that our CDF only depends 
on r , which must be uniformly distributed, so 

.r = F
(
F−1(r)

)
= 1 − e− 1

2F−1(r)2 (10.111) 

since .ln(1 − r) = −F−1(r)2/2, then 

. − 1

2

[
F−1(r)

]2 = ln(1 − r), (10.112) 

leading to 

.F−1(r) = √−2 ln(1 − r). (10.113) 

As .r ∼ Unif(0, 1), then .U2 ≡ 1 − r ∼ Unif(0, 1). Now, for practical purposes, we 
simply change the variables, i.e.,
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Fig. 10.3 Distribution of the PRNs generated with the Fortran code in Listing (10.2). The  
histogram on the left-hand side shows U generated with the random_number() Fortran procedure, 
which yields uniformly distributed numbers. The histogram on the right-hand side shows the 
normally distributed numbers obtained after applying the Box-Müller inversion method sampling 
on U 

.r = F−1(U2) = √−2 ln(U2). (10.114) 

Equations (10.109) and (10.114) are the transformations that allow us to obtain the 
normally distributed PRNs. All we need to do is invert the coordinate transforma-
tion, that is, 

.x = r cos(θ), y = r sin(θ). (10.115) 

Consequently 

.x = √−2 ln(U2) cos(2πU1), y = √−2 ln(U2) sin(2πU1). (10.116) 

These last two equations give us a pair of independent and normally distributed 
PRNs using two uniformly distributed numbers, and it is called the Box-Müller 
method.9 

The Fortran implementation is shown in Listing (10.2), while the histograms for 
the generated numbers are shown in Fig. 10.3.

9 Despite the method’s name, it was first reported in Fourier Transforms in the Complex Domain, 
R. C. Paley and N. Wiener, Colloquium Publications, American Mathematical Society, 19 (1934), 
[pages 146–147]. 
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Listing continued on next page 

Listing 10.2 [box-muller.f90]: Fortran 90 implementation of the Box-
Müller method using the Fortran default PRNG to obtain the uniformly 
distributed numbers.

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ box-muller.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code for performing
 15 ! a Box-Müller transformation over uniformly
 16 ! distributed numbers to make them follow a Gaussian
 17 ! distribution.
 18 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 19
 20 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 21 ! To compile with GFortran, you must include the
 22 ! helpers.f90 module.
 23 ! gfortran helpers.f90 box_muller.f90
 24 ! Then you can run the program:
 25 ! ./a.out
 26 !
 27 ! After running, a couple of files are generated:
 28 ! - «random_uniform.dat», uniformly distributed numbers
 29 ! - «random_normal.dat», normally distributed numbers
 30 ! Their histograms can be plotted with any software
 31 ! of your choice. To do this using gnuplot, execute:
 32 ! gnuplot -p -e 'width=0.125 ; bin(x, width) = \
 33 ! width∗floor(x/width) ; plot \
 34 ! "random_uniform.dat" u (bin($1,width)):(1.0)\
 35 ! smooth freq with boxes notitle'
 36 ! and
 37 ! gnuplot -p -e 'width=0.5 ; bin(x, width) = \
 38 ! width∗floor(x/width) ; plot \
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Listing continued on next page 

Listing continued from last page

 39 ! "random_normal.dat" u (bin($1,width)):(1.0)\
 40 ! smooth freq with boxes notitle'
 41 !
 42 ! -p means that the plot must persist until the
 43 ! user closes it explicitly.
 44 ! -e is used to specify the instructions
 45 ! for using gnuplot directly in the commandline.
 46 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 47
 48 program box_muller
 49
 50 ! Load the helpers module, which contains functions,
 51 ! constants, ...
 52 use helpers
 53
 54 ! Every data type must be explicitly stated.
 55 implicit none
 56
 57 ! How many numbers will be generated.
 58 integer(kind=i32), parameter :: n = 10000
 59
 60 ! A unit number for the file where the
 61 ! uniformly distributed numbers will be saved.
 62 ! Fortran >= 2003 will
 63 ! assign this automatically in the open call.
 64 integer(kind=i32) :: UNIF_UNIT
 65 ! A unit number for the file where the
 66 ! normally distributed numbers will be saved.
 67 ! Fortran >= 2003 will
 68 ! assign this automatically in the open call.
 69 integer(kind=i32) :: NORMAL_UNIT
 70
 71 ! Normally distributed numbers
 72 real(kind=dp) :: x = 1.0_dp
 73 real(kind=dp) :: y = 1.0_dp
 74
 75 ! Variables to hold the uniformly distributed numbers
 76 real(kind=dp) :: u1, u2
 77
 78 ! A counter
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Listing continued from last page 

Listing ended

 79 integer :: i
 80
 81 ! Open a file to write the uniformly distributed numbers
 82 open(newunit=UNIF_UNIT, file='random_uniform.dat')
 83 ! Open a file to write the normally distributed numbers
 84 open(newunit=NORMAL_UNIT, file='random_normal.dat')
 85
 86 ! The cycle is executed only n/2 times because in every
 87 ! loop, two numbers of each kind are obtained. You must
 88 ! make sure that «n» is an even number to get the
 89 ! desired quantity of numbers.
 90 do i=1, n/2
 91 ! Get the two uniformly distributed numbers
 92 call random_number(u1)
 93 call random_number(u2)
 94
 95 ! Apply the Box-Müller method
 96 x = sqrt( -2.0_dp * log(u2) ) * cos(2.0_dp * PI * u1)
 97 y = sqrt( -2.0_dp * log(u2) ) * sin(2.0_dp * PI * u1)
 98
 99 ! Write the uniformly distributed numbers to the files
 100 write(UNIF_UNIT, *) u1
 101 write(UNIF_UNIT, *) u2
 102
 103 ! Write the normally distributed numbers to the files
 104 write(NORMAL_UNIT, *) x
 105 write(NORMAL_UNIT, *) y
 106 end do
 107
 108 ! Close the files
 109 close(UNIF_UNIT)
 110 close(NORMAL_UNIT)
 111
 112 print *, nstr(n) // ' uniformly distributed numbers, ' &
 113 // 'and ' // nstr(n) // ' normally distributed' &
 114 // ' numbers were generated!'
 115
 116 end program box_muller
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Compiling and Running of Listing 10.2

 1 # Compile
 2 gfortran helpers.f90 box-muller.f90
 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output
 8 10000 uniformly distributed numbers, and 10000 

normally distributed numbers were generated!
 9
 10 # Plot
 11 gnuplot -p -e 'set multiplot layout 1,2 ;
 12 bin(x, width) = width∗floor(x/width) ;
 13 width=0.125 ;
 14 set title "Uniform distributed numbers" ;
 15 plot "random_uniform.dat" u
 16 (bin($1,width)):(1.0) smooth freq
 17 with boxes notitle ;
 18 width=0.5 ;
 19 set title "Normally distributed numbers" ;
 20 plot "random_normal.dat" u
 21 (bin($1,width)):(1.0) smooth freq
 22 with boxes notitle' 

10.3 Simulation Helpers and Programs 

The process of making the computational experiments involves certain other details 
related to the tools we are using, e.g., the programming language or compilers. As 
Fortran will be used, a companion helper library is provided featuring function-
s/subroutines that cover certain aspects of the code that are not within the scope 
of this book. To this end, the helpers.f90 file is included and presented in 
Appendix 10.A. Note the comments included that provide a comprehensive guide 
for the code, which also allows interested readers to make their own adjustments. 

In addition to the helpers file, the provided source code for each computational 
experiment can be copied directly from the PDF and pasted into your preferred 
editor.
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10.4 Computational Experiments 

10.4.1 Absorbing-Absorbing 

In Sect. 2.5, we derived the expression for mean first-passage time (MFPT) for 
particles diffusing into a one-dimensional channel of length L, in the presence of 
absorbing points at .x = 0 and .x = L, namely, 

.〈t (x0)〉 = x0(L − x0)

2D
. (2.50) 

With the aim of comparing the results obtained from BDSs and Eq. (2.50), let us 
assume that the Brownian particles start at .x0 = 1/3 and the absorbing boundaries 
are placed at .x = 0 and .L = 1, respectively. In the code presented in Listing 10.3, 
the repetitions of the experiment are set to .NRW = 2500, namely, the number of 
particles or random walkers. 

The first-passage time is measured for each particle and printed out when it is 
removed from the system (when particles reach one of the absorbing boundaries 
for the first time), together with the theoretical value and their relative error as 
a percentage. At the end of running the program, the mean first-passage time is 
obtained. 

Listing continued on next page 

Listing 10.3 [abs-abs.f90]: Fortran 90 program to simulate a one-
dimensional channel of length L = 1 with absorbing points at positions 
x = 0 and x = L. Every particle starts at x0 = 1/3.

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ abs-abs.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code for the simulation
 15 ! of a 1D channel of length L.
 16 ! It has two absorbent points at x=0, and x=L.
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Listing continued on next page 

Listing continued from last page

 17 !
 18 ! The Brownian walkers start their path at x=x0, and
 19 ! the simulation for each of them ends when an
 20 ! absorbent point is reached. Then, the Mean First
 21 ! Passage Time (MFPT or <tau>) is obtained.
 22 !
 23 ! The theoretical value is used to calculate the
 24 ! relative error of the simulation. D0 is the bulk
 25 ! diffusion constant, usually set to 1.
 26 !
 27 ! tau = x0 * (L-x0) / (2.0 * D0)
 28 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 29
 30 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 31 ! To compile with GFortran, you must include the
 32 ! helpers.f90 module.
 33 ! gfortran helpers.f90 abs-abs.f90
 34 ! Then you can run the program:
 35 ! ./a.out
 36 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 37
 38 program absabs
 39
 40 ! Load the helpers module, which contains functions,
 41 ! constants, and more...
 42 use helpers
 43
 44 ! Mandatory declaration of data type variables
 45 ! and constants.
 46 implicit none
 47
 48 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 49 ! Declaration of constants
 50 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 51
 52 !!! Simulation parameters
 53 ! Seed of the PRNG
 54 integer, parameter :: RSEED = 0
 55 ! Number of random walkers (particles)
 56 integer, parameter :: NRW = 2500
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Listing continued on next page 

Listing continued from last page

 57 ! Channel length
 58 real(kind=dp), parameter :: L = 1.0_dp
 59 ! Initial position of the particles is fixed
 60 real(kind=dp), parameter :: x0 = 1 / 3.0_dp
 61 ! Temporal step size
 62 real(kind=dp), parameter :: DT = 1.0e-6_dp
 63
 64 !!! Physical parameters of the system
 65 ! Diffusion constant (bulk)
 66 real(kind=dp), parameter :: D0 = 1.0_dp
 67 ! Thermal energy inverse (1/k_b T)
 68 real(kind=dp), parameter :: BETA = 1.0_dp
 69 ! Standard deviation for Brownian motion
 70 real(kind=dp), parameter :: SIGMA &
 71 = dsqrt(2.0_dp * D0 * DT)
 72 ! Mean distribution for Brownian motion
 73 real(kind=dp), parameter :: MU = 0.0_dp
 74
 75 ! Theoretical value
 76 real(kind=dp), parameter :: THEOV &
 77 = x0 * (L-x0) / (2.0_dp * D0)
 78
 79
 80 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 81 ! Declaration of variables
 82 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 83
 84 ! General counter
 85 integer :: i
 86 ! Current position of the particle
 87 real(kind=dp) :: x
 88 ! Current particle passage time
 89 real(kind=dp) :: tau
 90 ! Sum of passage times
 91 real(kind=dp) :: ttau = 0.0_dp
 92 ! MFPT (<tau>)
 93 real(kind=dp) :: mfpt
 94
 95
 96 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
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Listing continued on next page 

Listing continued from last page

 97 ! Main simulation program
 98 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 99
 100 ! Set the seed of the PRNG to achieve repeatable results
 101 call setseed(RSEED)
 102
 103 ! The loop iterates over each (i) particle.
 104 do i=1, NRW
 105 !!! Initializing the needed variables
 106 ! The passage time is set to zero
 107 tau = 0.0_dp
 108 ! The particle current position is set to x0 (initial)
 109 x = x0
 110
 111 !!! The random walk starts. Follow the particle until
 112 !!! it is removed by an absorbent point (x=0,x=L).
 113 do
 114 ! Make a step in space
 115 x = x + nrand(MU, SIGMA)
 116 ! Make a step in time
 117 tau = tau + DT
 118
 119 ! Check for the removal of the particle
 120 if(x <= 0.0 .or. x >= L) then
 121 ! If it was removed from the channel, stop the
 122 ! simulation.
 123 exit
 124 end if
 125 end do ! End of i-particle's random walk.
 126
 127 ! We need to add the passage time of the i-particle to
 128 ! the total time.
 129 ttau = ttau + tau
 130
 131 ! You can print out the MFPT up to this point.
 132 print *, &
 133 '[' // nstr(i) // ' particles simulated | ' &
 134 // nstr(NRW-i) // ' to go]: ' &
 135 // TNL // TAB &
 136 // '<tau-sim> = ' // nstr(ttau / i) &
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Listing continued from last page 

Listing ended

 137 // TNL // TAB &
 138 // '<tau-theo> = ' // nstr(THEOV) &
 139 // TNL // TAB &
 140 // 'Error = ' &
 141 // nstr( abs( (ttau/i) - THEOV ) / THEOV &
 142 * 100, 1) &
 143 // '%'
 144 end do ! End of the particle's loop.
 145
 146 ! At this point, every particle's simulation is done.
 147 ! Obtain the <tau>
 148 mfpt = ttau / NRW
 149
 150 ! Now we print out the MFPT, and show the theoretical 

value.
 151 print ∗
 152 print *, '=== Final result of simulation ==='
 153 print *, TAB // '<tau-sim> = ' // nstr(mfpt)
 154 print *, TAB // '<tau-theo> = ' // nstr(THEOV)
 155 ! Calculates and prints the percentage error.
 156 print *, TAB // 'Error = ' &
 157 // nstr( abs( mfpt - THEOV ) &
 158 / THEOV * 100, 1) &
 159 // '%'
 160 ! As a reminder, print out the number of walkers.
 161 print *, TAB // 'NRW = ' // nstr(NRW)
 162 ! The time step.
 163 print *, TAB // 'dt = ' // nstr(DT, 6)
 164 ! And the PRNG seed.
 165 print *, TAB // 'PRNG seed = ' // nstr(RSEED)
 166
 167 end program absabs 

Listing continued on next page 

Compiling and Running of Listing 10.3

 1 # Compile
 2 gfortran helpers.f90 abs-abs.f90
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Listing continued from last page 

End of Compile and Run

 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output

 8 
...

 9 [14 particles simulated | 2486 to go]:
 10 <tau-sim> = 0.084245
 11 <tau-theo> = 0.111111
 12 Error = 24.2%

 13 
...

 14 [2500 particles simulated | 0 to go]:
 15 <tau-sim> = 0.111107
 16 <tau-theo> = 0.111111
 17 Error = 0.0%
 18
 19 === Final result of simulation ===
 20 <tau-sim> = 0.111107
 21 <tau-theo> = 0.111111
 22 Error = 0.0%
 23 NRW = 2500
 24 dt = 0.000001 

10.4.2 Absorbing-Absorbing: Initial Position Uniformly 
Distributed 

The analytical result for an absoring-absorbing one-dimensional channel, when the 
particles start by being uniformly distributed along the entire channel, is given by 

.〈tu〉 = L2

12D
, (5.76) 

which was obtained in Sect. 5.5.2. We set up our system such that the absorbing 
boundaries are at .x = 0 and .L = 1, respectively. 

The source code contained in Listing 10.4 sets the number of random walkers 
to .NRW = 2500, and their first-passage time is measured and printed out after



286 10 Langevin Equation and Brownian Dynamics Simulations

each particle is absorbed. The percentage error and the theoretical value are also 
presented. After every particle completes its trajectory, the mean first-passage time 
is provided. 

Listing continued on next page 

Listing 10.4 [abs-abs-unif.f90]: Fortran 90 program to simulate a 
one-dimensional channel of length L = 1 with absorbing points at positions 
x = 0 and X = L. The particles start their travel with uniform distribution 
along the entire channel length.

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ abs-abs-unif.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code for the simulation
 15 ! of a 1D channel of length L.
 16 ! It has two absorbent points at x=0, and x=L.
 17 !
 18 ! The Brownian walkers start their path with uniform
 19 ! distribution along the entire channel lenght.
 20 ! x0=U(0,L), and the simulation for each of Brownian
 21 ! walker ends when an absorbent point is reached. Then,
 22 ! the Mean First Passage Time (MFPT or <tau>) is
 23 ! obtained.
 24 !
 25 ! The theoretical value is used to calculate the
 26 ! relative error of the simulation. D0 is the bulk
 27 ! diffusion constant usually set to 1.
 28 !
 29 ! <tau> = L∗∗2 / (12.0 * D0)
 30 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 31
 32 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 33 ! To compile with GFortran, you must include the
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 34 ! helpers.f90 module.
 35 ! gfortran helpers.f90 abs-abs-unif.f90
 36 ! Then you can run the program:
 37 ! ./a.out
 38 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 39
 40 program absabsunif
 41
 42 ! Load the helpers module, which contains functions,
 43 ! constants, and more...
 44 use helpers
 45
 46 ! Mandatory declaration of data type variables
 47 ! and constants.
 48 implicit none
 49
 50 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 51 ! Declaration of constants
 52 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 53
 54 !!! Simulation parameters
 55 ! Seed of the PRNG
 56 integer, parameter :: RSEED = 0
 57 ! Number of random walkers (particles)
 58 integer, parameter :: NRW = 2500
 59 ! Channel length
 60 real(kind=dp), parameter :: L = 1.0_dp
 61 ! Temporal step size
 62 real(kind=dp), parameter :: DT = 1.0e-6_dp
 63
 64 !!! Physical parameters of the system
 65 ! Diffusion constant (bulk)
 66 real(kind=dp), parameter :: D0 = 1.0_dp
 67 ! Thermal energy inverse (1/k_b T)
 68 real(kind=dp), parameter :: BETA = 1.0_dp
 69 ! Standard deviation for Brownian motion
 70 real(kind=dp), parameter :: SIGMA &
 71 = dsqrt(2.0_dp * D0 * DT)
 72 ! Mean distribution for Brownian motion
 73 real(kind=dp), parameter :: MU = 0.0_dp
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Listing continued on next page 
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 74
 75 ! Theoretical value
 76 real(kind=dp), parameter :: THEOV &
 77 = L∗∗2 / (12.0_dp * D0)
 78
 79
 80 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 81 ! Declaration of variables
 82 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 83
 84 ! General counter
 85 integer :: i
 86 ! Current position of the particle
 87 real(kind=dp) :: x
 88 ! Current particle passage time
 89 real(kind=dp) :: tau
 90 ! Sum of passage times
 91 real(kind=dp) :: ttau = 0.0_dp
 92 ! MFPT (<tau>)
 93 real(kind=dp) :: mfpt
 94
 95
 96 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 97 ! Main simulation program
 98 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 99
 100 ! Set the seed of the PRNG to achieve repeatable results
 101 call setseed(RSEED)
 102
 103 ! The loop iterates over each (i) particle.
 104 do i=1, NRW
 105 !!! Initializing the needed variables
 106 ! The passage time is set to zero
 107 tau = 0.0_dp
 108 ! The particle's current position is set to a
 109 ! randomized initial value uniformly distributed
 110 ! along the entire channel.
 111 x = urand(0.0_dp, L)
 112
 113 !!! The random walk starts. Follow the particle until



10.4 Computational Experiments 289

Listing continued on next page 

Listing continued from last page

 114 !!! it is removed by an absorbent point (x=0,x=L).
 115 do
 116 ! Make a step in space
 117 x = x + nrand(MU, SIGMA)
 118 ! Make a step in time
 119 tau = tau + DT
 120
 121 ! Check for the removal of the particle
 122 if(x <= 0.0 .or. x >= L) then
 123 ! If it was removed from the channel, stop
 124 ! its simulation.
 125 exit
 126 end if
 127 end do ! End of i-particle's random walk.
 128
 129 ! We need to add the passage time of the i-particle to
 130 ! the total time.
 131 ttau = ttau + tau
 132
 133 ! You can print out the MFPT up to this point.
 134 print *, &
 135 '[' // nstr(i) // ' particles simulated | ' &
 136 // nstr(NRW-i) // ' to go]: ' &
 137 // TNL // TAB &
 138 // '<tau-sim> = ' // nstr(ttau / i) &
 139 // TNL // TAB &
 140 // '<tau-theo> = ' // nstr(THEOV) &
 141 // TNL // TAB &
 142 // 'Error = ' &
 143 // nstr( abs( (ttau/i) - THEOV ) / THEOV &
 144 * 100, 1) &
 145 // '%'
 146 end do ! End of the particle's loop.
 147
 148 ! At this point, every particle's simulation is done.
 149 ! Obtain the <tau>
 150 mfpt = ttau / NRW
 151
 152 ! Now we print out the MFPT, and show the theoretical 

value.
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Listing ended

 153 print ∗
 154 print *, '=== Final result of simulation ==='
 155 print *, TAB // '<tau-sim> = ' // nstr(mfpt)
 156 print *, TAB // '<tau-theo> = ' // nstr(THEOV)
 157 ! Calculates and prints the percentage error.
 158 print *, TAB // 'Error = ' &
 159 // nstr( abs( mfpt - THEOV ) &
 160 / THEOV * 100, 1) &
 161 // '%'
 162 ! As a reminder, print out the number of walkers.
 163 print *, TAB // 'NRW = ' // nstr(NRW)
 164 ! The time step.
 165 print *, TAB // 'dt = ' // nstr(DT, 6)
 166 ! And the PRNG seed.
 167 print *, TAB // 'PRNG seed = ' // nstr(RSEED)
 168
 169 end program absabsunif 

Listing continued on next page 

Compiling and Running of Listing 10.4

 1 # Compile
 2 gfortran helpers.f90 abs-abs-unif.f90
 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output

 8 
...

 9 [71 particles simulated | 2429 to go]:
 10 <tau-sim> = 0.078130
 11 <tau-theo> = 0.083333
 12 Error = 6.2%

 13 
...

 14 [2500 particles simulated | 0 to go]:
 15 <tau-sim> = 0.085229
 16 <tau-theo> = 0.083333



10.5 Concluding Remarks 291

Listing continued from last page 

End of Compile and Run

 17 Error = 2.3%
 18
 19 === Final result of simulation ===
 20 <tau-sim> = 0.085229
 21 <tau-theo> = 0.083333
 22 Error = 2.3%
 23 NRW = 2500
 24 dt = 0.000001 

10.5 Concluding Remarks 

In this chapter, we established the basic notions of computational physics and the 
importance of pseudorandom number (PRN) generation, along with some of their 
properties and transformations. Additionally, the first computational experiments 
with PRNs were shown. Subsequently, the equipartition theorem was deduced 
from the basic concepts of statistical mechanics. This led to the analysis of the 
Langevin equation, starting from its heuristic derivation to the examination of its 
properties, such as the mean-squared displacement. Furthermore, the assumption of 
an overdamped regime and the discretization of the Langevin equation, Eq. (10.94), 
are the fundamental expressions that allow us to simulate the diffusing Brownian 
particles using a computer system. 

Finally, two computational experiments were presented to solve a couple of 
problems tackled analytically in Chap. 5. These were two one-dimensional systems 
with absorbing boundaries at their start and end points, one with all the particles 
starting at a fixed position and another in which the particles’ starting position was 
uniformly distributed along the entire channel. 

For the reader’s convenience, a list of the most relevant expressions used in this 
Chapter is provided below: 

.〈E〉 = n
1

2
kBT . (Energy According to the Equipartition Theorem) 

. m
d2x(t)

dt2
= −ζ v(t) + ξ(t) + Fext (t).

(Langevin Equation with External Forces)
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. 〈ξ(t ') ξ(t '')〉 = 2kBT ζ δ(t ' − t '').
(Autocorrelation Function of the Stochastic Force) 

.D = σ 2
x

2t
=

〈
[x(t) − 〈x(t)〉]2〉

2t
. (Diffusion Coefficient for a Brownian Particle) 

. xn+1 = xn + √
2D∆t η(t) + β D ∆t Fext (t). (Discretized Position Equation

of Brownian Dynamics)

10.A helpers.f90 Companion File 

This Appendix includes the source code for the file used in the programs included in 
this book. It contains constants, functions, and subroutines written to be helpers in 
order to simplify some common tasks in the computer codification of diffusion-like 
problems. Many comments have been inserted in an attempt to provide a clear and 
instructive explanation of the intention of the intention of each line, but readers are 
also invited to customize them according to their own specific needs. 

Listing continued on next page 

Listing 10.5 [helpers.f90]: Fortran 90 library helpers.f90.

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ helpers.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file is used to define a general module
 15 ! that stores definitions, constants, functions,
 16 ! and procedures that may be helpful in the study
 17 ! of diffusion.
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 18 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 19
 20 module helpers
 21
 22 ! From the intrinsics of Fortran, we import certain
 23 ! constants to make our data types portable between
 24 ! systems.
 25 ! The «iso_fortran_env» intrinsic is available for
 26 ! Fortran >= 2003, but the needed data type constants
 27 ! were introduced in Fortran >= 2008
 28 !
 29 ! sp -> Single Precision
 30 ! dp -> Double Precision
 31 ! qp -> Quadruple Precision
 32 !
 33 ! There are many more functions, procedures, and
 34 ! definitions inside «iso_fortran_env». Using the
 35 ! «only» keyword, we only import the ones we need.
 36 use, intrinsic :: iso_fortran_env, &
 37 only: sp => real32, dp => real64, qp => real128, &
 38 i8 => int8, i16 => int16, i32 => int32, &
 39 i64 => int64
 40
 41 ! Mandatory declaration of data type variables
 42 ! and constants.
 43 implicit none
 44
 45 ! Define a generic name for the number to string
 46 ! converting functions. This is how we avoid having to
 47 ! select the specific function; the compiler will do it
 48 ! for us.
 49 interface nstr
 50 module procedure i8str, i16str, i32str, i64str, &
 51 spstr, dpstr, qpstr
 52 end interface
 53
 54 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 55 ! Declaration of constants
 56 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 57
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 58 ! pi/4
 59 real(kind=dp), parameter :: PI4 = atan(1.0_dp)
 60 ! pi/2
 61 real(kind=dp), parameter :: PI2 = 2.0_dp * PI4
 62 ! pi
 63 real(kind=dp), parameter :: PI = 4.0_dp * PI4
 64
 65 ! Tabulator
 66 character, parameter :: TAB = char(9)
 67 ! New line
 68 character, parameter :: TNL = new_line('l')
 69
 70 ! Default decimal digits when converting to char
 71 integer, parameter :: DDECN = 6
 72
 73
 74 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 75 ! Functions and Subroutines
 76 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 77 contains
 78
 79 ! To make «repeatable» simulations, we need to set a
 80 ! seed before generating our PRNs. Fortran requires
 81 ! an array of length «n», which length depends
 82 ! directly on the system and the compiler. But setting
 83 ! the seed helps us to make sure that we can obtain
 84 ! repeatable results, at least in a machine with the
 85 ! same version of the compiler.
 86 ! This function sets a seed in a very basic manner
 87 ! by fixing all the numbers in the seed array to
 88 ! the same integer.
 89 subroutine setseed(nseed)
 90 implicit none
 91
 92 ! Input parameter
 93 integer, intent(in) :: nseed
 94 ! Variable to hold the size of the needed array
 95 integer :: n
 96 ! Array to set the seed
 97 integer, allocatable :: seed(:)
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 98
 99 ! Read the size of the needed array
 100 call random_seed(size=n)
 101
 102 ! Allocate the array
 103 allocate( seed(n) )
 104 ! Set all the elements in the array to «nseed»
 105 seed = nseed
 106
 107 ! Set the seed
 108 call random_seed(put=seed)
 109 end subroutine setseed
 110
 111 ! Fortran contains random_number procedure to
 112 ! generate uniformly distributed pseudorandom numbers
 113 ! within the interval 0 <= x < 1. Occasionally it is
 114 ! also advisable to use it as a function instead.
 115 ! Also, returning 1.0_dp - x gives us the possibility
 116 ! to obtain 1.0 as a value, and the uniform distribution
 117 ! will hold. This is the interval 0 < x <= 1.
 118 function usrand() result(fn_res)
 119 implicit none
 120
 121 ! Output value
 122 real(kind=dp) :: fn_res
 123
 124 ! This gives us: 0 <= x < 1
 125 call random_number(fn_res)
 126
 127 ! Now, the interval is: 0 < x <= 1
 128 fn_res = 1.0_dp - fn_res
 129 end function usrand
 130
 131 ! Sometimes we will need to get a pseudorandom number
 132 ! within an interval (a,b] other than (0,1]. So, we made
 133 ! a simple transformation.
 134 ! We are asumming that a < b.
 135 function urand(a, b) result(fn_res)
 136 implicit none
 137
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 138 ! Input parameters
 139 real(kind=dp), intent(in) :: a, b
 140 ! Output value
 141 real(kind=dp) :: fn_res
 142
 143 fn_res = a + usrand() * (b - a)
 144 end function urand
 145
 146 ! For the specific case of Brownian motion, the steps
 147 ! are normally distributed with parameters
 148 ! mu  = 0 (mean)
 149 ! sigma = \sqrt{2 D dt} (standard deviation)
 150 ! By default we want to generate normally distributed
 151 ! pseudorandom numbers with
 152 ! mu  = 0 (mean)
 153 ! sigma = 1 (standard deviation)
 154 !
 155 ! The transformation from U~(0,1) to N(0,1) is made via
 156 ! the Box-Müller transformation.
 157 !
 158 ! Original Box & Müller paper:
 159 ! https://doi.org/10.1214%2Faoms%2F1177706645
 160 !
 161 function nrand(imu, isigma) result (fn_res)
 162 implicit none
 163
 164 ! Input parameters
 165 real(kind=dp), intent(in), optional :: imu, isigma
 166 ! Output value
 167 real(kind=dp) :: fn_res
 168 ! Parameters for calculation
 169 real(kind=dp) :: mu, sigma
 170 ! Variables to hold normally distributed PRNs
 171 real(kind=dp) :: u1, u2
 172
 173 ! Variable to save the non-used PRN
 174 real(kind=dp), save :: saved_val
 175 ! Flag to mark if we have a previously
 176 ! calculated value
 177 logical, save :: saved = .false.
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 178
 179 ! If there is a previously generated value ready
 180 ! to be used...
 181 if(saved) then
 182 ! Set the return variable to the saved value
 183 fn_res = saved_val
 184 ! We must rememeber that the value was used. Then
 185 ! in the next function call, all calculations
 186 ! must be performed again.
 187 saved = .false.
 188
 189 ! Exit from this function, no calculation needed.
 190 return
 191 end if
 192
 193 ! Check for parameter values. If some of them
 194 ! are missing, then the default values will be used.
 195 if( present(imu) ) then
 196 mu = imu
 197 else
 198 mu = 0.0_dp
 199 end if
 200
 201 if( present(isigma) ) then
 202 sigma = isigma
 203 else
 204 sigma = 1.0_dp
 205 end if
 206
 207 ! Generates two numbers uniformly distributed within
 208 ! the interval (0,1), required by the
 209 ! Box-Müller transformation.
 210 u1 = usrand()
 211 u2 = usrand()
 212
 213 ! The Box-Müller transformation.
 214 ! Both numbers, u1 and u2 are used. If we change the
 215 ! cosine <-> sine, we can generate another normally
 216 ! distributed number independent from the first one.
 217 ! The election of one of the trigonometric functions
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 218 ! to return one PRN is completely arbitrary.
 219 ! The second generated value is held and used
 220 ! in the next function call to avoid a new
 221 ! calculation.
 222
 223 ! One of the generated numbers is saved to be used
 224 ! in the next function call without calculations.
 225 saved_val = sigma * sqrt( -2.0_dp * log(u1) ) &
 226 * sin( 2.0_dp * PI * u2 ) + mu
 227 ! Flag to inform that one value is saved.
 228 saved = .true.
 229
 230 ! The number to be returned in this function call.
 231 fn_res = sigma * sqrt( -2.0_dp * log(u1) ) &
 232 * cos( 2.0_dp * PI * u2 ) + mu
 233 end function nrand
 234
 235 ! This family of functions i∗str(num) makes it possible
 236 ! to print out an integer concatenated with a string,
 237 ! avoiding the odd space characters introduced by
 238 ! Fortran.
 239 function i8str(num) result(fn_res)
 240 implicit none
 241
 242 ! Input integer value
 243 integer(kind=i8), intent(in) :: num
 244 ! Temporary string of 'sufficient' length
 245 character(len=256) :: stmp
 246 ! Dynamic length variable to hold the final string
 247 character(len=:), allocatable :: fn_res
 248
 249 ! Copy the integer into the temporary character
 250 ! variable.
 251 ! This copies the «num» integer value into the
 252 ! «stmp» character variable using the I0 format,
 253 ! which means that there will be no leading or
 254 ! padding zeros. This is their most compact form.
 255 write(stmp, '(I0)') num
 256 ! Move the string to the left
 257 stmp = adjustl(stmp)
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 258
 259 ! Cut the moved string from the start to the
 260 ! spaces at the right of it.
 261 fn_res = stmp( 1:len_trim(stmp) )
 262 end function i8str
 263
 264 function i16str(num) result(fn_res)
 265 implicit none
 266
 267 ! Input integer value
 268 integer(kind=i16), intent(in) :: num
 269 ! Temporary string of 'sufficient' length
 270 character(len=256) :: stmp
 271 ! Dynamic length variable to hold the final string
 272 character(len=:), allocatable :: fn_res
 273
 274 ! Copy the integer into the temporary character
 275 ! variable
 276 write(stmp, '(I0)') num
 277 ! Move the string to the left
 278 stmp = adjustl(stmp)
 279
 280 ! Cut the moved string from the start to the
 281 ! spaces at the right of it.
 282 fn_res = stmp( 1:len_trim(stmp) )
 283 end function i16str
 284
 285 function i32str(num) result(fn_res)
 286 implicit none
 287
 288 ! Input integer value
 289 integer(kind=i32), intent(in) :: num
 290 ! Temporary string of 'sufficient' length
 291 character(len=256) :: stmp
 292 ! Dynamic length variable to hold the final string
 293 character(len=:), allocatable :: fn_res
 294
 295 ! Copy the integer into the temporary character
 296 ! variable
 297 write(stmp, '(I0)') num
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 298 ! Move the string to the left
 299 stmp = adjustl(stmp)
 300
 301 ! Cut the moved string from the start to the
 302 ! spaces at the right of it.
 303 fn_res = stmp( 1:len_trim(stmp) )
 304 end function i32str
 305
 306 function i64str(num) result(fn_res)
 307 implicit none
 308
 309 ! Input integer value
 310 integer(kind=i64), intent(in) :: num
 311 ! Temporary string of 'sufficient' length
 312 character(len=256) :: stmp
 313 ! Dynamic length variable to hold the final string
 314 character(len=:), allocatable :: fn_res
 315
 316 ! Copy the integer into the temporary character
 317 ! variable
 318 write(stmp, '(I0)') num
 319 ! Move the string to the left
 320 stmp = adjustl(stmp)
 321
 322 ! Cut the moved string from the start to the
 323 ! spaces at the right of it.
 324 fn_res = stmp( 1:len_trim(stmp) )
 325 end function i64str
 326
 327 ! This family of functions ∗pstr(num) makes it possible
 328 ! to print out a real number concatenated with a string,
 329 ! avoiding the odd space characters introduced by
 330 ! Fortran.
 331 function spstr(num, idigits) result(fn_res)
 332 implicit none
 333
 334 ! Input real single-precision value
 335 real(kind=sp), intent(in) :: num
 336 ! Digits after decimal point to be printed
 337 integer, intent(in), optional :: idigits
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 338 ! The actual value used
 339 integer :: digits
 340 ! Temporary string of 'sufficient' length
 341 character(len=256) :: stmp
 342 ! Dynamic length variable to hold the final string
 343 character(len=:), allocatable :: fn_res
 344
 345 ! Check for parameter values. If some of them
 346 ! are missing, then the default values will be used.
 347 if( present(idigits) ) then
 348 digits = idigits
 349 else
 350 digits = DDECN
 351 end if
 352
 353 ! Copy the real_sp into the temporary character
 354 ! variable
 355 write(stmp, '(F100.' // nstr(digits) // ')') num
 356 ! Move the string to the left
 357 stmp = adjustl(stmp)
 358
 359 ! Cut the moved string from the start to the
 360 ! spaces to the right of it.
 361 fn_res = stmp( 1:len_trim(stmp) )
 362 end function spstr
 363
 364 function dpstr(num, idigits) result(fn_res)
 365 implicit none
 366
 367 ! Input real double-precision value
 368 real(kind=dp), intent(in) :: num
 369 ! Digits after decimal point to be printed
 370 integer, intent(in), optional :: idigits
 371 ! The actual used value
 372 integer :: digits
 373 ! Temporary string of 'sufficient' length
 374 character(len=256) :: stmp
 375 ! Dynamic length variable to hold the final string
 376 character(len=:), allocatable :: fn_res
 377
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 378 ! Check for parameter values. If some of them
 379 ! are missing, then the default values will be used.
 380 if( present(idigits) ) then
 381 digits = idigits
 382 else
 383 digits = DDECN
 384 end if
 385
 386 ! Copy the real_sp into the temporary character
 387 ! variable
 388 write(stmp, '(F100.' // nstr(digits) // ')') num
 389 ! Move the string to the left
 390 stmp = adjustl(stmp)
 391
 392 ! Cut the moved string from the start to the
 393 ! spaces at the right of it.
 394 fn_res = stmp( 1:len_trim(stmp) )
 395 end function dpstr
 396
 397 function qpstr(num, idigits) result(fn_res)
 398 implicit none
 399
 400 ! Input real quadruple-precision value
 401 real(kind=qp), intent(in) :: num
 402 ! Digits after decimal point to be printed
 403 integer, intent(in), optional :: idigits
 404 ! The actual value used
 405 integer :: digits
 406 ! Temporary string of 'sufficient' length
 407 character(len=256) :: stmp
 408 ! Dynamic length variable to hold the final string
 409 character(len=:), allocatable :: fn_res
 410
 411 ! Check for parameter values. If some of them
 412 ! are missing, then the default values will be used.
 413 if( present(idigits) ) then
 414 digits = idigits
 415 else
 416 digits = DDECN
 417 end if
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 418
 419 ! Copy the real_sp into the temporary character
 420 ! variable
 421 write(stmp, '(F100.' // nstr(digits) // ')') num
 422 ! Move the string to the left
 423 stmp = adjustl(stmp)
 424
 425 ! Cut the moved string from the start to the
 426 ! spaces at the right of it.
 427 fn_res = stmp( 1:len_trim(stmp) )
 428 end function qpstr
 429
 430 end module helpers 

Compiling and Running of Listing 10.5

 1 # As an auxiliar library, helpers.f90
 2 # cannot be run directly. It is only a companion
 3 # for the other codes. 
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Chapter 11 
Numerical Solutions of the Diffusion 
Equation 

The diffusion equation can be solved analytically for a limited number of systems 
and conditions; for all other cases, a numerical approximation is required. The 
procedure to be studied in this chapter consists of replacing the partial derivatives in 
a partial differential equation (PDE) by finite-difference expressions. Additionally, 
the boundary conditions (BCs), initial conditions, and available spatial domain must 
be properly defined in order to obtain a satisfactory approximation of the solution. 
These numerical techniques are referred to as finite-difference methods (FDMs). 
This method is applied when solving linear, nonlinear, time-independent, and time-
dependent problems. Some applications of FDMs include structural analysis of 
buildings and bridges, heat transfer analysis, predicting deformation and stress fields 
within solid bodies subjected to external forces, fluid flow analysis in pipes, and 
electromagnetic potential analysis, among others. 

The finite-difference methods for solving the diffusion equation with constant 
coefficients are useful in the study of various physical phenomena, ranging from 
hydraulic and transportation applications to heat diffusion in solid bodies. In this 
chapter, we will present an introductory overview for solving the diffusion equation 
in one dimension. It is well beyond the scope of this book to attempt to provide 
even a general introduction to this subject matter. The reader who is interested in 
learning more about these methods is referred to the references provided at the end 
of the chapter. 

11.1 Differences Construction 

As previously mentioned, an FDM is based on the approximation of the partial 
derivatives in a PDE to be solved. In order to establish meaningful correlations 
between partial derivatives and finite-difference expressions, we start by considering 
a continuous and infinitely derivable function .f (x), which is expanded in a Taylor 
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series around .x = x0, namely, 

.f (x) = f (x0) + f '(x0)(x − x0) + 1

2
f ''(x0)(x − x0)

2 + O(x3). (11.1) 

By defining .Δx ≡ x − x0 > 0, then .x = x0 + Δx, and Eq. (11.1) results in 

. 

f (x0 + Δx) = f (x0) + f '(x0)(x0 + Δx − x0) + 1

2
f ''(x0)(x0 + Δx − x0)

2

+ O
(
[x0 + Δx]3

)
.

(11.2) 

This last equation simplifies to 

.f (x0 + Δx) = f (x0) + f '(x0)Δx + 1

2
f ''(x0)Δx2 + O

(
Δx3

)
. (11.3) 

Now, by truncating the series up to the first order on . Δx, we arrive at  

.f '(x0) ≈ f (x0 + Δx) − f (x0)

Δx
, (11.4) 

which is known as forward difference because the .+Δx step is taken away from 
. x0. Notice that the approximation in Eq. (11.4) is very similar to the derivative 
definition. 
Furthermore, another two basic differences can be calculated. The backward 
difference is obtained by taking .x − Δx as the argument of function f , i.e., 

.f (x0 − Δx) = f (x0) − f '(x0)Δx + 1

2
f ''(x0)Δx2 + O

(
Δx3

)
. (11.5) 

In this equation, the signs of each term are provided by the power and the sign of 
the increment itself. Subsequently, after truncating and rearranging, we obtain 

.f '(x0) ≈ f (x0) − f (x0 − Δx)

Δx
. (11.6) 

Now, let us calculate the difference between Eqs. (11.5) and (11.3), which results in 

.f (x0 + Δx) − f (x0 − Δx) = 2f '(x0)Δx + O
(
Δx3

)
. (11.7) 

After truncating and rearranging terms, it follows that 

.f '(x0) ≈ f (x0 + Δx) − f (x0 − Δx)

2Δx
, (11.8)
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known as a centered difference or central difference. Moreover, we may also take 
the sum of Eqs. (11.5) and (11.3), namely, 

.f (x0 + Δx) + f (x0 − Δx) = 2f (x0) + f ''(x0)Δx2 + O
(
Δx3

)
. (11.9) 

When solving for .f ''(x0), we find that 

.f ''(x0) ≈ f (x0 + Δx) − 2f (x0) + f (x0 − Δx)

Δx2
, (11.10) 

which is the central difference, but for the second derivative of .f (x). 
Up to this point, we have examined three distinct finite-difference schemes, and 

now, we need to designate one of them for the discretization of the equation. The 
chosen selection will determine the fixed solution scheme along with its associated 
properties, such as stability and convergence, which will be addressed in subsequent 
sections of this chapter. 

11.1.1 Discretization and Mesh 

In the previous section, we showed how to write finite differences that enable 
the discretization of the PDEs by replacing the partial derivatives with either 
Eq. (11.6), (11.8), and (11.10). Now, some associations between continuous and 
discrete variables must be made. If we have two variables, x and t , and their interval 
domain is given by 

.x ∈ [xi, xf ], t ∈ [ti , tf ], (11.11) 

then the discrete associations are set to 

.x → j, t → n, ±Δx → ±1, ±Δt → ±1. (11.12) 

For the sake of clarity, the temporal variables are written as superscripts, and 
the spatial variables are expressed as subscripts. Some examples of discretization 
notation are 

.

c(x, t) → cn
j , c(x + Δx, t) → cn

j+1,

c(x, t − Δt) → cn−1
j , c(x − Δx, t + Δt) → cn+1

j−1.
(11.13) 

As the continuous variables are now linked to discrete quantities, it is necessary 
to map the space in which these variables reside onto a discrete structure. The new 
discrete space is called a mesh, or sometimes a grid, and it is obtained by splitting 
the intervals from where the variables take their values. For a one-dimensional
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Fig. 11.1 Schematic 
representation of a mesh for 
variables x and t , 
representing the boundary 
conditions (orange dots), the 
initial conditions (green dots), 
and the points at which the 
mesh is divided (blue dots). 
The parameters are .Nx = 10, 
.Nt = 30, .t ∈ [0, 0.2], and  
.x ∈ [0, 1.0] 0.20.1 

t 

x 

0.0 

0.0 

0.5 

1.0 

equation with a spatial-temporal dependence, i.e., .(x, t), we can visualize the grid 
after defining . Nx and . Nt , which are the number of parts into which the intervals of 
x and t will be split, respectively. A schematic representation of a mesh is shown in 
Fig. 11.1. 
The parameters . Nx and . Ny are fundamental to defining the increments appearing in 
the difference equations, since 

.Δx = xf − xi

Nx

and Δt = tf − ti

Nt

, (11.14) 

where subscripts in the independent variables x and t denote the start and end values 
of the variables’ domains, as defined through Eq. (11.11). 

11.2 Forward Time-Centered Space Method 

The initial approach that we will employ to solve the diffusion equation is 
Euler’s forward time-centered space (FTCS) method. Firstly, we invoke the one-
dimensional diffusion equation in terms of concentration, namely, 

.
∂c(x, t)

∂t
= D

∂2c(x, t)

∂2x
. (2.13) 

Following the method’s name, we associate the left-hand side of the latter equation 
with a forward in time difference, Eq. (11.4), leading to 

.
∂c(x, t)

∂t
⇐⇒ cn+1

j − cn
j

Δt
. (11.15) 

Then, the right-hand side of Eq. (2.13) will be related to a central difference for the 
second derivative, Eq. (11.10), which indicates
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.
∂2c(x, t)

∂x2
⇐⇒ cn

j+1 − 2cn
j + cn

j−1

Δx2
. (11.16) 

Furthermore, the discretization of Eq. (2.13) as an FTCS is 

.
cn+1
j − cn

j

Δt
= D

cn
j+1 − 2cn

j + cn
j−1

Δx2 , (11.17) 

which can be written as 

.cn+1
j = cn

j + D
Δt

Δx2

(
cn
j+1 − 2cn

j + cn
j−1

)
. (11.18) 

This equation gives us the dynamic evolution of concentration . cn
j in time. The FTCS 

is an explicit method, meaning that it uses only current time values to evaluate the 
next iteration, in contrast with implicit methods, which also need to use later time 
values to obtain the solution. Those will be studied in the next section. This one-
step iterative relation in time is particularly useful, since we do not need to store the 
values of . cn

j for all j in the computer. 

11.2.1 Numerical Implementation 

In this section, we will describe the main steps to implement the FTCS method 
to solve the one-dimensional diffusion equation, Eq. (2.13). To such end, we will 
consider a concentration gradient of diffusing particles with initial position . x0 =
1/2 in a system of length L with diffusion constant D, in the presence of perfectly 
reflecting walls at .x = 0 and .x = L. The analytical solution for such a system can 
be found in Sect. 5.2. The BCs to solve this equation are Neumann BCs, Eq. (5.7), 
which, for our specific problem, becomes 

.
∂c(x, t |x0)

∂x

∣∣∣∣
x=0,L

= 0 (11.19) 

and, after discretizing with a central difference, results in 

.
cn
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j−1

2Δx
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= 0. (11.20) 

From this last equation, we have that 
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∣∣∣∣
j=0,Nx

= cn
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j=0,Nx

. (11.21)
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As a result of the imposed boundary conditions, the particles are restricted from 
moving to the left of .j = 0 or to the right of .j = N . Nevertheless, Eq. (11.21) can 
be used in Eq. (11.18) to obtain modified equations that work within the boundaries 
and obey the desired conditions. In the first case, the equation for .j = 0 is obtained 
by changing the term with .j − 1 to j in Eq. (11.18), yielding 

.cn+1
j = cn

j + 2D
Δt

Δx2

(
cn
j+1 − cn

j

)
, for j = 0. (11.22) 

The same reasoning is used at .j = L. Then, the point .j + 1 must be replaced by j , 
resulting in 

.cn+1
j = cn

j + 2D
Δt

Δx2

(
cn
j−1 − cn

j

)
, for j = Nx. (11.23) 

Equations (11.22) and (11.23) dictate the behavior of the system at positions . j =
0 and .j = Nx , respectively, and they are the discrete equivalence of the BCs in 
Eq. (11.19). 

Now, the initial conditions for the continuous case are given by 

.c(x, t = 0) = δ(x − x0). (11.24) 

On the one hand, the discretization of this initial condition then reads 

.δ(x − x0) ⇐⇒ 1

Δx
δj,j ' , (11.25) 

where .δj,j ' is Kronecker’s delta defined as in Eq. (C.5). If .Δx → 0, then the infinity 
value of Dirac’s delta is correctly recovered. On the other hand, the initial position, 
Eq. (11.24), is discretized as follows: 

.cn=0
j = 1

Δx
δj,j ' . (11.26) 

For example, if we set .x0 = 1/2, and our grid has .Nx = 10 parts for .x ∈ [0, 1], then 

.x0 = 1

2
→ j = x0

Δx
= x0

Nx

xf − xi

= 5, (11.27) 

and the initial position in the discretized system is placed at .j = 5 and . x0 = 1/2 →
j ' = 5. 

The initial conditions are usually placed within the boundary, which does not 
have any inconveniences. However, the fixed number of points in the mesh may 
ocassionally cause the initial condition position to not have a corresponding point 
on the grid. This can be solved by interpolating values between near points, but this 
approach can create additional errors in the method. As a solution, extra positions



11.2 Forward Time-Centered Space Method 311

can be added to the mesh to include the initial conditions, or we can pick different 
numbers of points to build the grid in order. Even though this type of issue is not 
present in our specific case, it should be noted that it is worth being mindful of this 
when tackling other specific problems. 

At this point, we have all the relevant equations needed to numerically solve the 
diffusion equation by means of the FTCS FDM scheme. Let us summarize it as 
follows: 
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(11.28) 

Upon careful examination of the preceding equations, one can appreciate that an 
effective way to computationally incorporate the method alongside the parameters 
associated with the physical system is not readily apparent. Therefore, here is a 
step-by-step guide summarizing the process: 

• Set the number of steps that can be taken within the mesh in any direction, that 
is, . Nx , and . Nt . 

• Determine the increments as 

.Δx = xf − xi

Nx

and Δt = tf − ti

Nt

. (11.29) 

• Define the data structure to store .c(x) at a certaint timepoint. This usually can be 
done using an array or list, and the length is determined by .Nx + 1. 

• On working with the solution at .t = 0, apply the initial conditions to the 
corresponding points in the mesh. 

• Set the BCs on all grid positions, as needed. 
• Start a loop for every timepoint. This loop will consist of . Nt iterations. 

– Start a loop for every spatial position on the grid. There will be . Nx + 1
iterations. 

. ∗ Calculate .c(x) at time t , by means of the corresponding equation depending 
on the point, which could be a general point in the mesh or a boundary point 
in it. 

– Finish the loop for the positions. The time is incremented. Repeat until every 
time step is done. 

• All times are finished. The computation is done.
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Algorithm 1 Forward time-centered space method pseudocode for the one-
dimensional diffusion equation with two reflecting targets 
1: procedure FTCS 
2: Nx ← Number of slices of the spatial interval 
3: Nt ← Number of slices of the temporal interval 
4: Δx ← (xf − xi)/Nx ⊳ Spatial increment 
5: Δt ← (tf − ti )/Nt ⊳ Temporal increment 
6: c0 j ← 1/Δx ⊳ Initial conditions are set 
7: for 1 ≤ n ≤ Nt do 
8: cn 

0 = cn−1 
0 + 2r

(
cn−1 
1 − cn−1 

0

)
⊳ BC on the left 

9: for j ≤ Nx do 

10: cn 
j ← cn−1 

j + r
(
cn−1 
j+1 − 2 cn−1 

j + cn−1 
j−1

)

11: end for ⊳ Spatial loop finished 

12: cn 
Nx 

= cn−1 
Nx 

+ 2r
(
cn−1 
Nx−1 − cn−1 

Nx

)
⊳ BC on the right 

13: end for ⊳ Time loop ended 
14: end procedure 

The coding steps are shown as a pseudocode that can be translated into any 
programming language, although our implementation is in FORTRAN. The pseu-
docode is presented in Algorithm 1. To such end, we consider the one-dimensional 
diffusion equation within the intervals .x ∈ [0, 1] and .t ∈ [0, 0.2], with . Nx = 10
and .Nt = 30, with the initial position of concentration at 0.5. 

The implementation to Fortran is shown in Listing 11.1 and the results are 
presented in Fig. 11.2. These results can be contrasted with the plots in Fig. 5.2 
containing the graphical representation of the analytical solution for this system, 
which was solved in Sect. 5.2. 

Listing continued on next page 

Listing 11.1 [ftcs-ref-ref.f90]: Fortran 90 implementation of the 
FTCS FDM method to solve the 1D diffusion equation with two completely 
reflecting boundaries

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ftcs-ref-ref.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ! 
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Listing continued on next page 

Listing continued from last page

 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code to numerically
 15 ! solve the 1D diffusion equation for a channel
 16 ! of length L.
 17 ! It has two reflecting points at x=0 and x=L.
 18 !
 19 ! The initial condition is such that
 20 ! p(x,t=0) = \delta(x-x0),
 21 ! where x0 is the initial position (default = 1/2).
 22 !
 23 ! The solver uses the Forward Time-Centered Space
 24 ! (FTCS) Finite Difference Method (FDM).
 25 !
 26 ! As the FTCS is stable only with:
 27 ! D \Delta t / \Delta x^2 <= 1/2,
 28 ! those parameters must be chosen carefully.
 29 !
 30 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 31
 32 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 33 ! To compile with GFortran, you must include the
 34 ! helpers.f90 module.
 35 ! gfortran helpers.f90 ftcs_ref_ref.f90
 36 ! Then you can run the program:
 37 ! ./a.out
 38 !
 39 ! After running the program, a file is generated:
 40 ! - «ftcs-aa.dat», a file with time, position,
 41 ! and concentration
 42 ! It can be plotted with any software
 43 ! of your choice. To do this using gnuplot, execute:
 44 ! gnuplot -p -e '
 45 ! set title "FTCS FDM for the Diffusion Equation";
 46 ! set xlabel "x (position)" ;
 47 ! set ylabel "c(x,t) (concentration)" ;
 48 !times = system("awk '"'"'{print $1}'"'"' ftcs-aa.dat | 

sort -u");
 49 ! plot for [t in times] "<awk '"'"'$1==".t."'"'"' ftcs

-aa.dat" 
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Listing continued on next page 

Listing continued from last page

 50 ! u 2:3 with linespoints title "t=".sprintf("%.3f", 
t∗1.0)'

 51 !
 52 ! -p means that the plot must persist until the
 53 ! user closes it explicitly.
 54 ! -e is used to specify the instructions
 55 ! for using gnuplot directly in the commandline.
 56 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 57
 58 program ftcsrefref
 59
 60 ! Load the helpers module which contains functions,
 61 ! constants, and more...
 62 use helpers
 63
 64 ! Mandatory declaration of data type variables
 65 ! and constants.
 66 implicit none
 67
 68 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 69 ! Declaration of constants
 70 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 71
 72 !!! FDM parameters
 73 ! Number of pieces in the partition of «x»
 74 integer, parameter :: NX = 10
 75 ! Number of pieces in the partition of «t»
 76 integer, parameter :: NT = 30
 77 ! Total system evolution time
 78 ! (assuming that it starts at t=0)
 79 real(kind=dp), parameter :: TF = 0.1_dp
 80 ! Start of channel
 81 real(kind=dp), parameter :: XI = 0.0_dp
 82 ! End of channel
 83 real(kind=dp), parameter :: XF = 1.0_dp
 84 ! Initial Condition continous position
 85 real(kind=dp), parameter :: X0 = 0.5_dp
 86 ! Temporal step size
 87 real(kind=dp), parameter :: DT = TF / NT
 88 ! Spatial step size 



11.2 Forward Time-Centered Space Method 315 

Listing continued on next page 

Listing continued from last page

 89 real(kind=dp), parameter :: DX = (XF - XI) / NX
 90 ! Diffusion constant (bulk)
 91 real(kind=dp), parameter :: D0 = 1.0_dp
 92 ! «r» factor
 93 real(kind=dp), parameter :: R = D0 * DT / DX∗∗2
 94 ! Discrete initial condition position
 95 ! Substract 1 from the index because our array
 96 ! will be defined to start at 0.
 97 integer, parameter :: J0 = int(X0 / DX + 1)
 98
 99
 100 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 101 ! Declaration of variables
 102 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 103
 104 ! General counter
 105 integer :: i
 106 ! Time counter
 107 integer :: n
 108 ! Spatial counter
 109 integer :: j
 110 ! Current continous position
 111 real(kind=dp) :: x
 112 ! Current continous time
 113 real(kind=dp) :: t
 114 ! Array to hold the current time concentrations «c»
 115 real(kind=dp) :: c(NX+1) = 0.0_dp
 116 ! Array to hold the previous time concentrations «c»
 117 real(kind=dp) :: c0(NX+1) = 0.0_dp
 118
 119 ! A unit number for the file where
 120 ! time, position, and concentration data
 121 ! will be saved.
 122 ! Fortran >= 2003 will
 123 ! assign this automatically in the open call.
 124 integer(kind=i32) :: FUNIT
 125
 126
 127
 128 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ! 
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Listing continued on next page 

Listing continued from last page

 129 ! Main calculation program
 130 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 131
 132 ! Open a file to write the data
 133 open(newunit=FUNIT, file='ftcs-aa.dat')
 134
 135 ! Show a warning if R > 1/2
 136 if(R > 0.5) then
 137 print *, 'r > 0.5. Under this condition the method ' &
 138 // 'is not stable! Try to choose ' &
 139 // ' different values of DX and DT.'
 140 end if
 141
 142 ! Set the discretized Initial Condition
 143 c(J0) = 1.0_dp / DX
 144
 145 ! Print the values for the time zero
 146 do j=1, NX+1
 147 write(FUNIT, *) 0.0_dp, (j-1) * DX, c(j)
 148 end do
 149
 150 ! The loop iterates over each time step until NT is
 151 ! reached.
 152 ! In other words, it walks along every point on the mesh
 153 ! for the respective amount of time.
 154 ! Keeping the notation of the book, the current time
 155 ! step is held in «n».
 156 do n=1, NT
 157 ! Obtain the current continous time
 158 t = n * DT
 159
 160 ! Save the previous time concentration before
 161 ! calculating the next one.
 162 c0 = c
 163
 164 ! The first element of «c» is calculated separately
 165 ! because it is a boundary and uses another equation.
 166 c(1) = c0(1) + 2.0_dp * R * ( c0(2) - c0(1)  )
 167
 168 ! Write out the time, space position, and 
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Listing continued on next page 

Listing continued from last page

 169 ! concentration
 170 write(FUNIT, *) t, x, c(j)
 171
 172 ! Now we go through every point on the mesh for the
 173 ! spatial axis, holding the time «n» constant.
 174 ! The final point in j=Nx is a boundary and it is
 175 ! excluded.
 176 do j=2, NX
 177 ! The continous position is calculated
 178 x = (j-1) * DX
 179
 180 ! Obtain the «c»
 181 c(j) = c0(j) &
 182 + R * ( c0(j+1) - 2.0_dp * c0(j) + c0(j-1) )
 183
 184 ! Write out the time, space position, and «c»
 185 write(FUNIT, *) t, x, c(j)
 186 end do ! End of the spatial loop for time «n»
 187
 188 x = (j-1) * DX
 189
 190 ! The last element (a boundary) is calculated outside
 191 ! the loop for the inner points of the mesh, because
 192 ! it obeys a different equation.
 193 c(j) = c0(j) + 2.0_dp * R * ( c0(j-1) - c0(j) )
 194
 195 ! Write out the time, space position, and «c»
 196 write(FUNIT, *) t, x, c(j)
 197 end do ! Ends the loop for all timepoints.
 198
 199 ! Close the file.
 200 close(FUNIT)
 201
 202 !!! At this point, the calculation is done.
 203 ! As a reminder, print out some numbers:
 204 print ∗
 205 print *, TAB // '=== FTCS FDM finished with params ==='
 206 ! ! The number of slides for space
 207 print *, TAB // 'Nx = ' // nstr(NX)
 208 ! ! The spatial step 
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Listing continued from last page 

Listing ended

 209 print *, TAB // 'dx = ' // nstr(DX, 3)
 210 ! ! The number of slides for time
 211 print *, TAB // 'Nt = ' // nstr(NT)
 212 ! ! The time step, too
 213 print *, TAB // 'dt = ' // nstr(DT, 3)
 214 ! ! r factor
 215 print *, TAB // 'r = ' // nstr(R, 2)
 216
 217 end program ftcsrefref 

Compiling and Running of Listing 11.1

 1 # Compile
 2 gfortran helpers.f90 ftcs-ref-ref.f90
 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output
 8
 9 # Plot
 10 gnuplot -p -e '
 11 set title "FTCS FDM for the Diffusion Equation";
 12 set xlabel "x (position)" ;
 13 set ylabel "c(x,t) (concentration)" ;
 14
 15 times = system("awk '"'"'{print $1}'"'"' ftcs-aa.dat | 

sort -u");
 16
 17 plot for [t in times] "<awk '"'"'$1==".t."'"'"' ftcs

-aa.dat"
 18 u 2:3 with linespoints title "t=".sprintf("%.3f", 

t∗1.0)' 
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Fig. 11.2 Numerical solution using the FTCS and BTCS FDM schemes and analytical solution 
given by Eq. (5.21). The parameters are .Nx = 10, .Nt = 30, .t ∈ [0, 0.2], and . x ∈ [0, 1.0]

11.3 Backward Time-Centered Space Method 

An alternative scheme that can be employed for the numerical solution of our 
diffusion equation is the backward time-centered space (BTCS) method. The first 
association to make is between the left-hand side of the diffusion equation with a 
backward difference, Eq. (11.6), and an index change .n → n + 1, namely, 

.
∂c(x, t)

∂t
⇐⇒ cn+1

j − cn
j

Δt
. (11.30) 

The second derivative of the diffusion equation, Eq. (2.13), has to be written as 
a central difference, Eq. (11.10), with the same index change as in the previous 
discretization, resulting in 

.
∂2c(x, t)

∂x2
⇐⇒ cn+1

j+1 − 2cn+1
j + cn+1

j−1

Δx2
. (11.31) 

The BTCS discretization of Eq. (2.13) is 

.
cn+1
j − cn

j

Δt
= D

cn+1
j+1 − 2cn+1

j + cn+1
j−1

Δx2 , (11.32) 

and it is customary to write it with . cn
j on the left-hand side, namely, 

.cn
j = cn+1

j − D
Δt

Δx2

(
cn+1
j+1 − 2cn+1

j + cn+1
j−1

)
. (11.33)
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It is worth noting that further times values are needed to calculate the values for 
the current time, meaning that the BTCS is an implicit method, and linear algebra 
techniques are required to solve the resulting system of equations. This will become 
clearer in the next section. 

11.3.1 Numerical Implementation 

Our objective is to determine the values at the current time step n at position j , 
namely, . cn

j . To such end, we need to have the previous values at .n + 1. The known 
values are those of the BCs, whose central discretization in space is the same as for 
FTCS, given by Eq. (11.21). By shifting .n → n + 1, we arrive at  

.cn+1
j+1

∣∣∣∣
j=0,Nx

= cn+1
j−1

∣∣∣∣
j=0,Nx

. (11.34) 

This last equation needs to be substituted into Eq. (11.33). For  .j = 0, the values of 
.j − 1 must be replaced, and then 

.cn
j = cn+1

j − 2D
Δt

Δx2

(
cn+1
j+1 − cn+1

j

)
, for j = 0. (11.35) 

For .j = Nx , .j + 1 should be substituted, leading to 

.cn
j = cn+1

j − 2D
Δt

Δx2

(
cn+1
j−1 − cn+1

j

)
, for j = Nx. (11.36) 

If we have a mesh with .Nx + 1 points, then the system of equations to be solved is 
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⎪⎪⎪⎪⎪⎪⎪⎩
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...
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...

cn
Nx

= −2r cn+1
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Nx
.

(11.37) 

This last expression, written in a matrix form, is reduced to 

.b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cn
0
...

cn
j

...

cn
Nx

⎞
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cn+1
0
...

cn+1
j

...

cn+1
Nx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (11.38)
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where 

.A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. . .
. . . 0 0 0

. . .
. . .

. . .
...
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. . .

. . .
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. . .
. . .

. . .
. . .

. . .
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0 · · · · · · · · · · · · · · · · · · 0 −2r (1 + 2r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.39) 

Notice that for the positions outside the boundaries, i.e., the rows in the matrix with 
indices other than 0 and . Nx , the non-null coefficients are 

.Aj,j−1 = −r, Aj,j = (1 + 2r), Aj,j+1 = −r. (11.40) 

From Eqs. (11.39) and (11.40), we can observe that A is a constant matrix. 
Consequently, it does not need to be updated or recalculated. Then, the problem 
to be solved is given by 

.Ac = b. (11.41) 

Concentration values are calculated from this linear algebra problem, which needs 
to be solved . Nt times, one for each timepoint in the mesh, which is computationally 
expensive, as compared to FTCS. The step-by-step summary is shown below: 

• Set the number of steps that can be taken inside the mesh in any direction, that 
is, . Nx , and . Nt . 

• Determine the increments as 

.Δx = xf − xi

Nx

and Δt = tf − ti

Nt

. (11.42) 

• Define the data structure to store vector c at a certain timepoint. The initialization 
is made by setting the initial conditions. This can generally be done using an array 
or list, and the length is determined by .Nx + 1. 

• Define a data structure to store matrix A. This is a constant matrix, so it will 
remain unchanged over time. 

• Define a data structure to store column vector b for a certain time t . 
• Now that we are working in .t = 0, apply the initial conditions to the 

corresponding points in the mesh.
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• Set the BCs on all the grid positions, as needed. 
• Start a loop for every timepoint. This loop will consist of . Nt iterations. 

– Set column vector b equal to vector c. 
– Solve the linear algebra problem .Ac = b. The result is stored in vector c. 
– Apply the BCs as needed. 

• All times are finished. The computation is done. 

Generally, the linear problem is solved using libraries or packages that already 
implement appropiate routines for the task. In FORTRAN, a popular choice is 
LAPACK (Lxxinear Algebra PACKage), which, by the way, is also the back end 
for the famous scipy solver for Python language. As coding your own appropiate 
routines requires extra effort and adds a new layer of complexity to the final code, 
these are not implemented in this book. Instead, LAPACK will be used, as it only 
requires some auxiliary variables and just one extra line to call the subroutine which 
solves the linear system. 
The pseudocode of the method is shown in the Algorithm 2. 

Algorithm 2 Backward time-centered space method pseudocode for the 1D diffu-
sion equation with two reflecting targets 
1: procedure BTCS 
2: Nx ← Number of slices of the spatial interval 
3: Nt ← Number of slices of the temporal interval 
4: Δx ← (xf − xi)/Nx ⊳ Spatial increment 
5: Δt ← (tf − ti )/Nt ⊳ Temporal increment 
6: A ← 0 ⊳ The matrix is initialized 
7: Aj,j−1 = Aj,j+1 = −r, Aj,j = 1 + 2r 
8: A0,1 = ANx+1,Nx = −2r ⊳ BCs are set 
9: A0,0 = ANx+1,Nx+1 = 1 + 2r 
10: c0 j ← 1/Δx ⊳ Initial conditions are set 
11: for 1 ≤ n ≤ Nt do 
12: b ← c ⊳ The previous time c is saved to vector b 
13: dsgesv(. . .) ⊳ Ac = b is solved using LAPACK 
14: cn 

0 = cn 
1 , c

n 
Nx+1 = cn 

Nx
⊳ BCs are set 

15: end for ⊳ Time loop ended 
16: end procedure 

The FORTRAN coding for this method is shown in Listing 11.2. The results are 
presented in Fig. 11.2, together with the FTCS method. These can be contrasted 
with the plots in Fig. 5.2, showing the analytical solution for this system, solved in 
Sect. 5.2.
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Listing continued on next page 

Listing 11.2 [btcs-ref-ref.f90]: Fortran 90 implementation of the 
BTCS FDM method to solve the 1D diffusion equation with two completely 
reflecting boundaries

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ btcs-ref-ref.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code to numerically
 15 ! solve the 1D diffusion equation for a channel
 16 ! of length L.
 17 ! It has two reflecting points at x=0 and x=L.
 18 !
 19 ! The initial condition is such that
 20 ! p(x,t=0) = \delta(x-x0),
 21 ! where x0 is the initial position (default = 1/2).
 22 !
 23 ! The solver uses the Backward Time-Centered Space
 24 ! (BTCS) Finite Difference Method (FDM).
 25 !
 26 ! The BTCS is inconditionally stable, so the increment
 27 ! values do not need to be adapted to a
 28 ! specific rule as in FTCS.
 29 !
 30 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 31
 32 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 33 ! To compile with GFortran, you must include the
 34 ! helpers.f90 module, and also indicate that the
 35 ! program needs to be linked with LAPACK:
 36 ! gfortran helpers.f90 btcs_ref_ref.f90 -llapack
 37 ! 
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Listing continued on next page 

Listing continued from last page

 38 ! LAPACK must be installed in your operating system's
 39 ! standard location.
 40 !
 41 ! Then you can run the program:
 42 ! ./a.out
 43 !
 44 ! After running the program, a file is generated:
 45 ! - «btcs-aa.dat», a file with time, position,
 46 ! and concentration
 47 ! It can be plotted with any software
 48 ! of your choice. To do this using gnuplot, execute:
 49 ! gnuplot -p -e '
 50 ! set title "BTCS FDM for the Diffusion Equation";
 51 ! set xlabel "x (position)" ;
 52 ! set ylabel "c(x,t) (concentration)" ;
 53 !times = system("awk '"'"'{print $1}'"'"' btcs-aa.dat | 

sort -u");
 54 ! plot for [t in times] "<awk '"'"'$1==".t."'"'"' btcs

-aa.dat"
 55 ! u 2:3 with linespoints title "t=".sprintf("%.3f", 

t∗1.0)'
 56 !
 57 ! -p means that the plot must persist until the
 58 ! user closes it explicitly.
 59 ! -e is used to specify the instructions
 60 ! for using gnuplot directly in the commandline.
 61 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 62
 63 program btcsrefref
 64
 65 ! Load the helpers module, which contains functions,
 66 ! constants, ...
 67 use helpers
 68
 69 ! Mandatory declaration of data type variables
 70 ! and constants.
 71 implicit none
 72
 73 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 74 ! Declaration of constants 
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Listing continued on next page 

Listing continued from last page

 75 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 76
 77 !!! FDM parameters
 78 ! Number of pieces in the partition of «x»
 79 integer, parameter :: NX = 10
 80 ! Number of pieces in the partition of «t»
 81 integer, parameter :: NT = 30
 82 ! Total system evolution time
 83 ! (assuming that it starts at t=0)
 84 real(kind=dp), parameter :: TF = 0.1_dp
 85 ! Start of channel
 86 real(kind=dp), parameter :: XI = 0.0_dp
 87 ! End of channel
 88 real(kind=dp), parameter :: XF = 1.0_dp
 89 ! Cintinuous initial condition position
 90 real(kind=dp), parameter :: X0 = 0.5_dp
 91 ! Temporal step size
 92 real(kind=dp), parameter :: DT = TF / NT
 93 ! Spatial step size
 94 real(kind=dp), parameter :: DX = (XF - XI) / NX
 95 ! Diffusion constant (bulk)
 96 real(kind=dp), parameter :: D0 = 1.0_dp
 97 ! «r» factor
 98 real(kind=dp), parameter :: R = D0 * DT / DX∗∗2
 99 ! Discrete initial condition position
 100 ! Substract 1 from the index because our array
 101 ! will be defined to start at 0.
 102 integer, parameter :: J0 = int(X0 / DX + 1)
 103
 104
 105 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 106 ! Declaration of variables
 107 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 108
 109 ! General counter
 110 integer :: i
 111 ! Time counter
 112 integer :: n
 113 ! Spatial counter
 114 integer :: j 
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Listing continued on next page 

Listing continued from last page

 115 ! Current continous position
 116 real(kind=dp) :: x
 117 ! Current continous time
 118 real(kind=dp) :: t
 119 ! Array to hold the current time concentrations «c»
 120 real(kind=dp) :: c(NX+1) = 0.0_dp
 121 ! Column vector «b»
 122 real(kind=dp) :: b(NX+1) = 0.0_dp
 123 ! Matrix A
 124 real(kind=dp) :: A(NX+1,NX+1) = 0.0_dp
 125
 126 ! A unit number for the file where
 127 ! time, position, and concentration data
 128 ! will be saved.
 129 ! Fortran >= 2003 will
 130 ! assign this automatically in the open call.
 131 integer(kind=i32) :: FUNIT
 132
 133 !!! Auxilliary variables for LAPACK
 134 integer :: ipiv(NX+1) = 0
 135 integer :: info = 0
 136 integer :: iter = 0
 137 real(kind=dp) :: work(NX+1) = 0.0_dp
 138 real(kind=dp) :: swork((NX+1)∗(NX+1+1)) = 0.0_dp
 139
 140
 141 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 142 ! Main calculation program
 143 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 144
 145 ! Open a file to write the data
 146 open(newunit=FUNIT, file='btcs-aa.dat')
 147
 148 ! Populate matrix «A» with the appropiate values.
 149 do j=2, NX
 150 A(j,j-1) = -r
 151 A(j,j+1) = -r
 152 A(j,j) = 1 + 2∗r
 153 end do
 154 
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Listing continued on next page 

Listing continued from last page

 155 ! Set the boundary conditions.
 156 A(1,2) = -2∗r
 157 A(NX+1,NX) = -2∗r
 158 A(1,1) = 1 + 2∗r
 159 A(NX+1,NX+1) = 1 + 2∗r
 160
 161 ! Set the discretized initial condition.
 162 c(J0) = 1.0_dp / DX
 163
 164 ! Print out the values for time zero.
 165 do j=1, NX+1
 166 write(FUNIT, *) 0.0_dp, (j-1) * DX, c(j)
 167 end do
 168
 169 ! The loop iterates over each time step until NT is
 170 ! reached.
 171 ! In other words, it walks along every point on the mesh
 172 ! for the respective amount of time.
 173 ! Keeping the notation of the book, the current time
 174 ! step is held in «n».
 175 do n=1, NT
 176 ! Obtain the current continous time
 177 t = n * DT
 178
 179 ! Vector «b» must be set to the values of
 180 ! «c» for the previous time step.
 181 b = c
 182
 183 ! The equation «Ac=b» is solved using LAPACK.
 184 ! The arguments are (in order):
 185 ! Number of linear equations
 186 ! Number of columns in «b»
 187 ! «A»
 188 ! Leading dimension of A
 189 ! Pivot integer
 190 ! «b», also the output if the operation was
 191 ! successful.
 192 ! Leading dimension of «b»: NX+1
 193 ! The result: «c»
 194 ! Leading dimension of the result: «NX+1» 
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 195 ! Residual hold vectors: «NX+1»
 196 ! To use a single precision matrix: «(NX+1)∗(NX+1+1)»
 197 ! An indicator if iterative methods were used.
 198 call dsgesv(NX+1, 1, A, NX+1, ipiv, b, NX+1, &
 199 c, NX+1, work, swork, iter, info)
 200
 201 if(info /= 0) then
 202 print *, 'An error has ocurred solving the' &
 203 // ' problem Ac=b, verify!'
 204
 205 call exit(info)
 206 end if
 207
 208 ! Set the BCs
 209 c(1) = c(2)
 210 c(NX+1) = c(NX)
 211
 212 ! Print out the whole «c» for this specific time step.
 213 do j=1, NX+1
 214 write(FUNIT, *) t, (j-1) * DX, c(j)
 215 end do
 216 end do ! Ends the loop for all timepoints.
 217
 218 ! Close the file.
 219 close(FUNIT)
 220
 221 !!! At this point, the calculation is done.
 222 ! As a reminder, print out some numbers:
 223 print ∗
 224 print *, TAB // '=== BTCS FDM finished with params ==='
 225 ! ! The number of slides for space
 226 print *, TAB // 'Nx = ' // nstr(NX)
 227 ! ! The spatial step
 228 print *, TAB // 'dx = ' // nstr(DX, 3)
 229 ! ! The number of slides for time
 230 print *, TAB // 'Nt = ' // nstr(NT)
 231 ! ! The time step, too
 232 print *, TAB // 'dt = ' // nstr(DT, 3)
 233 ! ! r factor
 234 print *, TAB // 'r = ' // nstr(R, 2) 
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Listing continued from last page 

Listing ended

 235
 236
 237 end program btcsrefref 

Compiling and Running of Listing 11.2

 1 # Compile
 2 gfortran helpers.f90 btcs-ref-ref.f90 -llapack
 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output
 8
 9 # Plot
 10 gnuplot -p -e '
 11 set title "BTCS FDM for the Diffusion Equation";
 12 set xlabel "x (position)" ;
 13 set ylabel "c(x,t) (concentration)" ;
 14
 15 times = system("awk '"'"'{print $1}'"'"' btcs-aa.dat | 

sort -u");
 16
 17 plot for [t in times] "<awk '"'"'$1==".t."'"'"' btcs

-aa.dat"
 18 u 2:3 with linespoints title "t=".sprintf("%.3f", 

t∗1.0)' 

11.4 Stability Analysis 

The numerical analysis always comes with two terms, convergence and stability, 
which are often mixed up and confused. 

The numerical method’s capability of providing an approximation of the ana-
lytical solution is known as convergence. This condition consists of increments 
of the method, i.e., .Δx or . Δt tend to zero. This is reasonable because FDMs are
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constructed with expressions that are too similar with the derivatives. However, the 
limit does not appear in the formulae. Convergence will not be analyzed in this book. 
The inherent characteristics of numerical methods result in the propagation of errors 
that may increase with each successive step of the process Thus, it is essential to 
ensure that these errors do not escalate in further calculations, a property referred to 
as stability. 

11.4.1 Stability of the FTCS FDM 

Let us begin with the assumption that the unknown function of our PDE can be 
written as a term of a Fourier series, namely, 

.cn
j = ξneikj Δx, (11.43) 

where . ξ is known as the amplification factor. Additionally, a condition for the error 
to be bounded is given by 

.|ξ | ≤ 1. (11.44) 

By defining .γ ≡ k Δx, we have that 

.cn
j = ξn eij γ . (11.45) 

This last relation has to be introduced into a discretized equation, e.g., Eq. (11.18), 
leading to 

.ξn+1 eij γ = ξn eij γ + r
[
ξn ei(j+1) γ − 2ξn eij γ + ξn ei(j−1) γ

]
, (11.46) 

where r has been defined as 

.r ≡ D
Δt

Δx2
. (11.47) 

Now, the goal is to obtain a value for the amplification factor. If we divide 
Eq. (11.46) by .ξn eij γ , this yields 

.ξ = 1 + r
(
e+i γ − 2 + e−i γ

)
, (11.48) 

where the term inside the parentheses can be rewritten. In fact, if 

. sin
(γ

2

)
= e+i γ /2 − e−i γ /2

2i
, (11.49)
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then 

. sin2
(γ

2

)
= −e+i γ + e−i γ − 2

4
, (11.50) 

which can be substituted into Eq. (11.46) to obtain 

.ξ = 1 − 4r sin2
(γ

2

)
. (11.51) 

The condition stated in Eq. (11.44) is imposed, leading to 

.

∣∣∣1 − 4r sin2
(γ

2

)∣∣∣ ≤ 1 (11.52) 

that can be split into two inequalities, the first being 

.1 − 4r sin2
(γ

2

)
≤ 1, (11.53) 

the solution of which is 

.r ≥ 0. (11.54) 

The second inequality is 

.1 − 4r sin2
(γ

2

)
≥ −1, (11.55) 

and its solution is given by 

.r ≤ 1

2
. (11.56) 

Then, the criteria for the stability of the FTCS method for the diffusion equation 
reads 

.r = D
Δt

Δx2 ≤ 1

2
. (11.57) 

This means that the choice of spatial and temporal increments is essential for the 
stability of the scheme.
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11.4.2 Stability of the BTCS FDM 

The procedure in this case closely resembles that of the FTCS method in nearly 
every step. Now, the starting point is Eq. (11.33), which leads us to 

. ξn eij γ = ξn+1 eij γ − r
[
ξn+1 ei(j+1) γ − 2ξn+1 eij γ + ξn+1 ei(j−1) γ

]
.

(11.58) 

By dividing this last equation by .ξn eij γ , and rearranging it, we arrive at 

.ξ = 1

1 + 4r sin2
(γ

2

) . (11.59) 

Then, applying the criteria for the amplification factor, we obtain 

.
1∣∣∣1 + 4r sin2

(γ

2

)∣∣∣
≤ 1, (11.60) 

where the factor inside the absolute value is always positive, making the denomina-
tor equal to or greater than the unity. 

The conclusion is that the BTCS is inconditionally stable. The trade-off for 
achieving stability in this implicit scheme is the computational workload associated 
with solving a system of equations, as elucidated in the method’s derivation. 

11.5 Concluding Remarks 

In this chapter, we solved the diffusion equation numerically by means of finite-
difference methods (FDMs). For such purpose, the basic relations of the FDM were 
derived, and the diffusion equation was discretized. Emphasis was placed on the 
correct discretization of the boundary and initial conditions, even if a Dirac delta 
is included. Dissimilarities between the FTCS and the BTCS were highlighted, 
showing that two very similar methods can ultimately lead to very different courses 
of action. Furthermore, the step-by-step process to computationally implement both 
schemes was summarized, and their pseudocodes were also presented. Finally, their 
stability analysis was developed for greater clarity. 

For the reader’s convenience, listed below are the most important equations we 
have obtained in this chapter: 

.f '(x0) ≈ f (x0 + Δx) − f (x0)

Δx
. (First-Order Forward Difference)



Further Reading and References 333

.f '(x0) ≈ f (x0) − f (x0 − Δx)

Δx
. (First-Order Backward Difference) 

.f '(x0) ≈ f (x0 + Δx) − f (x0 − Δx)

2Δx
. (First-Order Central Difference) 

. f ''(x0) ≈ f (x0 + Δx) − 2f (x0) + f (x0 − Δx)

Δx2
. (First-Order Central Difference

for the Second Derivative)
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Part IV 
Two-Dimensional Diffusion 

and Reaction-Diffusion Equations 

The randomness of being trapped, reflected, and reacted in two 
dimensions. 

“The future of science lies in the development of new 
mathematical methods for the analysis of complex systems.” 

—John von Neumann



Chapter 12 
Two-Dimensional Systems 

In previous chapters, we focused on solving the diffusion equation in one dimension 
under spatial constraints. In this chapter, we will solve a set of diffusion problems 
within a two-dimensional system with radial symmetry, such as diffusion into 
disklike surfaces. These solutions can also be applied to the problem of diffusion 
into a cylinder in the more general case, which is a problem of diffusion in 
three dimensions. If the cylinder is very long in comparison to its diameter, then, 
we consider the diffusion toward its ends to be negligible. Concentration does 
not depend on the axial position z, and the problem becomes one of diffusion 
in two dimensions instead of three, leading to a significant simplification of its 
mathematical treatment. Moreover, assuming radial symmetry, these cases can be 
reduced to a one-dimensional problem with a straightforward solution. 

The problem of trapping of diffusing particles involving symmetrical diffusion 
into or out of a long cylinder or a disk arises in the analysis of various processes in 
physics, chemistry, and biology. Examples include electric current through arrays 
of microelectrodes, porous membrane transport, reactions on supported catalysts, 
water exchange in plants, ligand binding to cell surface receptors, and ligand 
accumulation in cell culture assays, among others. 

12.1 Partially Absorbent Disk: Internal Problem 

Consider a point particle diffusing within a circular disk of radius R with a partially 
absorbing boundary, which corresponds to a Neumann boundary condition, given by 
Eq. (5.182) and characterized by a trapping rate . κ , as shown in Fig. 12.1. Initially, at 
.t = 0, the initial position of the particles is uniformly distributed across the disk’s 
surface area. Assuming angular independence and using Eq. (B.8), we see that the 
diffusion equation simplifies to 
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Fig. 12.1 Schematic 
representation of a disk with 
radius R and a partially 
absorbing perimeter (yellow) 

R 

.
∂p(r, t)

∂t
= D

r

∂

∂r

(
r
∂p(r, t)

∂r

)
= D

(
∂2p(r, t)

∂r2
+ 1

r

∂p(r, t)

∂r

)
, (12.1) 

where r is the radial coordinate and .r ≤ R. In the present case, the initial condition 
is .p(r, 0) = 1/πR2, and the boundary conditions (BCs) are given by 

. 
dp(r, t)

dr

∣∣∣∣
r=0

= 0 and J(r) · n̂R

∣∣∣∣
r=R

= −D
dp(r, t)

dr

∣∣∣∣
r=R

= κ p(R, t).

(12.2) 

with D being the diffusivity and . κ the trapping rate coefficient. The Laplace 
transform of Eq. (12.1) is given by 

.s p(r, s) − 1

πR2 = D

(
d2p(r, s)

dr2
+ 1

r

dp(r, s)

dr

)
. (12.3) 

To simplify these equations, we use the following change of variable: 

.g(r, s) = p(r, s) − 1

sπR2
, (12.4) 

then, Eq. (12.3) becomes 

.
d2g(r, s)

dr2
+ 1

r

dg(r, s)

dr
− s

D
g(r, s) = 0. (12.5) 

Multiplying this last equation by . r2, we arrive at the modified Bessel equation of 
zero order, namely, 

.r2
d2g(r, s)

dr2
+ r

dg(r, s)

dr
− r2s

D
g(r, s) = 0. (12.6) 

Let us solve the Bessel equation using the method that is usually found in the 
literature. Regardless of whether Eq. (12.6) is expressed using other terms, such as
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extra coefficients or swapped signs, the main result can be used by making a variable 
change, which we will do later in this chapter. 

Let us use a function  .f = f (x) defined by means of an ordinary differential 
equation (ODE), namely, 

.x2 d
2f (x)

dx2 + x
df (x)

dx
+ (x2 − ν2) f (x) = 0, (12.7) 

which is known as the Bessel equation and .ν ≥ 0. Then, according to Fuchs’ 
theorem,1 at least one solution can be found using the Frobenius method, meaning 
that the solution can be built as a series, as shown below: 

.f (x) =
∞∑

n=0

an xn+σ , (12.8) 

and its derivatives are 

.

f '(x) =
∞∑

n=0

(n + σ) an xn+σ−1,

f ''(x) =
∞∑

n=0

(n + σ) (n + σ − 1) an xn+σ−2,

(12.9) 

which are substituted back into the Bessel equation, to get 

. 

∞∑
n=0

(n + σ) (n + σ − 1) an xn+σ +
∞∑

n=0

(n + σ) an xn+σ

+
∞∑

n=0

an xn+σ+2 −
∞∑

n=0

ν2 an xn+σ = 0, (12.10) 

from where we can group terms, obtaining 

.

∞∑
n=0

[
(n + σ)2 − ν2

]
an xn+σ +

∞∑
n=0

an xn+σ+2 = 0. (12.11) 

From the first sum of the last equation, we change the index from .n → n + 2, 
arriving at

1 Fuchs’ theorem states that at least one power solution of the ODE can be obtained by means of 
the Frobenius method if the expansion of the series is made around a singular, regular, or ordinary 
point, which is the case in the Bessel equation. 
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. 

∞∑
n=0

[
(n + σ)2 − ν2

]
an xn+σ =

∞∑
n=−2

[
(n + 2 + σ)2 − ν2

]
an+2 xn+2+σ ,

(12.12) 

and write the two first terms of the sum explicitly, that is, 

. 

∞∑
n=−2

[
(n + 2 + σ)2 − ν2

]
an+2 xn+2+σ

=
[
σ 2 − ν2

]
a0 xσ +

[
(σ + 1)2 − ν2

]
a1 xσ+1

+
∞∑

n=0

[
(n + 2 + σ)2 − ν2

]
an+2 xn+2+σ .

(12.13) 

This is substituted into Eq. (12.11), yielding 

. 

[
σ 2 − ν2

]
a0 xσ +

[
(σ + 1)2 − ν2

]
a1 xσ+1

+
∞∑

n=0

[
(n + 2 + σ)2 − ν2

]
an+2 xn+2+σ +

∞∑
n=0

an xn+σ+2 = 0, (12.14) 

where taking .xn+σ+2 as a common factor gives 

. 

[
σ 2 − ν2

]
a0 xσ +

[
(σ + 1)2 − ν2

]
a1 xσ+1

+
∞∑

n=0

{[
(n + 2 + σ)2 − ν2

]
an+2 + an

}
xn+σ+2 = 0. (12.15) 

As every power of x is linearly independent, then every coefficient must be null to 
hold the equality. This leads us to a set of three equations, namely, 

.

(
σ 2 − ν2

)
a0 = 0,

[
(σ + 1)2 − ν2

]
a1 = 0,

[
(n + 2 + σ)2 − ν2

]
an+2 + an = 0,

(12.16) 

where the third expression can be manipulated, obtaining
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.

(
σ 2 − ν2

)
a0 = 0,

[
(σ + 1)2 − ν2

]
a1 = 0,

an+2 = an

ν2 − (n + 2 + σ)2
.

(12.17) 

Let us check the convergence of the series by using the ratio criteria, namely, 

. lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r < 1, (12.18) 

that is, the ratio of two successive terms of the series. The inequality must hold to 
ensure convergence. Applied to our case, it yields 

.r = lim
n→∞

∣∣∣∣ 1

ν2 − (n + 2 + σ)2

∣∣∣∣ x2 = lim
n→∞

1

n2
x2 = 0, (12.19) 

meaning that irrespective of the value of x we take, the convergence of the series 
is ensured, unlike the case of the Legendre equation, where the series has to be 
truncated to converge. 

Now, going back to the third expression in (12.17) and assuming that .a0 /= 0, 
this yields 

.σ = ±ν, (12.20) 

which can be substituted into the second equation of (12.17) to give 

.(2σ + 1)a1 = 0, (12.21) 

resulting into two different options, which are 

.a1 = 0, σ = −1

2
. (12.22) 

Working with the case when .a1 = 0 and looking into the third equation of (12.17), 
we note that 

.a1 = a3 = a5 = · · · = 0, (12.23) 

allowing us to switch the index .n + 2 → 2n, obtaining 

.a2n = a2n−2

ν2 − (2n ± ν)2
, n = 1, 2, 3, . . . (12.24) 

or
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.a2n = − a2n−2

22 n(n ± ν)
, n = 1, 2, 3, . . . (12.25) 

By explicitly writing out some coefficients, we get 

.

a2 = − a0

22 · 1(1 ± ν)
,

a4 = − a2

22 · 2(2 ± ν)
= a0

24 · 1 · 2(1 ± ν)(2 ± ν)
,

a6 = − a4

22 · 3(3 ± ν)
= − a0

26 · 1 · 2 · 3(1 ± ν)(2 ± ν)(3 ± ν)
,

(12.26) 

which allow us to obtain a general structure, namely, 

.a2n = (−1)n a0

22n n! (1 ± ν)(2 ± ν) · · · (n ± ν)
. (12.27) 

It is necessary to fix the value of . a0, so as a convention, we have 

.a0 = 1

2ν 𝚪(1 ± ν)
. (12.28) 

This is convenient because of the properties of the . 𝚪 function, particularly the one 
stated in Eq. (A.77) in Appendix A.10.1. Furthermore, Eq. (12.27) can be casted into 

.a2n = (−1)n

22n+ν n! 𝚪(1 ± ν + n)
, (12.29) 

which is substituted into the power series in Eq. (12.8), yielding 

.f (x) =
∞∑

n=0

(−1)n

n! 𝚪(1 ± ν + n)

(x

2

)2n+ν

. (12.30) 

These are the Bessel functions of the first kind of order . ±ν: 

.J±ν(x) =
∞∑

n=0

(−1)n

n! 𝚪(1 ± ν + n)

(x

2

)2n+ν

, (12.31) 

and it can be seen that if .ν = 0, then . Jν and .J−ν are the same, and we would need 
to look for another solution. 

Assuming that the two solutions of the Bessel equation are .h(x) = Jν(x) and 
.g(x), then, substituting these into Eq. (12.7), we obtain
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.

x2 h''(x) + x h'(x) + (x2 − ν2) h(x) = 0,

x2 g''(x) + x g'(x) + (x2 − ν2) g(x) = 0,
(12.32) 

where the first expression is multiplied by .g(x) and the second by .h(x), to get 

.

g(x) x2 h''(x) + g(x) x h'(x) + g(x) (x2 − ν2) h(x) = 0,

h(x) x2 g''(x) + h(x) x g'(x) + h(x) (x2 − ν2) g(x) = 0,
(12.33) 

from where we subtract one equation from the other, yielding 

.x
[
g(x) h''(x) − h(x) g''(x)

]+ [g(x) h'(x) − h(x) g'(x)
] = 0, (12.34) 

where this is identified as the derivative of a product, namely, 

. 
d

dx

{
x
[
g(x) h'(x) − h(x) g'(x)

]} = [g(x) h'(x) − h(x) g'(x)
]

+ x
[
g(x) h''(x) + h'(x) g'(x) − h(x) g''(x) − h'(x) g'(x)

]
. (12.35) 

Then, Eq. (12.34) can be stated as 

.
d

dx

{
x
[
g(x) h''(x) − h(x) g'(x)

]} = 0, (12.36) 

meaning that 

.x
[
g(x) h'(x) − h(x) g'(x)

] = A0, (12.37) 

with . A0 being a constant. After a few calculations, we arrive at 

.
g(x) h'(x) − h(x) g'(x)

h(x)2
= A0

x h(x)2
. (12.38) 

Furthermore, the left-hand side can be seen as the derivative of a ratio: 

.
d

dx

[
g(x)

h(x)

]
= g(x) h'(x) − h(x) g'(x)

h(x)2
, (12.39) 

which, when substituted into (12.38), yields 

.
d

dx

[
g(x)

h(x)

]
= A0

x h(x)2
(12.40) 

that needs to be integrated, obtaining
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.
g(x)

h(x)
= A0

∫
dx

x h(x)2
+ A1, (12.41) 

or 

.g(x) = A0 h(x)

∫
dx

x h(x)2
+ A1 h(x). (12.42) 

As stated earlier, .h(x) is the solution that had already been found, so considering 
that .h(x) = Jν(x), then 

.g(x) = A0 Jν(x)

∫
dx

x Jν(x)2
+ A1 Jν(x), (12.43) 

where the first term on right-hand side can be written by defining a new function, 
namely, 

.Yν(x) ≡ A0 Jν(x)

∫
dx

x Jν(x)2
, (12.44) 

which has a specific form known as Neumman functions or Bessel functions of the 
second kind. This is also commonly defined as 

.Yν(x) = Jν(x) cos(νπ) − J−ν(x)

sin(νπ)
. (12.45) 

Equations (12.31) and (12.45) are used to write the most general solution of the 
Bessel equation (12.7), which is 

.f (x) = A Jν(x) + B Yν(x), (12.46) 

where . A and . B are, as usual, constants to be determined by the boundary conditions 
(BCs). 

The solution presented in Eq. (12.46) solves Eq. (12.7), the Bessel equation. But, 
upon comparing the latter to our original equation to solve this, Eq. (12.6), we find 
some discrepancies. To tackle them, let us rewrite Eq. (12.6) in terms of an . f =
f (x) function, namely, 

.x2 d
2f (x)

dx2 + x
df (x)

dx
− s

D
x2 f (x) = 0, (12.47) 

meaning that .ν = 0. Moreover, a difference in sign can be seen in the last term. 
Also, a constant is joined with . x2, and this does not appear in the Bessel equation 
as we solved it earlier. Therefore, a variable change is needed, that is, 

.ξ ≡ i

√
s

D
x, (12.48)
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making . x2 to be 

.x2 = − s

D
ξ2, (12.49) 

and the chain rule is applied 

.
df (ξ)

dx
= df (ξ)

dξ

dξ

dx
= i

√
s

D
f '(ξ), (12.50) 

where the second derivative is 

.
d2f (ξ)

dx2
= d

dx

[
i

√
s

D
f '(ξ)

]
= dξ

dx

d

dξ

[
i

√
s

D
f '(ξ)

]
= − s

D
f ''(ξ). (12.51) 

These two derivatives are substituted back into the Bessel equation, yielding 

.ξ2 f ''(ξ) + ξ f '(ξ) + ξ2 f (ξ) = 0, (12.52) 

which is the Bessel equation in terms of the . ξ variable and .ν = 0. This makes the 
solution, according to Eq. (12.46), to be  

.f (ξ) = A J0(ξ) + B Y0(ξ), (12.53) 

and, when going back to the original variable x, becomes 

.f (x) = A J0

(
i

√
s

D
x

)
+ B Y0

(
i

√
s

D
x

)
. (12.54) 

This last equation has complex arguments, a reason why, together with Eqs. (A.125) 
and (A.126), it lead us to the solution to the original ODE (12.6), proposed in the 
problem, which is given by Eq. (A.128), namely, 

.g(r, s) = A I0

(√
s

D
r

)
+ BK0

(√
s

D
r

)
, (12.55) 

where . A and . B are integration constants and .I0(x) and .K0(x) are the modified 
Bessel functions2 or hyperbolic Bessel functions of the first and second kind,

2 Diverse cylindrical symmetric problems in physics, such as the vibration modes of circular 
drumheads of a thin circular, tubular, or annular membrane, and the radial modes in optical fibers, 
lead to Bessel functions, among others. Bessel functions are a set of mathematical functions that 
were systematically derived around 1817 by the German astronomer Friedrich Wilhelm Bessel, 
which arise as a solution of Kepler’s equations of planetary motion. The first one to propose 
the zero-order Bessel function was Daniel Bernoulli, which appeared when he was studying the 
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respectively. Now, we can substitute this result into Eq. (12.4) to obtain .p(r, s). By  
applying the boundary condition (BC) given in Eq. (12.2) at .r = 0 and using the 
relations 

.
dI0(x)

dx
= I1(x) and

dK0(x)

dx
= −K1(x), (12.56) 

which are obtained from Eqs. (A.134) and (A.136), and the fact that .K1(0) diverges, 
we find that .B = 0. Additionally, using the second BC in Eq. (12.3), at  .r = R, the  
constant that remains to be determined is found, namely, 

.A = − κ

πR2s
[
κ I0

(√
s
D

R
)

+ √
sD I1

(√
s
D

R
)] . (12.57) 

With this last result, the propagator becomes 

.p(r, s) = 1

πR2s

⎡
⎣1 −

κ I0

(√
s
D

r
)

κ I0

(√
s
D

R
)

+ √
sD I1

(√
s
D

R
)
⎤
⎦ . (12.58) 

Figure 12.2 shows the time evolution of this propagator in space and time. 

Fig. 12.2 Time evolution of the probability density .p(r, t) given by Eq. (12.58) at different times, 
i.e., .t = 0.1, .t = 0.5, .t = 1.0, and .t = 2.0. The radius of the disk and the diffusion coefficient are 
set to .D = R = 1, while the trapping rate coefficient . κ is set to . 0.5

properties of heavy chains. Later, Leonhard Euler and Joseph Fourier deduced this function while 
working on the study of vibrations and heat transport, respectively.
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On one hand, when the perimeter of the disk is perfectly reflecting, i.e., 
.κ = 0, the propagator reduces to .(πR2s)−1. Moreover, since the inverse Laplace 
transformation of .1/s is the Heaviside step function,3 the system always has the 
same distribution of particles for .t > 0. On the other hand, if the perimeter is 
perfectly absorbing, then, .κ → ∞, and Eq. (12.58) reduces to 

.p(r, s) = 1

πR2s

⎡
⎣1 −

I0

(√
s
D

r
)

I0

(√
s
D

R
)
⎤
⎦ . (12.59) 

Now, let us calculate the particle’s probability density of mean first-passage time, 
also called lifetime probability .ϕ(s), which is related to the flux probability density, 
by means of Eq. (5.63). Consequently, all we have to do is take the derivative of 
Eq. (12.58) with respect to r and multiply it by .−2πDR, which leads to 

.ϕ(s) =
2κ

√
D I1

(√
s

D
R

)

R
√

s

[
κ I0

(√
s

D
R

)
+ √

sD I1

(√
s

D
R

)] . (12.60) 

The relation between the survival probability and the lifetime probability density 
is obtained from Eqs. (2.81) and (2.91): 

.ϕ(s|x0) =
∫ ∞

0
ϕ(t |x0) e−st dt = −

∫ ∞

0

∂S(t |x0)
∂t

e−st dt. (12.61) 

After integrating by parts the right hand-side, we obtain 

.ϕ(s|x0) = −
[
e−st S(t |x0)

∣∣∣∣
∞

0

+ s

∫ ∞

0
S(t |x0) e−st dt

]
. (12.62) 

The evaluation of the survival probability at infinity tends to zero, while the second 
term is actually the Laplace transform of the survival probability; therefore 

.ϕ(s|x0) = − [−1 + sS(s|x0)] = −s S(s|x0) + 1. (12.63) 

By solving for .S(s|x0), we finally arrive at 

.S(s|x0) = 1

s
[1 − ϕ(s|x0)] . (12.64) 

3 Notice that in Eq. (A.64) we have written the inverse Laplace transform of . 1/s as 1. The reason 
why we are using the Heaviside step function is because we want to correctly describe the time-
ordered aspects of the system. In other words, we ensure a solution for .t ≥ 0.
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As the reader may appreciate, this relationship is very useful: In Laplace space, 
once we have either the survival probability or the lifetime probability, we are able 
to compute the other. 

Moving forward, we shall compute the evolution equation for the mean first-
passage time (MFPT) given by Eq. (2.63). Assuming angular independence, such 
equation reduces to 

.
d

dr0

(
d〈t (dr0)〉

r0

)
= − r0

D
, (12.65) 

where . r0 is the initial position and .r0 ≤ R. The solution of Eq. (12.65) is subject to 
a null flux at .r0 = 0 and a radiation BC at .r0 = R, namely, 

.
d〈t (r0)〉

dr

∣∣∣∣
r0=0

= 0 and − D
d〈t (r0)〉

dr

∣∣∣∣
r0=R

= κ 〈t (r0)〉, (12.66) 

respectively. A first integration of Eq. (12.65) leads to 

.
d〈tn(r0)〉

dr0
= − r0

2D
+ A

r0
. (12.67) 

Introducing the first BC, at .r = 0, gives .A = 0. Integrating one more time yields 

.〈tn(r0)〉 = − r20

4D
+ B. (12.68) 

From the second BC, evaluating at .r0 = R, we find that 

.B = R

2

(
1

κ
+ R

2D

)
. (12.69) 

Finally, we obtain that the MFPT is given by 

.〈t (r0)〉 = 1

4D

(
R2 − r20

)
+ R

2κ
. (12.70) 

This last equation predicts that when .κ = 0, the MFPT tends to infinity and that 
when .κ → ∞, the MFPT is 

.〈t (r0)〉 = 1

4D

(
R2 − r20

)
. (12.71) 

If the initial position of diffusing particles is placed at the origin, this formula 
reduces to .R2/4D, as expected. It is worth remembering that, unlike the case for 
one dimension, in two dimensions, the factor is four instead of two (see Eq. (5.156)), 
and we need to use the transformation .x0 → L − x0).
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To finish this section, we compute the MFPT if the particles are initially 
uniformly distributed. To such end, we have to perform the following integral: 

.

〈tu(R)〉 =
∫ R

0

∫ 2π
0

[
1
4D

(
R2 − r20

)+ R
2κ

]
r0 dθ dr0∫ R

0

∫ 2π
0 r0 dθ dr0

= 2

R2

∫ R

0

[
1

4D

(
R2 − r20

)
+ R

2κ

]
r0 dr0 = R2

8D
+ R

2κ
.

(12.72) 

This result, when .κ → ∞, reduces to .R2/8D, which stands for the MFPT when the 
perimeter boundary is perfectly absorbing. 

12.2 Perfectly Absorbent Disk: External Problem 

Consider a particle concentration .c(r, t) diffusing around a circular disk of radius 
R with a perfectly absorbing perimeter, .c(r = R, t) = 0. Initially, at .t = 0, the  
particles’ initial position is uniformly distributed with a normalized concentration, 
.ϱ(r, t = 0) = 1. Assuming angular independence, the diffusion equation is given 
by Eq. (12.1), namely, 

.
∂ϱ(r, t)

∂t
= D

(
∂2ϱ(r, t)

∂r2
+ 1

r

∂ϱ(r, t)

∂r

)
, (12.1) 

where D is the diffusivity and . κ the trapping rate coefficient. The Laplace transform 
of this equation is 

.
∂2ϱ(r, s)

∂r2
+ 1

r

∂ϱ(r, s)

∂r
= s

D
ϱ(r, s) − 1

D
. (12.73) 

The reader can show that a particular solution of this differential equation is given 
by .ϱ(r, s) = 1/s by direct substitution. Furthermore, a solution to the homogeneous 
equation (without the second term on the right-hand side) may be written as 
Eq. (12.55). Since the solution must be finite and normalized far away from the 
disk, the integration constant multiplying the Bessel function .I0(r, s) must be null. 
Consequently, a general solution is given by 

.ϱ(r, s) = 1

s
+ AK0

(√
s

D
r

)
. (12.74) 

The integration constant . A is computed by imposing the absorbing boundary 
condition at the disk perimeter, i.e.,
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.ϱ(R, s) = 1

s
+ AK0

(√
s

D
R

)
= 0, (12.75) 

then 

.A = − 1

s K0

(√
s
D

R
) . (12.76) 

Substituting this constant into the solution yields 

.ϱ(r, s) = 1

s

⎡
⎣1 −

K0

(√
s
D

r
)

K0

(√
s
D

R
)
⎤
⎦ . (12.77) 

Representative plots of the propagator in Eq. (12.77) are depicted in Fig. 12.3. 
The flux, .j(r, s), in Laplace space of the concentration .ϱ(r, s) can be calculated 

by means of Eq. (2.73), resulting in 

.j(r, s) = −
√

D

s

K1

(√
s
D

r
)

K0

(√
s
D

R
) êr , (12.78) 

which can be inverted numerically. 

Fig. 12.3 Time evolution of the probability density .ϱ(r, t) given by Eq. (12.77) at different times, 
i.e., .t = 0.1, .t = 1.0, .t = 5.0, and  .t = 15.0. The radius of the disk and the diffusion coefficient 
are set to .D = R = 1. It should be noted that the solution holds for .r > R, in this case, .r > 1
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12.3 Partially Absorbent Disk 

Consider the same physical and geometrical arrangement as in the previous section 
but with a partially absorbing perimeter instead. Now, the integration constant . A, 
which appears in Eq. (12.74), should be determined by the following BC: 

.D
∂ϱ(r, s)

∂r

∣∣∣∣
r=R

= κ ϱ(r, s)

∣∣∣∣
r=R

. (12.79) 

Using Eq. (12.74), this BC reads 

. − A
√

sDK1

(√
s

D
R

)
= κ

[
1

s
+ AK0

(√
s

D
R

)]
. (12.80) 

From this last relation, we find that 

.A = −1

s

κ
√

sDK1

(√
s
D

R
)

+ κK0

(√
s
D

R
) . (12.81) 

Substituting this constant into Eq. (12.74) leads to 

.ϱ(r, s) = 1

s

⎡
⎣1 −

κ K0

(√
s
D

r
)

√
sDK1

(√
s
D

R
)

+ κK0

(√
s
D

R
)
⎤
⎦ . (12.82) 

By setting .κ → ∞, we recover Eq. (12.77). The flux in Laplace space of the 
normalized concentration is given by 

.j(r, s) = −
√

D

s

⎡
⎣ κ K1

(√
s
D

r
)

√
sDK1

(√
s
D

R
)

+ κK0

(√
s
D

R
)
⎤
⎦ êr . (12.83) 

12.4 Concentric Disks 

12.4.1 Steady State: Effect of Dimensionality 

In this section, we will study the steady-state solution of the diffusion equation in 
d dimensions, assuming angular independence, when diffusion takes place within 
two concentric spheres, long cylinders, or disks. Let us assume that the boundaries 
of the concentric d-dimensional system are placed at .Rin and .Rout , .Rin < Rout .
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Fig. 12.4 Schematic 
representation of a concentric 
disk with radii .Rin and .Rout . 
The outer and inner 
perimeters (green) are kept at 
constant concentrations . cin

and . cout , respectively 

Rout 

Rin 

The two-dimensional cases are shown in Fig. 12.4. From Eqs. (2.16), (12.1), 
and (14.1), we are able to deduce that, in general, the diffusion equation in d 
dimension, with no angular dependence, can be written as follows: 

. 
∂p(r, t)

∂t
= D

rd−1

∂

∂r

(
rd−1 ∂p(r, t)

∂r

)
= D

[
∂2p(r, t)

∂r2
+ d − 1

r

∂p(r, t)

∂r

]
.

(12.84) 

By definition, a steady-state quantity yields to the same value as any latter 
measurement, as long as all external conditions remain constant in time. From such 
definition, and the use of the conservation or continuity equation, Eq. (2.72), we  
conclude that the flux is free of divergence and consequently Eq. (12.84) becomes 

.
∂

∂r

(
rd−1 ∂p(r)

∂r

)
= 0. (12.85) 

Thereafter, the probability flux is given by 

.
d

dr

(
rd−1J (r)

)
= 0. (12.86) 

By integrating Eq. (12.85) once, we obtain 

.
∂p(r)

∂r
= A

rd−1
, (12.87) 

where . A is a constant of integration. A second integration yields 

.p(r) =

⎧⎪⎨
⎪⎩
A r2−d

2−d
+ B for d /= 2,

A ln(r) + B for d = 2,
(12.88) 

where . B is also a constant of integration. As the reader may observe, at steady 
state, the concentration is independent of diffusivity. The probability flux is obtained
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taking the derivative with respect to r of these last expressions, which is given in 
Eq. (12.87), and multiplying it by . −D, namely, 

.J (r) = −D
A

rd−1 . (12.89) 

It is important to note that with the exception of a one-dimensional system, 
Eqs. (12.88) and (12.89) are singular at the origin, i.e., .r = 0. 

12.4.1.1 Constant Concentration 

Our objective at this point is to apply the formulas obtained in the preceding section 
to a case of use: Diffusion of Brownian particles through a long hollow cylinder or 
concentric disks, considering that the surfaces at .r = Rin and at .r = Rout are kept 
at constant concentration, . cin, and . cout , respectively.4 A schematic representation 
of the system in two dimensions is shown in Fig. 12.4. These systems are of 
practical interest since they have been frequently used to test diffusivities or thermal 
conductivities. 

Let us start with the two-dimensional case. By imposing the BCs to Eq. (12.88) 
and setting .d = 2, we find that the constants of integration are 

.B = cin − A ln(Rin), (12.90) 

and 

.A = cout − cin

ln(Rout/Rin)
, (12.91) 

respectively. Substituting these results into Eq. (12.88) results in 

.c(r) =
cin ln

(
Rout

r

)
+ cout ln

(
r

Rin

)

ln
(

Rout

Rin

) for d = 2. (12.92) 

The limit cases, when one of the surfaces is perfectly absorbing, are obtained 
by setting either . cin or .cout equal to zero. Figure 12.5 shows the steady-state 
concentration as a function of r predicted by Eq. (12.92). 

For .d /= 2, by following the same procedure as in the latter case, we find 

4 It should be noted that although Eqs. (12.85) and (12.87) are written in terms of the propagator 
.p(r), we can obtain the corresponding relations for the concentration by remembering that . c(r) =
Np(r). Therefore, the solution in Eq. (12.88) also holds for concentration.
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Fig. 12.5 Concentration as a function of r predicted by Eq. (12.92) for different values of .Rout . 
In all cases, .Rin = cin = 1. The curves represented by solid lines are obtained setting .cout = 2. 
The curves represented by dashed lines are obtained when placing a perfectly absorbing perimeter 
at .Rout ; consequently, .cout = 0. The numbers on the curves indicate the values used for . Rout

.B = cin − A
2 − d

R2−d
in , (12.93) 

and 

.A = (2 − d)(cout − cin)

R2−d
out − R2−d

in

. (12.94) 

Inserting these equations into Eq. (12.88), we arrive at the following relation: 

.c(r) =
cout

(
r2−d − R2−d

in

)
+ cin

(
R2−d

out − r2−d
)

R2−d
out − R2−d

in

for d /= 2. (12.95) 

Once again, if one of the surfaces is perfectly absorbing, all we have to do is set 
either . cin or .cout equal to zero. When .d = 1, we just have to set .2 − d = 1. 
Furthermore, when .d = 3, after some manipulation, we find that the concentration 
simplifies to 

.c(r) = cinRin(Rout − r) + coutRout (r − Rin)

r(Rout − Rin)
for d = 3. (12.96) 

Figure 12.6 shows the steady-state concentration as a function of r described by 
Eqs. (12.92) for .d = 2, (12.95) when setting .d = 1, and (12.96) for .d = 3.
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Fig. 12.6 Concentration as function of r , described by Eqs. (12.92) for .d = 2, (12.95) when 
setting .d = 1, and  (12.96) for .d = 3. In all cases, .Rin = cin = 1 and .Rout = 5. The curves 
represented by continuous lines are obtained setting .cout = 2. The curves represented by dashed 
lines are obtained when placing a perfectly absorbent surface at .Rout = 5; then, .cout = 0. The  
numbers on the curves are values of dimension, d 

Fig. 12.7 Schematic 
representation of a concentric 
disk with radius .Rin and 
.Rout . The outer perimeter is 
partially absorbing (yellow), 
while the inner perimeter is 
kept at constant concentration 
(green) 

Rout 

Rin 

12.4.1.2 Constant Concentration (Partially Absorbing) 

A second steady-state problem leading to an interesting result is that of concentric 
systems whose surface at .r = Rin is kept at a constant concentration . cin, while at 
.r = Rout , a partially absorbing at surface is imposed. The latter feature corresponds 
to a Neumann BC, given by Eq. (5.182). A schematic representation of the system 
in two dimensions is shown in Fig. 12.7. Now, the solution of Eq. (12.88) is subject 
to the following BCs: 

. c(r)

∣∣∣∣
r=Rin

= c(Rin) and J(r) · n̂Rout

∣∣∣∣
r=Rout

= −D
∂c(r)

∂r

∣∣∣∣
r=Rout

= κ c(Rout ),

(12.97) 

where . κ is the trapping rate coefficient associated with the partially absorbing 
boundary at .r = Rout . 

Using the first boundary condition on the left-hand side of Eq. (12.88), we find 
that
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.B =

⎧⎪⎨
⎪⎩

cin − A ln(Rin) for d /= 2,

cin − AR2−d
in

2−d
for d = 2.

(12.98) 

Now, imposing the second boundary condition into Eq. (12.87), we arrive at the 
following relations: 

.A =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2 − d)κcinR
d
inR

d
out

κR2
inR

d
out − RoutR

d
in [(2 − d)D + κRout ]

for d /= 2,

κ
D

Rout cin

κ
D

Rout ln
(

Rin

Rout

)
− 1

for d = 2.

(12.99) 

By introducing these constants into Eq. (12.87), the concentration as a function of r 
is found, namely, 

. c(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cin

{
r2−d − R2−d

in

R1−d
out

[
(d − 2)D

κ
− Rout

]+ R2−d
in

+ 1

}
for d /= 2,

cin

[
1 + κ

D
Rout ln

(
Rout

r

)]

1 + κ
D

Rout ln
(

Rout

Rin

) for d = 2.

(12.100) 
The latter equation for one and three dimensions reads 

.c(r) =
cin

[
κ
D

(Rout − r) + 1
]

κ
D

(Rout − Rin) + 1
for d = 1, (12.101) 

and 

.c(r) = cinRin

[
r (D − κRout ) + κR2

out

]
r
[
Rin (D − κRout ) + κR2

out

] for d = 3, (12.102) 

respectively. By setting .κ = 0 into these formulas, we find that .c(r) = cin, as  
expected. Also, we can take the limit when .Rin = 0 and reproduce the results for a 
disk.
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Fig. 12.8 Schematic 
representation of a system 
consisting of two concentric 
disks with radius .Rin and 
.Rout , respectively. The outer 
perimeter is perfectly 
reflecting (blue), while the 
inner perimeter is partially 
absorbing 

Rout 

Rin 

12.4.2 Mean First-Passage Times in 2D: Perfectly Reflecting 
(Partially Absorbing) 

Consider a point particle diffusing within the annulus bounded by two concentric 
circles of radii .Rin and .Rout , .Rout > Rin. The outer circle of radius .Rout is 
reflecting, while the inner circle with radius .Rin has a uniform partially absorbing 
perimeter, characterized by a trapping rate . κ (see Fig. 12.8). Then, the evolution 
equation for the mean first passage time, Eq. (12.65), is now subject to a reflecting 
BC at .r = Rout and a radiation BC at .r = Rin, namely, 

.
d〈t (r0)〉
dr0

∣∣∣∣
r0=Rout

= 0, and D
d〈t (r0)〉
dr0

∣∣∣∣
r0=Rin

= κ 〈t (r0)〉. (12.103) 

Using the first boundary condition in Eq. (12.67), we find that 

.A = R2
out

2D
. (12.104) 

Consequently 

.
d〈t (r0)〉
dr0

= − r0

2D
+ R2

out

2D

1

r0
. (12.105) 

Integrating this last expression leads to 

.
d〈t (r0)〉
dr0

= − r20

4D
+ R2

out

2D
ln r0 + B. (12.106) 

Applying the second BC, i.e., the partially absorbing boundary, to the latter 
equation, we are able to find . B, yielding 

.B = R2
in

4D
− R2

out

2D
ln(Rin) + R2

out − R2
in

2κRin

. (12.107)
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Fig. 12.9 Mean first-passage 
time as a function of the 
initial position . r0 predicted 
by Eq. (12.109), setting  
.D = Rin = 1 for different 
values of the outer radius: 
.Rout = 1.5 (blue line), 
.Rout = 2.0 (yellow line), and 
.Rout = 2.5 (green line) 
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By substituting this constant into Eq. (12.106), we obtain 

.〈t (r0)〉 = 1

4D

[
2R2

out ln

(
r0

Rin

)
− r20 + R2

in

]
+ R2

out − R2
in

2κRin

. (12.108) 

Setting .κ → ∞, particles would diffuse between an inner disk with a perfectly 
absorbing boundary and a outer disk reflective perimeter. Then, the MFPT becomes 

.〈t (r0)〉 = 1

4D

[
2R2

out ln

(
r0

Rin

)
− r20 + R2

in

]
. (12.109) 

From Eq. (12.109), we see that Eq. (12.108) now has a clear interpretation: The 
first term represents the first encounter of the particle with the partially absorbing 
boundary when the particle starts at . r0, while the second term represents the trapping 
time when the particle starts at .Rout and is later trapped. Theoretical predictions for 
the MFPT as a function of . r0 when .κ → ∞, given by Eq. (12.109), are  shown in  
Fig. 12.9. 

The problem of a concentric disk will be discussed in a very general way in 
Sect. 14.3. In this section, we will find the propagator, as well as the splitting 
probabilities, and we will discuss the effect of dimensionality. It is worth noting 
that the formulas obtained in this section identical if we switch .Rin for .Rout , and 
vice versa, leading to a reflecting inner disk and a partially absorbing outer disk. 

12.5 Concluding Remarks 

In this chapter, we were able to explicitly appreciate the effects of dimensionality 
in diffusive processes. For example, assuming angular independence, the diffusion 
equation becomes a Bessel function. We also introduced the concept of steady state, 
which is useful in many practical cases and significantly simplifies the solution of 
the diffusion equation.
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Chapter 13 
Reaction-Diffusion Equations 

Oftentimes, it is important to take into account the diffusion of components within 
a chemical system, people in an environment, or genes in a population, which leads 
to diffusion with an extra reaction term. Reaction-diffusion equations also arise 
naturally in systems consisting of many interacting components and are widely used 
to describe pattern-formation phenomena in a variety of biological, chemical, and 
physical systems. In this chapter, we will introduce the Turing bifurcations, a type 
of bifurcation arising in reaction-diffusion systems. They lead to nontrivial spatial 
patterns, which we will study both analytically and numerically. These patterns form 
instabilities in spatially extended dissipative systems driven away from equilibrium. 
Examples of these patterns are observed on the skin of a giant puffer fish, as well 
as on the formation of spots on the fur of animals. Additionally, Turing patterns 
have explained the shell structure and patterns observed in aquatic mollusks. This 
theoretical framework has become a basic model in theoretical biology. 

13.1 Turing-Like Reaction-Diffusion Equations 

Patterns in nature serve not only as aesthetic features, but are also necessary for 
locomotion, reproduction, protection, and alimentation. The periodic stripes on the 
skins of animals such as giraffes, zebras, or leopards, along with gradients of colors 
on the feathers of birds, serve various purposes such as signaling, recognition, and 
camouflage. Additionally, patterns are crucial for the growth and functionality of 
tissues including the skin, kidneys, and heart. In 1952, Alan Turing’s1 work on 
morphogenesis emphasized the importance of chemical gradients in generating 

1 Alan Turing, a British mathematician and computer scientist, is widely considered to be the 
father of computer science and artificial intelligence. He was born on June 23, 1912, in London, 
England, and died on June 7, 1954, in Wilmslow, Cheshire. During World War II, he worked for the 
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patterns and their determining effect on cell differentiation. In general, two-
dimensional Turing patterns may spontaneously appear under completely different 
spatial configurations. Also, Turing structures have been exhaustively studied in 
different reaction-diffusion systems, such as the chlorite-dioxide-iodine-malonic 
acid reaction and the Belousov-Zhabotinsky reaction. In the remainder of the 
chapter, we will develop Turing’s mechanism on reaction-diffusion systems and 
provide the necessary conditions for instability that lead to the formation of two-
dimensional patterns. 

13.1.1 Turing Mechanism 

During 1952, Alan Turing published an article entitled The Chemical Basis of 
Morphogenesis, where he developed a mathematical model in which he established 
that, under certain conditions, two chemical substances can react and diffuse in 
such a way that a heterogeneous steady state is produced, leading to the emergence 
of spatial patterns of concentration of morphogens.2 Intended to describe the 
mathematical structure of reaction-diffusion equations, consider a system wherein 
two substances, denoted as . A and . B, coexist and interact through a chemical reaction, 
meaning that . A can transform into . B and . B into . A while freely diffusing in space. 
Within this framework, we would expect that . A and . B molecules sustain a state of 
uniform mixture. Nevertheless, with the use of certain reaction kinetics, we may 
start with a homogeneous mixture of both substances and, after some time, due to 
small fluctuations, obtain well-defined regions of gradients of a particular chemical 
species. 

Further exploring the model, let S be an arbitrary surface surrounding a volume 
V containing a certain concentration gradient of the mixture of . A and . B. The  
principle of mass conservation states that the rate of change in concentration of 
either substance . A or . B, represented in a single variable as . cA,B, is equal to substance 
transfer across surface S, in addition to the amount of reagents created or destroyed 
inside V due to local reactions. Therefore, the number of particles per unit time 
present in the system must satisfy the following equation: 

British government as a codebreaker and helped crack the German Enigma code. He made major 
contributions to mathematics, cryptanalysis, logic, philosophy, and mathematical biology.
2 In the context of developmental biology, the term morphogen is associated with signaling 
molecules secreted in a limited region of a tissue that diffuse away from the source where 
they generate a concentration gradient. This molecule is produced by embryonic cells and is 
characterized by its ability to spread and act at a distance on other cells or tissues, besides being able 
to acquire positional information for spatial organization in the formation of complex structures, 
such as organs in embryonic development. Throughout the book, morphogens will be considered 
as Brownian point particles. 
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.
∂

∂t

∫
V

cA,B(r, t) dv = −
∫

S

JA,B · n̂ dA +
∫

V

fA,B dv, (13.1) 

where .JA,B is the flux, .fA,B is a scalar function representing the rate of chemical 
creation and annihilation, while . ̂n is the unit normal vector to the surface, and . dA
and . dv are the infinitesimal area and volume elements, respectively. Assuming that 
the concentration is a continuous function, meaning a smooth and differentiable 
curve, we invoke the divergence theorem 

.

∫
V

∇ ·F dv =
∫

S

F · n̂ dA, (13.2) 

with . F being a continuously differentiable vector field in the neighborhood of S. By  
applying the latter equation to the first term of the right-hand side of Eq. (13.1), we  
arrive at 

.

∫
V

[
∂cA,B(r, t)

∂t
+ ∇ · JA,B − fA,B

]
= 0. (13.3) 

For the last equation to hold true for any given volume V , the argument of the 
function must necessarily vanish, resulting in a new conservation equation for . cA,B, 
namely, 

.
∂cA,B(r, t)

∂t
+ ∇ · JA,B = fA,B(cA,B, r, t), (13.4) 

where we have indicated that the function .fA,B may generally depend on con-
centration, position, and time, i.e., .fA,B = fA,B(cA,B, r, t). By substituting the 
conservation equation, which is 

.J(r, t) = −D∇c(r, t), (2.74) 

we obtain 

.
∂cA,B(r, t)

∂t
= fA,B(cA,B, r, t) + ∇ · (

D∇cA,B(r, t)
)
. (13.5) 

For the above equation, D is a .2× 2 diagonal matrix of diffusion coefficients. In 
the generalization of Eq. (13.5), when considering m chemical species that interact 
with each other, there will be a column vector .ci(r, t) (for .i = 1, 2, 3, · · · ,m) 
that represents the concentration of every substance, each diffusing with a diffusion 
coefficient . Di and interacting according to .f1,2,3,··· ,m. Furthermore, given the 
condition of a diagonal matrix with constant entries, we have that 

.
∂cA,B(r, t)

∂t
= DA,B∇2cA,B(r, t) + fA,B. (13.6)
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In the original case of a mixture of two chemical species . A and . B, Eq. (13.6) is 
decomposed to yield two equations3 

.
∂cA(r, t)

∂t
= f + DA∇2cA(r, t) and (13.7) 

.
∂cB(r, t)

∂t
= g + DB∇2cB(r, t), (13.8) 

that is, a system of reaction-diffusion equations. Our goal in this section will be to 
solve a system of partial differential equations (PDEs) for two chemical substances, 
satisfying Turing conditions that ultimately lead to spatial pattern formation. 

In the absence of diffusion, i.e., .DA = DB = 0, the system containing both 
species . A and . B tends to a stable linear steady state. The instability arises when 
the elements, diffusion, and reaction combine, specifically when .DA /= DB. Now,  
allow us to make additional assumptions: Let chemical species . A be an activating 
reagent and species . B an inhibitory reagent, where .DB >> DA, and make the 
starting position of reagents . rA0 and . rB0. Under these circumstances, the inhibitory 
substance prevents the distribution of the activator; thus, the space available for the 
activator to react and diffuse is restricted to a finite domain that depends on the 
ratio .DB/DA and certain specific reaction parameters. On the contrary, if instead 
of having a single initial point of reagent concentration, we have several random 
starting positions, we would have a heterogeneous spatial distribution in the steady 
state, with well-defined activator and inhibitor regions. Moreover, if both species 
diffuse at the same rate, that is, .DA = DB, the system cannot develop any kind of 
pattern. 

This is the Turing mechanism, a simple system with impressive results. The 
emergence of instability is due to the combination of two individual models that are 
stable when isolated. Diffusion leads to instability in the interaction of two reagents. 
In the following sections, we derive Turing conditions, to later present a simple 
model that has all the aforementioned characteristics, leading to two-dimensional 
patterns. 

13.2 Turing Conditions 

Reaction-diffusion equations consisting of one or more chemical substances expe-
rience the so-called Turing instability when the system has a stable steady state that 
is invariant to small perturbations in the absence of diffusion and becomes unstable 
to those perturbations in its presence. Therefore, it is referred to as having diffusion-

3 Notice that we have set .fA = f and .fB = g. These functions will be describing the reaction 
kinetics of the system, indicating the way in which the substances are transformed into each other. It 
is an inherent characteristic that these functions are always nonlinear so to induce Turing instability. 
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driven instability.4 Furthermore, all reaction-diffusion systems, such as Eqs. (13.7) 
and (13.8), have a dimensionless version that can be written in the following form:5 

. 
∂u(r, t)

∂t
= γf (u, v) + ∇2u(r, t),

∂v(r, t)
∂t

= γg(u, v) + d ∇2v(r, t),

(13.9) 

where now .u(r, t) takes the place of .cA(r, t) and .v(r, t) of .cB(r, t), whereas d 
is the diffusion coefficient ratio .Dv/Du and . γ can take one of the following 
interpretations: 

• .γ 1/2 is proportional to the linear size of the spatial domain in one dimension. 
When working with a two-dimensional system, . γ is proportional to the surface 
area. 

• . γ represents the relative force between reagent terms. This may cause an increase 
in . γ to produce an increase in a activity of some constraints in the step of the 
reaction sequence. 

• an increase in . γ could lead to the attenuation of the ratio d. 

The formation of spatial patterns strongly depends on the choice of functions f 
and g, together with the specific values assigned to . γ and d. Therefore, we must 
derive the necessary conditions so that the system shows stability in the absence of 
diffusion and instability when diffusion is included. For this purpose, we follow the 
traditional approach of deriving the so-called Turing conditions. 

As in most problems involving an ordinary differential equation (ODE) or a 
partial differential equation (PDE), boundary and initial conditions are needed to 
give a unique solution to the problem. Considering given initial conditions and 
reflecting BCs, the latter are determined by6 

.∇
(

u(r, t)
v(r, t)

) ∣∣∣∣
r=∂Ω

· n̂ = 0, (13.10) 

corresponding to a Neumann BC, where .∂Ω is the external boundary and . ̂n is 
the unit normal vector to the surface. The relevant homogeneous steady state of 
Eq. (13.9) is given by the positive solution of 

.f (u, v) = 0, g(u, v) = 0. (13.11)

4 In an ecological context, such behavior becomes apparent as spatial disturbances give rise to 
oscillatory patterns in the population dynamics of the endemic species. 
5 When all the terms of an ordinary differential equation (ODE) or partial differential equation 
(PDE) describing a physical phenomenon are dimensionally homogeneous, we can define appro-
priate parameters in order to obtain a dimensionless version of the equation. For such purpose, we 
use the Vaschy-Buckingham . π theorem. This type of simplification reduces the number of variables 
in the equation and uncovers the underlying relationships between them. 
6 By defining this type of BC, the study is restricted to self-organizing spatial patterns. The null 
flux BC implies that there are no external contributions to the system. 
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We are especially interested in the linear stability of the steady state when no spatial 
variations are occurring, i.e., the homogeneous linearly stable steady state. In the 
absence of diffusion, Eq. (13.9) is reduced to 

.
∂u(r, t)

∂t
= γf (u, v),

∂v(r, t)
∂t

= γg(u, v). (13.12) 

Intending to perform a local linearization around .(u0, v0),7 as shown in Appen-
dices 13.A and 13.B, we define 

.cu,v(r, t) ≡
(

u(r, t) − u0

v(r, t) − v0

)
. (13.13) 

Thus, Eq. (13.12) is written as (see Eqs. (13.83) and (13.93)) 

.
∂cu,v(r, t)

∂t
= γAcu,v(r, t), (13.14) 

where, according to Eq. (13.83),8 

.A =
(

fu fv

gu gv

)
u0,v0

. (13.15) 

Therefore, the eigenvalue problem of Eq. (13.14) is described as follows: 

.|γA − λI| =
∣∣∣∣γfu − λ γfv

γgu γgv − λ

∣∣∣∣ = 0, (13.16) 

After some algebraic manipulations, we obtain 

.λ2 − γ (fu + gv)λ + γ 2(fugv − fvgu) = 0, (13.17) 

and by solving for . λ, we arrive at

7 Corresponding to the points where the functions vanish, are undefined, or discontinuous. 
8 The subscripts .u0, v0 in the stability matrix, denoting the evaluation of the matrix at critical 
points, will be omitted from now on. Furthermore, for the sake of simplifying notation, unless 
otherwise indicated, the derivatives of functions f and g with respect to either u and v will always 
be evaluated at critical points. 
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.

λ1,2 = γ

2

[
(fu + gv) ±

√
(fu + gv)2 − 4(fugv − fvgu)

]

= γ

2

[
Tr(A) ±

√
Tr(A)2 − 4Det(A)

]
.

(13.18) 

A stable node is present for .λi < λj < 0 (.i, j = 1, 2), as the trajectories 
asymptotically approach the critical point as t tends to infinity. We can verify that 
for Re .(λ) < 0, all corresponding terms in the equation must be strictly negative, 
yielding 

.Tr(A) = fu + gv < 0, Det(A) = fugv − fvgu > 0. (13.19) 

As the reader may note, the critical points strongly depend on the choice 
of kinetic reaction, and the inequalities in Eq. (13.19) impose constraints on the 
parameters that determine the eigenvalues. 

Once we have established stability in the absence of diffusion, we return to the 
original reaction-diffusion equations to demand instability in the spatial coordinates. 
The reaction-diffusion equations, Eq. (13.9), can be written as a single expression, 
by using Eq. (13.13), as follows: 

.
∂cu,v(r, t)

∂t
= γAcu,v(r, t) + D∇2cu,v(r, t), (13.20) 

where . D is a diagonal matrix of diffusion coefficients, given by 

.D =
(
1 0
0 d

)
. (13.21) 

Equation (13.20) will be linearized around9 .cu,v = 0 and solved together with 
the BCs in Eq. (13.10). Assuming a separable solution of the form . cu,v(r, t) =
T (t)χu,v(r) for the system of PDEs in Eq. (13.20), two ODEs arise, namely,10 

.
1

T (t)

dT (t)

dt
= λ and γAχu,v(r) + D∇2χu,v(r) = λIχu,v(r), (13.22) 

where . λ is the separation constant and . I is the .2 × 2 identity matrix. On one hand, 
the solution to the ODE in time is given by 

.T (t) = Eeλt , (13.23)

9 See Appendix 13.B for further details on linearization around the origin. 
10 Notice that .T (t) is a usual ODE, while .χ(r) is a columnmatrix with two rows containing second-
order ODEs. 
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with . E being an integration constant. On the other hand, in the one-dimensional case 
where .r → x, along the interval .x ∈ [0, L], the spatial functions in .χ(x)u,v satisfy 
the following equation: 

.
d2χu,v(x)

dx2
+ k2ij χu,v(x) = 0, (13.24) 

with .k2ij = D
−1
ij

(
λ − γAij

)
, since 

.χu,v(x) =
⎛
⎝χu(x)

χv(x)

⎞
⎠ . (13.25) 

The analytic solution of Eq. (13.24) for each of the substances u and v is given 
by a linear combination of trigonometric functions or, equivalently, an imaginary 
exponential, namely, 

.χu,v(x) = A cos
(
kij x

) + B sin
(
kij x

)
. (13.26) 

where . A and . B are integration constants. By using the BCs in Eq. (13.10), we  
conclude that11 

.χu,v,n(x) = An cos
(nπx

L

)
with n = 1, 2, 3, . . . (13.27) 

for .k = k11 = k22 = nπ/L. The general solution, as a spectral representation, is a 
superposition of the product of functions .T(t) and .χu,v,n(x), i.e., 

.cu,v(x, t) =
∑
n

Cne
λtχu,v,n(x). (13.28) 

All constants . Cn are determined by Fourier expansion and the use of initial 
conditions. By substituting the latter solution into Eq. (13.28), we arrive at  

.
∂

∂t

(
Cne

λtχu,v,n(x)
) = γACne

λtχu,v,n(x) + D
∂2

∂x2

(
Cne

λtχu,v,n(x)
)
, (13.29) 

and after rearrangement, we find 

.λCne
λtχu,v,n(x) = γACne

λtχu,v(x) − DCne
λt k2χn(x). (13.30)

11 See Sect. 5.2.1 for the solution of a diffusion one-dimensional problem with reflecting bound-
aries. 



13.2 Turing Conditions 369

In the view of need for nontrivial solutions for .cu,v(x, t) in the implementation of 
. λ, we state that 

.|λI − γA + Dk2| = 0, (13.31) 

which, by explicitly using . D and . A, results in 

. 

∣∣∣∣∣
(

λ 0
0 λ

)
− γ

(
fu fv

gu gv

)
u0,v0

+ k2
(
1 0
0 d

)∣∣∣∣∣ =
∣∣∣∣λ − γfu + k2 −γfv

−γgu λ − γgv + k2d

∣∣∣∣ = 0.

(13.32) 
Following a small computation, we obtain 

. λ2 +λ
[
k2 + d k2 − γ (fu + gv)

]
+d k4 − k2γ (d fu +gv)+γ 2(fugv −fvgu) = 0,

(13.33) 
or 

. λ2 + λ
[
k2(1 + d) − γTr(A)

]
+ k2

[
d k2 − γ (d fu + gv)

]
+ γ 2Det(A) = 0.

(13.34) 

Using the relations in Eq. (13.19), together with the definition of 

.h(k2) ≡ k2
[
d k2 − γ (d fu + gv)

]
+ γ 2Det(A), (13.35) 

yields 

.λ2 + λ
[
k2(1 + d) − γ (fu + gv)

]
+ h(k2) = 0, (13.36) 

which is a simplified version of Eq. (13.33). 
The steady state .(u0, v0) is linearly stable if both solutions of Eq. (13.36) satisfy 

Re .λ < 0. The analysis of constraints for the stable steady state in the absence 
of diffusion was previously considered, corresponding to .k2 = 0, in which case, 
the relations in Eq. (13.19) must be fulfilled simultaneously. Additionally, if we 
require the steady state to be unstable to small perturbations in coordinates, when 
both reaction and diffusion are studied, we need that Re .λ > 0 for all values of k 
different from zero. Now, solving for . λ in Eq. (13.36), we obtain 

. λ1,2 = 1

2

{
γ (fu + gv) − k2(1 + d) ±

√[
k2(1 + d) − γ (fu + gv)

]2 − 4h(k2)

}
.

(13.37) 

From Eq. (13.19), we know that .Tr(A) = (fu + gv) < 0. Moreover, it is clear that 
.k2(1 + d) > 0, then 

.k2(1 + d) − γ (fu + gv) > 0. (13.38)
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As the reader may note, the only way in which Re .λ(k2) > 0 is true is if .h(k2) < 0, 
which in turn holds if .(d fu + gv) > 0! A potential contradiction seems to arise 
in this last statement, since already established that .(fu + gv) < 0 in Eq. (13.19). 
However, the intersection of constraints requires that .d /= 1 together with a sign 
difference between derivatives . fu and . gv . Hence, 

.d fu + gv > 0, with d /= 1. (13.39) 

In the case where .fu > 0 and .gv < 0, then .d > 1, and it follows that v is 
the activator of u while u inhibits v.12 The inequality in Eq. (13.39) is necessary 
but insufficient to ensure that Re .λ > 0. Therefore, we must fully consider .h(k2). 
Within this framework, the minimum with respect to . k2 of function .h(k2) must be 
negative, leading to 

.
∂

∂k2

[
d k4 − k2γ (d fu + gv) + γ 2Det(A)

]
= 0, (13.40) 

or 

.2d k2 − γ (d fu + gv) = 0, (13.41) 

from which we find that 

.k2min = (d fu + gv)

2d
γ, (13.42) 

where the subscript min indicates that the correct value of . k2 minimizes .h(k). By  
substituting this last relation in .h(k2), we find 

. 

hmin(k
2
min) = d

[
γ (d fu + gv)

2d

]2
−

[
γ (d fu + gv)

2d

]
γ (d fu + gv) + γ 2Det(A)

= γ 2
[
Det(A) − (d fu + gv)

2

4d

]
.

(13.43) 
For this last value to be negative, we have that 

.
(d fu + gv)

2

4d
> Det(A). (13.44) 

In addition, we define the critical diffusion coefficient ratio . dc when

12 It is important to note that in an activator-inhibitor mechanism, the inhibitor reagent must diffuse 
more rapidly than the activator reagent. 
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.
(d fu + gv)

2

4d
= Det(A). (13.45) 

from which we see that it is determined by 

.d2
c f 2

u + 2dc(2fvgu − fugv) + g2
v = 0. (13.46) 

Furthermore, by substituting . dc in Eq. (13.42) and using Eq. (13.44), we obtain the 
critical wave number, namely, 

.k2c = (dcfu + gv)

2dc

γ = γ

[
Det(A)

dc

]1/2
, (13.47) 

thus, 

.k2c = γ

[
fugv − fvgu

dc

]1/2
. (13.48) 

The domain of the unstable wave number is found through the roots of .h(k), 
specifically, 

.h(k2) = dk4 − k2γ (dfu + gv) + γ 2Det(A) = 0, (13.49) 

yielding 

.k21,2 = γ

2d

[
(d fu + gv) ±

√
(d fu + gv)2 − 4 d · Det(A)

]
. (13.50) 

The dominant terms in the solution of Eq. (13.28) are those that meet the condi-
tion Re .λ(k2) > 0, since all other terms tend to zero exponentially. Moreover, the 
linearly unstable eigenfunctions, which grow exponentially in time, will eventually 
be bounded by the nonlinear terms in the reaction-diffusion equations, leading to a 
spatially inhomogeneous steady-state solution. 

In this section, we obtained the conditions for the generation of spatial patterns 
using a system of reaction-diffusion equations, i.e., Eq. (13.9). A compact overview 
of such conditions, i.e., Turing conditions, is provided below 

.fu + gv < 0, fugv − fvgu > 0, (13.51) 

.dfu + gv > 0, and (dfu + gv)
2 − 4d(fugv − fvgu) > 0. (13.52) 

According to our analysis, the derivatives . fu and . gv , when evaluated at the critical 
points, must have opposite signs, for instance, .fu > 0, .gv < 0, while .d > 1. 
Therefore, there are two different possibilities for cross terms in . A. Since the only 
restriction is that .fvgu < 0, we can set .fv > 0 and .gu < 0, or  .fv < 0, .gu > 0,
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which indicates two different kinds of reactions. In terms of the stability matrix, we 
have the following two cases: 

.

(
fu fv

gu gv

)
→

(+ −
+ −

)
, (13.53) 

and 

.

(
fu fv

gu gv

)
→

(+ +
− −

)
. (13.54) 

In the first case, u is the activator reagent for both itself and v, whereas v serves as 
the inhibitor reagent for u. This configuration is known as a pure activator-inhibitor 
system. In contrast, in the second case, u activates its own production while inhibits 
the production of v, and v activates u while self-inhibiting. The latter configuration 
is referred to as a cross activation and inhibition system. 

13.3 Gierer-Meinhardt Model 

The Gierer-Meinhardt model, introduced in 1972 by Alfred Gierer and Hans 
Meinhardt in a paper titled Theory of biological pattern formation, is a mathematical 
model that describes the formation of patterns in biological systems by using 
two reaction-diffusion equations describing the concentration of two substances 
classified as activator and inhibitor: On the one hand, the activator is a short-
range substance that promotes the formation of patterns, and on the other hand, the 
inhibitor is a long-range substance that inhibits the formation of patterns. The small 
initial variations, disturbances in concentration, and interactions between these 
reagents can create regions with different concentrations, resulting in the emergence 
of stripes, spots, or other types of patterns. The Gierer-Meinhardt model has been a 
turning point for its simplicity and success in explaining and reproducing a variety 
of biological patterns. 

In the remainder of the chapter, we study a dimensionless version of the 
Gierer-Meinhardt model in one and two dimensions, find the Turing conditions for 
instability, and provide visual results on the formation of spatial patterns. 

Gierer-Meinhardt 
Consider two chemical substances whose concentrations at position x and time 

t are described by functions .u(x, t) and .v(x, t). A dimensionless version of the 
Gierer-Meinhardt model is written as follows: 

.
∂u(x, t)

∂t
= Du

∂2u(x, t)

∂x2 + u(x, t)2

v(x, t)
− b u(x, t), (13.55)
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.
∂v(x, t)

∂t
= Dv

∂2v(x, t)

∂x2
+ u(x, t)2 − v(x, t). (13.56) 

In this case, u is the activator reagent and v the inhibitor, while b represents a 
parameter linked to the degradation of the substance, solely acting on the activator, 
i.e., the reaction rate. First, we analyze the stability of the system in the absence 
of diffusion by following the exact same procedure as in Eq. (13.2). Under this 
consideration, the latter two equations are reduced to 

.
∂u(x, t)

∂t
= f (u, v) = u(x, t)2

v(x, t)
− b u(x, t), (13.57) 

.
∂v(x, t)

∂t
= g(u, v) = u(x, t)2 − v(x, t). (13.58) 

The critical points are computed by making .f (u∗, v∗) and .g(u∗, v∗) identically 
zero, from which we find that 

.(u∗, v∗) =
(
1

b
,

1

b2

)
. (13.59) 

The stability matrix of the system is then given by 

.A =
(

fu fv

gu gv

)
=

(
b −b2

2/b −1

)
. (13.60) 

For this particular case, the stability conditions in Eq. (13.19) are 

.Tr(A) = b − 1 < 0, and Det(A) = b > 0. (13.61) 

The above conditions induce a restriction on the values that b can take, i.e., . b ∈
[0, 1]. Now, we induce instability in the presence of diffusion. Intending to linearize 
around .(u∗, v∗), we define 

.cu,v(x, t) ≡
(

u(x, t) − u∗
v(x, t) − v∗

)
(13.62) 

leading to a set of reaction-diffusion equations of the form 

.
∂cu,v(x, t)

∂t
=

[(
Du 0
0 Dv

)
∂

∂x
+

(
b −b2

2/b −1

)]
cu,v(x, t). (13.63) 

Since we have already dealt with the general problem in Sect. 13.27, we can assert 
that the solutions are
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.cu,v(x, t) =
(
A
B

)
cos(k x)eλt , (13.64) 

where the BCs are those of Eq. (13.10) and . A together with . B are integration 
constants. The eigenvalue problem yields to (see Eq. (13.31)) 

.λ2 + λ
[
1 − b + k2(Du + Dv)

]
+ h(k2) = 0, (13.65) 

where 

.h(k2) = k4DuDv + k2(Du − b Dv) + b. (13.66) 

Equating the above equation to zero, we find that 

.k21,2 = (b Dv − Du) ± √
(bDv − Du)2 − 4DuDvb

2DuDv

. (13.67) 

Depending on the type of solution obtained from the previous equation, the two 
following cases may emerge: 

. b Dv − Du > 2
√

DuDvb, for different and positive roots,

b Dv − Du = 2
√

DuDvb, for equal and positive roots.

Then, by minimizing .h(k2) with respect to . k2, we find that the minimum is at 

.k2min = (bDv − Du)

2DuDv

, (13.68) 

and by using Eq. (13.46), we conclude that the diffusion coefficient ratio is given by 

.dc = Dv

Du

= 3 ± 2
√
2

b
. (13.69) 

13.3.1 Turing Domain 

A Turing domain is a domain or region encompassing all possible values of the 
reaction parameters that lead to the formation of patterns. More specifically, given 
the inequalities of (13.51) and (13.52), or Eqs. (13.61) and (13.69) for the Gierer-
Meinhardt model, we are able to determine a parameter space in which the system
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is unstable to small perturbations in space.13 Furthermore, as long as the Turing 
conditions are satisfied and k is within the interval of . k1 and . k2, according to 
Eq. (13.67), then the eigenfunctions of Eq. (13.64) will be linearly unstable. 

In Sect. 13.2, we set Neumann BCs to avoid external interaction with the system. 
This condition can also be physically implemented by enforcing periodic BCs of the 
form 

.

⎛
⎝u(0, t)

v(0, t)

⎞
⎠ =

⎛
⎝u(r, t)

v(r, t)

⎞
⎠

r=∂Ω

. (13.71) 

Thereafter, the solutions expressed in Eq. (13.28) are now represented using a 
cosine function, specifically,14 

.cu,v(x, t) =
∑
n

Cne
λt cos(kx), (13.72) 

with 

.k = 2nπ

L
, (13.73) 

which is the appropriate value to satisfy the BCs. We can see that the minimum 
admissible value of k is .2π/L, with .n = 1. Overall, the smallest value for L 
corresponds to the maximum value of k, that is, 

.k2max = (b Dv − Du) + √
(bDv − Du)2 − 4DuDvb

2DuDv

= 4π2

L2
c

, (13.74) 

where . Lc is the critical length of the system; below this value, patterns cannot arise. 
In the following sections, we address the numerical solution to the reaction-

diffusion equations and present characteristic plots of concentration patterns in both 

13 Notice that the inequalities in Eq. (13.52) simplify to 

.
Dv

Du

b − 1 > 0, and Du − 6Dvb + D2
vb

2

Du

> 0 (13.70) 

regarding the reaction-diffusion system in Eqs. (13.55) and (13.56). Both of the latter inequalities 
lead to the same threshold, which leads us to Eq. (13.69). 
14 It should be noted that Turing conditions are identical regardless of whether Neumann or 
periodic BCs are applied. This applies to most of the remaining parameters, including the critical 
diffusivity ratio . dc and the roots of k in Eq. (13.50). The unique difference arises in the quantization 
of k in Eq. (13.73) and the one used in Eq. (13.27). Such disagreement results in a different critical 
length for each type of BCs. Nonetheless, a suitable selection of these conditions allows for the 
observation of spatial pattern formation.
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one and two-dimensional spatial domains. In both instances, we will use periodic 
BCs, as they contribute to optimizing computation time in numerical methods. 

13.4 Pattern Formation: One-Dimensional Model 

In the preceding section, we concluded that by satisfying the Turing conditions 
and selecting a value for k from the interval defined by . k1 and . k2, the reaction-
diffusion system exhibits instability due to small spatial perturbations, also called 
Turing instability. When considering values outside the Turing domain, there are 
bifurcation points, i.e., critical points of the system in which stability transitions 
can occur, e.g., a transition from a stable to an unstable state, the emergence 
of new stable states, or the disappearance of existing ones. Moreover, there are 
parameter domains where Turing instability is completely absent, for instance, when 
the diffusion coefficient ratio is below . dc. 

From the graphic representation of .h(k2), Eq. (13.66), it is possible to select 
plausible values for d and b, yielding to the definition of the Turing domain for 
the dimensionless Gierer-Meinhardt model. By choosing .b = 0.35 and .Du = 1, 
.Dv = 30, so that .d = 30, we may choose any value of . k2 that is bounded between its 
two positive roots, . k1 and . k2, satisfying .h(k2) < 0. In addition, the critical diffusion 
coefficient ratio and the critical length of the system are given by .dc ≈ 16.65 and 
.Lc ≈ 12.00. See Fig. 13.1 for representative plots of .h(k2) for different values of d. 

Now, we proceed to numerically solve the reaction-diffusion equations, 
Eqs. (13.55) and (13.56), by means of a Mathematica code, which is presented in 
Appendix 13.C.1. In this Appendix, we define a function named PDEsSolution1D, 
which requires the system’s length L, reaction rate b, diffusion coefficient ratio 
(diffusivity ratio) d, and computation time . tc. The execution of this function 

Fig. 13.1 Characteristic plots of function .h(k2) in Eq. (13.65). The blue curve shows the function 
.h(k2) when the diffusivity ratio is below the critical value, in this case .dc > d = 1. Additionally, 
the yellow curve shows the behavior when .d = dc ≈ 12.00, whereas the green curve, for . dc <

d = 30, shows two real and different roots (indicated along the x-axis with red dots) that generate 
the correct Turing domain as a one-dimensional interval
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Fig. 13.2 Temporal evolution of the concentration gradients of species u and v described by the 
numerical solution of Eqs. (13.55) and (13.56) obtained from using the code in Appendix 13.C.1 
as PDEsSolution1D[12, 0.35, 30, 400], which indicates that .L = 12, reaction rate .b = 0.35, 
diffusivity ratio .d = 30, and computation time . tc = 400

yields to the numerical solutions of the partial differential equations (PDEs) and 
simultaneously generates the density plot animation. 

Figure 13.2 shows the graph of the concentration gradients of species u and v for 
.L = 12, .b = 0.35, and .d = 30 at different times, from which we can verify that if 
the length of the system is equal to or smaller than the critical length . Lc, no spatial 
patterns emerge even if there are small perturbations in concentration. 

Furthermore, the temporal evolution of both reagents u and v is depicted in 
Fig. 13.3 when .L = 100. As the reader may see, both concentration gradients 
undergo significant oscillations that vary with position. This pronounced variation 
implies that the system exhibits Turing instability. 

In order to visualize the results more directly and to conclude the analysis of 
systems with varying lengths, in Fig. 13.4 we present a concentration density plot 
for species u for the two length settings, i.e., .L = 12 and .L = 100. 

In the following section, we explore the Gierer-Meinhardt model in two dimen-
sions.
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Fig. 13.3 Temporal evolution of the concentration gradients of species u and v described by the 
numerical solution of Eqs. (13.55) and (13.56) obtained from using the code in Appendix 13.C.1 
as PDEsSolution1D[100, 0.35, 30, 400], which indicates that .L = 100, reaction rate .b = 0.35, 
diffusivity ratio .d = 30, and computation time . tc = 400

Fig. 13.4 Comparison of the density plot of substance .u(x, t) for different lengths, i.e., . L = 12
(left-hand side) and .L = 100 (right-hand side). In the left panel, the concentration of the reagent 
u (in orange) does not show significant modifications over time and remains uniform throughout 
the entire domain of the system. Conversely, in the right panel, there is a uniform concentration 
gradient for shorter times (up to .t ≈ 90 ), while a stable spatial pattern is observed for longer times. 
In both instances, the figures were obtained from the code in Appendix 13.C.1, using the values 
.b = 0, .d = 30, and .tc = 400
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13.4.1 Pattern Formation: Two-Dimensional Model 

The system of reaction-diffusion PDEs in Eqs. (13.55) and (13.56) can be readily 
extended to two dimensions, leading to 

.
∂u(x, t)

∂t
= Du

(
∂2u(x, t)

∂x2 + ∂2u(x, t)

∂y2

)
+ u(x, t)2

v(x, t)
− b u(x, t), (13.75) 

together with 

.
∂v(x, t)

∂t
= Dv

(
∂2v(x, t)

∂x2 + ∂2v(x, t)

∂y2

)
+ u(x, t)2 − v(x, t), (13.76) 

i.e., the two-dimensional model of Gierer-Meinhardt. 
The Turing conditions remain valid for higher dimensions. Therefore, the 

mathematical formulation of . kc, d, and domain size hold. The only notable change 
is in the quantization of k, which, given that Eqs. (13.75) and (13.76) are separable, 
is given by 

.kn,m = n2π2

L2
x

+ m2π2

L2
y

, (13.77) 

where . Lx and . Ly represent the system’s length in the x-direction and y-direction, 
respectively. Additionally, the integers n and m are associated with the eigenvalue 
problem along each direction, either x or y. For this two-dimensional system, we 
use the parameters .b = 45, .d = 30, and .tc = 2000. 

We shall now undertake the numerical solution of the reaction-diffusion equa-
tions, namely, Eqs. (13.75) and (13.76), by using the Mathematica code introduced 
in Appendix 13.C.2. After running the code, specifically when using the function 
PDEsSolution2D[80, 10, 0.45, 30, 2000], we find the numerical solution of the 
reaction-diffusion PDEs, together with its graphical representation. Such results are 
illustrated in Fig. 13.5 for a rectangular system with .Lx = 80, .Ly = 10, and the 
parameters established above. 

It should be noted that the length of the system in the vertical direction, . Ly , is  
smaller than the previously deduced critical length given in Eq. (13.74), meaning 
that the patterns will be formed along the horizontal domain only, while the 
concentration gradient remains uniform along the vertical coordinate. 

Now, we want to see the domain’s effect in the formation of more complex 
patterns. For such purpose, we analyze the solutions in a square system in which 
.Lx = Ly = 100 and where the other parameters remain unchanged. The evolution 
of substance concentration, found through PDEsSolution2D[80, 80, 0.45, 30, 2000], 
is represented in Fig. 13.5, where we can see six pattern development frames, this 
time generating spots.
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Fig. 13.5 Temporal 
evolution of the density plot 
of substance .u(x, y) obtained 
from the code in Appendix 
13.C.2 as 
PDEsSolution2D[80, 10, 
0.45, 30, 2000], which  
indicates that .Lx = 80, 
.Ly = 10, .b = 45, and  
.tc = 2000. At time .t = 0, the  
concentration of u starts to 
diffuse at a certain position . x0
located somewhere along the 
x-direction within the interval 
.[0, Lx ] while being uniformly 
distributed in the y-direction. 
As time progresses, 
substances u and v begin to 
interact according to 
Gierer-Meinhardt reaction 
kinetics (see Eqs. (13.75) 
and (13.76)) and spatial 
patterns emerge. In this 
particular case, stripes arise 
on the x-y plane 

In the latter case, we see that the concentration gradient of species u starts to 
diffuse from position . x0 contained along the interval .[0, Lx] while being uniformly 
distributed along the vertical axis. As time progresses, strip patterns are formed, and 
then we have spots emerging on the x-y plane. This behavior verifies the postulates 
of Turing instability: The larger the spatial domain, the more complex concentration 
patterns are formed, as shown in Fig. 13.6. 

In Fig. 13.7, we show a schematic representation of Turing patterns in nature, 
from which we can see that, in the progressive transition from narrow to wide (or 
bottom to top) regions, different patterns emerge. Initially (at the bottom), the region 
assumes a homogeneous coloration (a black or white solid color). Then, a notable 
transformation unfolds, leading to the formation of stripes. Finally, in the case of the 
left-hand panel, these stripes culminate in the creation of spots. This observation is 
in complete accordance with the concept of the Turing domain in pattern formation, 
as described by Eq. (13.74), and is consistent with the patterns obtained through the 
application of Gierer-Meinhardt kinetics (see Figs. 13.5 and 13.6).
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Fig. 13.6 Temporal evolution of the density plot of the substance .u(x, y) obtained from the 
code in Appendix 13.C.1 as PDEsSolution2D[80, 80, 0.45, 30, 2000], which indicates that 
.Lx = Ly = 80, .b = 45, and .tc = 2000. At time .t = 0, the concentration of u starts to diffuse at a 
certain position . x0 located somewhere along the x-direction within the interval .[0, Lx ] while being 
uniformly distributed in the y-direction. As time progresses, substances u and v begin to interact 
according to Gierer-Meinhardt reaction kinetics (see Eqs. (13.75) and (13.76)), first forming stripes 
and then changing to spots 

13.5 Concluding Remarks 

Throughout this chapter, we have presented a brief yet comprehensive derivation 
of the reaction-diffusion equations for purposes of introducing the ideas behind 
the Turing mechanism of pattern formation. Subsequently, we deduced the Turing
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Fig. 13.7 In the left-hand panel, a schematic illustration showcases the distinctive tail patterns 
found in leopards and jaguars. Similarly, the right-hand panel exhibits a schematic depiction of 
the tail patterns observed in tigers and lemurs. Moreover, we show a monochromatic depiction of 
the concentration patterns generated by solving a system of reaction-diffusion equations. In the 
progressive transition from narrow to wide (bottom to top), different types of patterns emerge, e.g., 
in the leopard’s tail, we can see the transition toward the formation of spots 

conditions that make a system of reaction-diffusion equations stable in the absence 
of diffusion and unstable in its presence. Finally, we applied Turing’s theory for 
spatial pattern formation to the dimensionless system of PDEs, as regards the Gierer-
Meinhardt kinetics, in one and two dimensions. Within this model, we concluded 
that we can determine the Turing domain by appropriately the values of the reaction 
rate b and the relative diffusion coefficient d, which can be done more easily by 
relying on a graphical representation of the function .h(k2), as we did in Fig. 13.1. 
We then solved the reaction-diffusion equations, in both one and two dimensions, 
using the Mathematica codes provided in Appendices 13.C.1 and 13.C.2. The results 
are astounding: The shape of the spatial patterns of concentration depend on the 
type of spatial domain that contains the reagents u and v. Moreover, the larger the 
domain, the more complex patterns can be formed, something that reproduces what 
happens in nature very well, for example, the patterns that are observed in the skins 
of different species, including cats, tapirs, fish, etc. 

The success of this theory lies in its ability to explain patterns observed in nature, 
including various biological phenomena such as animal coat markings and plant 
pigmentation. Ultimately, Turing’s instability theory has found broader applications 
in a number of fields, including materials science, neuronal networks, and, most 
recently, social science, offering insights into population dynamics and ecosystem 
stability. 

13.A Stability Matrix and Principles of Linearization 

This Appendix is devoted to reviewing of the stability matrix and principles of 
linearization. We initiate our study with the mathematical formulation of a system 
of first-order ordinary differential equations, namely,
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.
dx

dt
= f (x, y),

dy

dt
= g(x, y). (13.78) 

The relationship from which the phase curves, also called phase trajectories, of a  
dynamical system are obtained15 has the form 

.
dx

dy
= f (x, y)

g(x, y)
. (13.79) 

Once we have established the initial conditions, every point .(x, y) is part of 
a unique curve in the phase space. This happens for all coordinates, except for 
singular or critical points,16 denoted by .(xc, yc), regarding which 

.f (xc, yc) = g(xc, yc) = 0. (13.80) 

Typically, trajectories either converge toward stable critical points or diverge from 
unstable critical points. Now, by making the transformation .x → x − xc and . y →
y − yc, then .(0, 0) is the new critical point of the phase space. Therefore, we can 
always set the critical coordinates at the origin. In other words, 

.f (0, 0) = g(0, 0) = 0. (13.81) 

If both functions f and g are continuous around .(0, 0), we are able to make a Taylor 
series for each of them. Through this process, and considering just the first order 
terms, we obtain 

.
dx

dy
= ax + by

cx + dy
, (13.82) 

where .a, b, c, and d are constants. We proceed with defining the stability matrix . A, 
specifically,

15 In order to fully understand the role of a dynamical system in the stability matrix and 
principles of linearization, the concept of phase space must be roughly defined: A phase space 
is a multidimensional space where each dimension represents a state variable of the system. It is 
constructed by considering all the possible values of the state variables, leading to a full description 
of all possible states of a system. Furthermore, a phase curve or phase trajectory is a term used to 
describe a path that represents the sequence of states or phases of the system as time progresses. 
For example, in a simple pendulum, the commonly used coordinates to represent the phase space 
are the angle of the pendulum and its angular velocity. Together, they depict how the system goes 
through different states as the pendulum swings back and forth. 
16 A singular point refers to a point in the phase space where the rate of change of the system’s 
state is undefined or discontinuous. In contrast, a critical point is a point in the phase space whose 
derivative is zero. 
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.A ≡
(

a b

c d

)
=

(
fx fy

gx gy

)
xc,yc

. (13.83) 

where the subscript in the functions indicates partial differentiation with respect to 
x, for instance, .fx = ∂f/∂x, and the matrix is evaluated at the critical points. The 
linear equivalence of Eq. (13.83) in the system yields to 

.
dx

dt
= ax + by,

dy

dt
= cx + dy. (13.84) 

On the condition that . λ1 and . λ2 are the eigenvalues of A, the eigenvalue problem is 
described as 

.|A − λI| =
∣∣∣∣a − λ b

c d − λ

∣∣∣∣ = 0, (13.85) 

resulting in 

.λ1,2 = 1

2

[
Tr(A) ±

√
Tr(A)2 − 4Det(A)

]
, (13.86) 

where .Tr(A) and .Det(A) are the trace and determinant of the stability matrix, 
respectively. Using the eigenvalues approach to solve Eq. (13.84),17 we arrive at 

.

(
x

y

)
= c1v1eλ1t + c2v2eλ2t , (13.87) 

with . c1 and . c2 being arbitrary constants, whereas . vi is the eigenvector corresponding 
to the eigenvalue . λi . 

This process can be applied to assess the stability of various systems, including 
chemical reactions and biological systems dynamics. For instance, it can be used 
to analyze systems like the Lotka-Volterra equations, which serve as an illustrative 
model for predator-prey dynamics. 

13.B Linearization 

Consider a function with a multidimensional argument: 

.f = f (x) = f (x1, x2, x3, · · · , xn). (13.88)

17 It is widely known that the solution of an .n × n system of ordinary differential equations is a 
linear combination of real exponential functions with a structure of . eλi t . 
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Function f is linear only if, in its explicit formulation, it is a linear combination 
of coordinates .x = (x1, x2, x3, · · · , xn), which is a highly distinctive limitation. 
In a wide range of cases, f is a nonlinear function. The linearization process 
allows us to analyze the local stability of an equilibrium point for a nonlinear 
system of equations. Our objective is to find a simplified function that produces 
identical values to the original function when evaluated at specific coordinates 
.x0 = (x1

0 , x
2
0 , x

3
0 , · · · , xn

0 ) while also matching the values of its partial derivatives. 
Mathematically, this process is carried out through18 

.L(x) = f (x0) + ∇f (x)

∣∣∣∣
x0

· (x − x0). (13.89) 

Consequently, a local linearization of f , i.e., .L(x), is obtained in the vicinity of . x0. 
Here is an example: Consider a one-dimensional function .f (x). If .f (x) is locally 

linear at a point . x0, it means that the function can be well approximated by a straight 
line in a small neighborhood around that point. Therefore, 

.y(x) = f (x0) + fx(x0)(x − x0), (13.90) 

meaning that .y(x) is a linear approximation of .f (x) at . x0. Now, upon examination 
of a two-dimensional function .f (x, y), which is to be linearized around .(x0, y0), 
Eq. (13.89) becomes 

.g(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0), (13.91) 

where we have used the tangent plane to f at .(x0, y0) as an approximation. 
As a final example, consider a first-order ODE, namely, 

.
dx

dt
= g(x). (13.92) 

Linearization of .dx/dt around . x0 is given by 

.h(x) = g(x0) + gx(x0)(x − x0). (13.93) 

Since . x0 is an equilibrium point of .dx/dt , then .g(x0) = 0 and Eq. (13.93) reduces 
to 

.
dx

dt
≈ gx(x0)(x − x0), (13.94) 

18 The scalar product in the second term of Eq. (13.89) guarantees that functions f and L exhibit 
identical directional variation at the specified point. In other words, the partial derivatives of these 
functions share identical information.
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which solution is found in a straightforward manner, yielding 

.x(t) = x0 + c egx(x0). (13.95) 

with c being an integration constant. The instability of the system can be classified 
into two categories: For .gx(x0) < 0, the solution converges to the critical point at 
longer times exhibiting asymptotic stability. In contrast, if .gx(x0) > 0, the solution 
diverges from . x0 and becomes unstable. 

13.C Numerical Solution of Reaction-Diffusion Equations 

13.C.1 One-Dimensional Gierer-Meinhardt Model 

This Appendix discusses the numerical solution of the coupled partial differential 
equations (PDEs) in Eqs. (13.55) and (13.56), namely, 

.
∂u(x, t)

∂t
= Du

∂u(x, t)

∂x
+ u(x, t)2

v(x, t)
− b u(x, t), (13.55) 

together with 

.
∂v(x, t)

∂t
= Dv

∂2v(x, t)

∂x2 + u(x, t)2 − v(x, t), (13.56) 

and its graphical representation. We tackled this problem by employing the compu-
tational software Mathematica. 

The following code, Listing 13.1, requires the values of system length L, reaction 
rate b, diffusion coefficient ratio d, and computation time . tc, in that specific order. 
Its output provides the numerical solution of .u(x, t) and .v(x, t), the concentration 
plot as a function of x, and a density plot of concentration .u(x). For example, if we 
want to see the results for a system with .L = 100, .β = 0.35, .d = 30, and .tc = 400, 
we should write PDEsSolution1D[100, 0.35, 30, 400]. 

Listing continued on next page 

Listing 13.1 [GMmodel1D.nb]: Mathematica code to numerically solve the 
one-dimensional Gierer-Meinhardt model.

 1 (∗Definition of the function PDEsSolution1D[L, b, d, tc] 
for the one-dimensional Gierer-Meinhardt reaction-
diffusion model∗)

 2 
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Listing continued on next page 

Listing continued from last page

 3 PDEsSolution1D[L_ (∗length of the system∗), b_  (∗reaction 
rate∗), d_  (∗diffusivity ratio∗), tc_ (∗computation 

time∗)] :=
 4
 5 (∗Specification of the variables used within the Module∗)
 6 Module[{Dv = d, PDEs, initialconditions, x0, BCs, Eqs, 

Plotuv1D, Densityplotuv},
 7
 8 (∗ NUMERICAL SOLUTION OF THE REACTION-DIFFUSION 

SYSTEM ∗)
 9
 10 (∗First, we define the system of PDEs according to Eqs. 

(13.55) and (13.56), namely,*)
 11
 12 PDEs = {(∗Eq. (13.55)∗)
 13 D[u[t,x],t] == Du D[u[t,x],{x,2}] + u[t,x]^2/v[t,x] - b 

u[t,x],
 14 (∗Eq.(13.56)∗)
 15 D[v[t,x],t] == Dv D[v[t,x],{x,2}] + u[t,x]^2 - v[t,x]};
 16
 17 (∗The concentration gradients of the substances are 

represented as u[t,x] (activator) and v[t,x] 
(inhibitor). The variables inside the square brackets 
indicate the dependence of both functions u and v on 
time and space, while command D[f[x1,x2, ...,xn],{xn,m 
}] gives the m-order partial derivative of function f 
with respect to xn. Thus, D[u[t,x],t] denotes the 
partial derivative of u[t,x] with respect to time.∗)

 18
 19 (∗For the sake of simplicity, we set Du=1∗)
 20
 21 Du = 1;
 22
 23 (∗Now, we set the initial and boundary conditions. On the 

one hand, a random value x0 is selected within the 
interval [0,L] to represent the initial position of 
species u, i.e.,*)

 24
 25 x0 = RandomReal[{0,L}];
 26 
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Listing continued on next page 

Listing continued from last page

 27 (∗This selection is based on a Gaussian-like distribution 
centered at x0. On the other hand, we choose a 
constant value for v[0,x]. Therefore, the initial 
conditions are given by∗)

 28
 29 initialconditions = {u[0,x]==1/b + Exp[-(x-x0)^2], v[0,x 

]==1/b^2};
 30
 31 (∗When opting for periodic boundary conditions, we are led 

to write∗)
 32
 33 BCs = {u[t,0] == u[t,L], v[t,0] == v[t,L]};
 34
 35 (∗Moving forward, we associate the initial and boundary 

conditions to the PDEs by using the Join command in 
Mathematica, which is∗)

 36
 37 Eqs = Join[PDEs,initialconditions,BCs];
 38
 39 (∗Finally, we solve numerically the system of PDEs over 

the given range [0, tc] for t and [0, L] for x. The 
solution is obtained by means of the NDSolve command 
and we name the solution solution1D∗)

 40
 41 solution1D = NDSolve[Eqs (∗System of PDEs to solve∗),
 42 {u,v} (∗variables we wish to solve∗),
 43 {t,0,tc} (∗computation time∗),
 44 {x,0,L} (∗spatial domain∗)];
 45
 46 (∗VISUALIZATION OF RESULTS AND DENSITY PLOT∗)
 47
 48 (∗The rest of the code is intended to show the position-

dependent plots of concentrations u(x) and v(x) in 
blue and orange, respectively, at different times. We 
incorporated controls to enable interactive time 
manipulation. Additionally, a density plot is 
displayed on the plane x-t.∗)

 49
 50 (∗Plot of concentration gradients ~~the variable time is a 

dummy variable~~∗) 
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Listing continued on next page 

Listing continued from last page

 51
 52 Plotuv1D =
 53 (∗We use the Animate command to animate the plot∗)
 54 Animate[
 55 (∗Evaluating functions u and v at the numerical 

solution solution1D and plotting its result∗)
 56 Plot[
 57 Evaluate[{u[time, x], v[time, x]} /.solution1D],
 58 (∗Selecting the spatial domain of the plot∗)
 59 {x, 0, L},
 60 (∗Detailed specification of legends∗)
 61 PlotLegends -> {"u(x)","v(x)"},
 62 (∗Frame Labels∗)
 63 Frame -> True,
 64 FrameLabel -> {"Position x","Concentration gradient"},
 65 (∗Fixing plot range∗)
 66 PlotRange -> {0,12}],
 67 (∗Time domain of the animation increasing in steps of 

tc/100∗)
 68 {time, 0, tc , tc/100},
 69 (∗Selecting manual reproduction of the animation∗)
 70 AnimationRunning -> False];
 71
 72 (∗Density plot of concentration ~~the variable time is a 

dummy variable~~∗)
 73
 74 Densityplotuv =
 75 (∗Making a density plot of function u evaluated at the 

numerical solution solution1D∗)
 76 DensityPlot[Evaluate[u[time, x] /. solution1D],
 77 (∗Selecting the spatial domain of the plot∗)
 78 {x, 0, L},
 79 (∗Time domain of the density plot∗)
 80 {time,0,tc},
 81 (∗Plot label∗)
 82 PlotLabel -> Style["Concentration u(x)"],
 83 (∗Detailed specification of frame labels∗)
 84 Frame -> True, FrameLabel -> {"Position x","Time t"},
 85 (∗Definition of a color style∗)
 86 ColorFunction -> "SolarColors", 
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Listing continued from last page 

Listing ended

 87 (∗Using 100 initial sample points ~~Higher values give 
smoother plots~~∗)

 88 PlotPoints -> 100,
 89 (∗Size to display the plot∗)
 90 ImageSize -> 300];
 91
 92 (∗Finally, we show all previous results in the form of a 

list, specifically the numerical solution, the 
concentration plot, and the density plot:∗)

 93
 94 {solution1D, Plotuv1D, Densityplotuv}]
 95
 96 (∗Subsequently, we undertake the solution of the system 

with L=80, b=0.35,d=30, and tc=400, using the latter 
function as PDEsSolution1D[80, 0.35, 30, 400]∗)

 97
 98 PDEsSolution1D[100, 0.35, 30, 400]
 99
 100 (∗As we can see, the concentration gradient of both 

substances starts to oscillate along the x-axis and, 
after a certain time, both functions reach a steady 
state∗)

 101
 102
 103 (∗The reader may change the values of any of the 

parameters to see the role of reaction rate b, 
critical length Lc, critical diffusion coefficient 
ratio dc, and time computation tc. For instance, by 
using Eq. (13.74), we can see that the critical length 
is about Lc= 12.0, meaning that below that value, 

concentration remains approximately constant and no 
patterns emerge in the density plot. Therefore, as the 
domain size increases, the substance concentration 

exhibits steeper transitions∗) 
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13.C.2 Two-Dimensional Gierer-Meinhardt Model 

This Appendix focuses on the numerical solution of the coupled partial differential 
equations (PDEs) outlined in Eqs. (13.75) and (13.76), namely, 

.
∂u(x, t)

∂t
= Du

(
∂2u(x, t)

∂x2 + ∂2u(x, t)

∂y2

)
+ u(x, t)2

v(x, t)
− b u(x, t), (13.75) 

and 

.
∂v(x, t)

∂t
= Dv

(
∂2v(x, t)

∂x2
+ ∂2v(x, t)

∂y2

)
+ u(x, t)2 − v(x, t), (13.76) 

respectively. We address this problem using Mathematica. The following code, 
Listing 13.2, requires the values of system length . Lx and . Ly , reaction rate b, 
diffusion coefficient ratio d, and computation time . tc, in that specific order. Its output 
provides the numerical solution of .u(x, y, t) and .v(x, y, t), the concentration plot 
as a function of x and y, and a density plot of concentrations. For example, if we 
want to see the results for .Lx = 80, .Ly = 10, .b = 0.35, .d = 30, and .tc = 1000, we  
should write PDEsSolution2D[80, 10, 0.35, 30, 1000]. 

Listing continued on next page 

Listing 13.2 [GMmodel2D.nb]: Mathematica code to numerically solve the 
two-dimensional Gierer-Meinhardt model.

 1 (∗Definition of the function PDEsSolution2D[Lx,Ly,b, d, tc 
] for the two-dimensional Gierer-Meinhardt reaction-
diffusion model∗)

 2
 3 PDEsSolution2D[Lx_ (∗length along the x-axis∗),Ly_ (∗ 

length along the y-axis∗),b_ (∗reaction rate∗),d_ (∗ 
diffusivity ratio∗),tc_ (∗computation time∗)] :=

 4
 5 (∗Specification of the variables used within the Module∗)
 6
 7 Module[{Dv = d, PDEs, initialconditions, x0, BCs, Eqs, 

Densityplotuv},
 8
 9 (∗ NUMERICAL SOLUTION OF THE REACTION-DIFFUSION 

SYSTEM ∗)
 10
 11 (∗First, we define the system of (PDEs) according to Eqs. 

(13.73) and (13.74), namely,*) 
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Listing continued on next page 

Listing continued from last page

 12
 13 PDEs = {(∗Eq.(13.73)∗)
 14 D[u[t,x,y],t] == Du (D[u[t,x,y],{x,2}] + D[u[t,x,y],{y 

,2}]) + u[t,x,y]^2/v[t,x,y] - b u[t,x,y],
 15 (∗Eq.(13.74)∗)
 16 D[v[t,x,y],t] == Dv (D[v[t,x,y],{x,2}] + D[v[t,x,y],{y 

,2}]) + u[t,x,y]^2 - v[t,x,y]};
 17
 18 (∗The concentration gradients of the substances are 

represented as u[t,x,y] (activator) and v[t,x,y] ( 
inhibitor).The variables inside the square brackets 
indicate the dependence of both functions u and v on 
time and space, while command D[f[x1,x2,...,xn],{xn,m 
}] gives the m-order partial derivative of function f 
with respect to xn. Thus, D[u[t,x,y],t] denotes the 
partial derivative of u[t,x,y] with respect to time.∗)

 19
 20 (∗For the sake of simplicity, we set Du=1∗)
 21
 22 Du = 1;
 23
 24 (∗Now, we set the initial and boundary conditions. On the 

one hand, a random value for x0 is selected within the 
interval [0,Lx] to represent the initial position of 

species u, i.e.,*)
 25
 26 x0 = RandomReal[{0,Lx}];
 27
 28 (∗This selection is based on a Gaussian-like distribution 

centered at (x0, y). On the other hand, we choose a 
constant value for v[0,x,y]. Therefore, the initial 
conditions are given by∗)

 29
 30 initialconditions = {u[0,x,y] == 1/b + Exp[-(x-x0)^2],
 31 v[0,x,y] == 1/b^2};
 32
 33 (∗When opting for periodic boundary conditions, we are led 

to write∗)
 34 
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Listing continued on next page 

Listing continued from last page

 35 BCs = {u[t, 0, y] == u[t, Lx, y], v[t, x, 0] == v[t, x, Ly 
]};

 36
 37 (∗Moving forward, we associate the PDEs to the initial and 

boundary conditions using the Join command in 
Mathematica, this is∗)

 38
 39 Eqs = Join[PDEs, initialconditions, BCs];
 40
 41 (∗Finally, we numerically solve the system of PDEs over 

the given range [0, tc] for t, [0, Lx] for x, and [0, 
Ly] for y. The solution is obtained by means of the 
NDSolve command and we name the solution solution2D∗)

 42
 43 solution2D =
 44 NDSolve[Eqs (∗System of PDEs to solve∗), {u, v},
 45 {t,0,tc} (∗computation time∗),
 46 {y,0,Ly} (∗spatial domain along the y-axis∗),
 47 {x, 0, Lx} (∗spatial domain along the x-axis∗)];
 48
 49 (∗VISUALIZATION OF RESULTS AND DENSITY PLOT∗)
 50
 51 (∗The rest of the code is intended to show the density 

plots of concentrations u(x,y) and v(x,y) with 
incorporated controls to enable interactive time 
manipulation.∗)

 52
 53 (∗Density plot of concentration ~~the variable time is a 

dummy variable~~∗)
 54
 55 Densityplotuv =
 56 (∗We use the ListAnimate command to animate the results 

provided in the Table below∗)
 57 ListAnimate[
 58 (∗Generating a list of the DensityPlot when time goes 

from 0 to tc∗)
 59 Table[
 60 (∗Making a density plot of function v evaluated at the 

numerical solution solution2D∗)
 61 DensityPlot[Evaluate[v[time, x, y] /.solution2D], 
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Listing continued on next page 

Listing continued from last page

 62 (∗Selecting the spatial domain of the plot∗)
 63 {x,0,Lx}, {y,0,Ly},
 64 (∗Definition of a color style∗)
 65 ColorFunction -> "SolarColors",
 66 (∗Plot label∗)
 67 PlotLabel -> Style["Concentración de u(x,t)"],
 68 (∗Frame label∗)
 69 FrameLabel -> {"Position x","Position y"},
 70 (∗Using 100 initial sample points ~~Higher values give 

smoother plots~~∗)
 71 PlotPoints -> 100,
 72 (∗Automatic setup of plot's height-to-width ratio∗)
 73 AspectRatio ->Automatic],
 74 (∗Time domain of the animation increasing in steps of 

tc/100∗)
 75 {time, 0, tc,tc/100}],
 76 (∗Selecting manual reproduction of the animation∗)
 77 AnimationRunning -> False];
 78
 79
 80 (∗Finally, we show previous results in the form of a list, 

specifically the numerical solution and the density 
plot∗)

 81
 82 {solution2D, Densityplotuv}]
 83
 84 (∗Subsequently, we undertake solving the system with Lx 

=80, Ly=10, b=0.45, d=30, and tc=1000, using the 
latter function as PDEsSolution2D[80, 10, 0.45, 30, 
1000]∗)

 85
 86 PDEsSolution2D[80 (∗length along the x-axis∗),
 87 80 (∗length along the y-axis∗),
 88 0.45 (∗reaction rate∗),
 89 30 (∗diffusivity ratio∗),
 90 2000 (∗computation time∗)]
 91
 92
 93 (∗The reader may change the values of any of the 

parameters to see the role of reaction rate b, domain 
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Listing continued from last page 

Listing ended 

size, critical diffusion coefficient ratio dc, and 
time computation tc. For instance, when using 
PDEsSolution2D[80, 10, 0.35, 30, 400], the resulting 
patterns show stripes, whereas upon employing a 
different configuration, say a square system with 
PDEsSolution2D[80, 80, 0.45, 30, 1000], dots are 
observed. As in the one-dimensional case, we conclude 
that the larger the diffusion reaction domain, the 
more complex the spatial patterns.∗) 

Further Reading and References 

L.J.S. Allen, An Introduction to Mathematical Biology (Pearson, London, 2006) 
A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30–39 (1972). 

10.1007/BF00289234 
J.D. Murray, Mathematical Biology I. An Introduction (Springer, Berlin, 2002) 
J.D. Murray, Mathematical Biology II. Spatial Models and Biomedical Applications (Springer, 

Berlin, 2003) 
A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37 (1952). 

10.1098/rstb.1952.0012
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Part V 
Three-Dimensional Diffusion 

The randomness of being trapped and reflected in three 
dimensions. 

“Without calculations, it is difficult to develop a quantitative 
sense of the phenomena.” 

—Richard Feynman



Chapter 14 
Three-Dimensional Systems 

As we know, for infinitely large regions in space, boundary conditions do not play an 
important role, but in a finite region of space, shape and dimension need to be taken 
into account by specifying the physical properties of the boundaries. This chapter 
is devoted to the study of diffusing particles in three dimensions in the presence of 
boundary conditions. 

Much of the movement of molecules in cells is passive, occurs in random 
directions, and is an essential part of their function. Diffusion is a fundamental 
process at molecular scales. All molecular processes must either exploit diffusion or 
overcome it. Examples include ligand binding to receptors, ionic transport through 
cell membranes, and oxygen molecules diffusing into the cell, among others. 

In engineering, there are many applications of diffusion in three dimensions, 
such as metal bonding in welding, brazing, soldering, galvanizing, oxidation of 
metals, doping of semiconductors, recrystallization, and surface treatment of steel 
to increase its hardness, like in carburization, where carbon is diffused into the 
steel surface enhancing its structural integrity. Diffusion is widely used in the 
manufacture of semiconductors. Dopants are introduced by diffusion into the 
semiconductor to create regions of different electrical properties. Diffusion is a 
key process in much of materials science, and it is responsible for mass transfer 
in chemical engineering. 

In summary, diffusion in three dimensions is ubiquitous in nature and artificial 
environments, and it is always present at molecular length scales. 
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14.1 Perfectly Absorbent Sphere 

14.1.1 Perfectly Absorbing Sphere: Internal Problem 

Consider diffusing particles within a perfectly absorbing sphere of radius R with 
initial position at . r0, .| r |< R. Particles are moved from the system as soon as 
they reach the sphere’s surface, leading to the Dirichlet boundary condition . p(r =
R, t) = 0. Assuming spherical symmetry and consequently angular independence, 
using Eq. (B.17), we can see that the diffusion equation simplifies to 

.
∂p(r, t)

∂t
= D

r2

∂

∂r

(
r2

∂p(r, t)

∂r

)
, (14.1) 

where .p(r, t) is the propagator of a diffusing particle at position r at time t and 
D is the diffusivity. To solve Eq. (14.1), we use the following change of variable: 
.u(r, t) = rp(r, t), then, Eq. (14.1) becomes 

.
∂u(r, t)

∂t
= D

∂2u(r, t)

∂r2
. (14.2) 

Now, the boundary conditions are given by 

.u(r = 0, t) = u(r = R, t) = 0. (14.3) 

This problem is the same as diffusing particles in the presence of two absorbing 
points at .r = 0 and .r = R. This system was already solved previously in Sect. 5.4.1, 
and the solution is given in by Eq. (5.40), which, mapped to our propagator, becomes 

.p(r, t |r0) = 2

Rr

∞∑
n=1

exp

(
−π2n2Dt

R2

)
sin

(nπr0

R

)
sin

(nπr

R

)
. (5.40) 

Moreover, if the initial particles are initially uniformly distributed, we have 

.p(r, t) = 4

πRr

∞∑
n=1

exp

[
− (2n − 1)2π2Dt

R2

] sin [
(2n−1)πr

R

]
2n − 1

. (5.69) 

It is worth noting that all the solutions obtained in Sect. 5.4, namely, mean first-
passage time, survival probability, and probability densities, are applicable to our 
present system.
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14.1.2 Perfectly Absorbing Sphere: External Problem 

Consider a particle that diffuses outside of a perfectly absorbing sphere of radius R 
with initial position at . r0, .| r |≥ R. Because of angular independence, the diffusion 
equation for the spherically symmetric system is given by Eq. (14.1), namely, 

.
∂p(r, t)

∂t
= D

r2

∂

∂r

(
r2

∂p(r, t)

∂r

)
. (14.1) 

Applying the chain rule, this results in 

.
∂p(r, t)

∂t
= D

[
∂2p(r, t)

∂r2
+ 2

r

∂p(r, t)

∂r

]
, (14.4) 

which has to be solved subject to the boundary conditions .p(R, t) = 0. The initial 
condition is given by 

.p(r, 0, | r0) = δ(r − r0)

4πr2
= δ(r − r0)

4πr20

. (14.5) 

There is a transformation that reduces the diffusion Eq. (14.4) to an equation in 
one dimension. This transformation is given by 

.p(r, t) = g(r, t)

r
. (14.6) 

Using this last expression in Eq. (14.4), we arrive at  

.
∂g(r, t)

∂t
= D

∂2g(r, t)

∂r2
, (14.7) 

which is the diffusion equation in one dimension. The boundary conditions trans-
form to .g(R, t) = 0, and initial condition is 

.q(r, 0, | r0) = δ(r − r0)

4πr2
= δ(r − r0)

4πr20

. (14.8) 

Also, we can set .χ = r − R to place the absorbing point at the origin, .χ = 0, in  
these new coordinates. Now, we have mapped our problem to one dimension, with 
a perfectly absorbing point at the origin, which solution is given in Eq. (4.31) (see 
Sect. 4.3). This solution should be slightly modified so that it correctly reproduces 
the initial condition given in Eq. (14.8). Consequently,
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. g(χ, t |χ0) = 1

4πr0
√
4πDt

{
exp

[
− (χ − χ0)

2

4Dt

]
− exp

[
− (χ + χ0)

2

4Dt

]}
,

(14.9) 

where .χ0 = r0 − R. Finally, the concentration in the original variables is given by 

. p(r, t |r0) = 1

4πr0
√
4πDt

{
exp

[
− (r − r0)

2

4Dt

]
− exp

[
− (r + r0 − 2R)2

4Dt

]}
.

(14.10) 

The solution of this problem at steady state can be found in Sect. 4.2.2. 
To calculate the survival probability, we need to integrate from R to infinity, in 

spherical coordinates, Eq. (14.10), namely, 

. S(t |r0) =
∫ π

0

∫ 2π

0

∫ ∞

R

r2

4πr0
√
4πDt

{
exp

[
− (r − r0)

2

4Dt

]

− exp

[
− (r + r0 − 2R)2

4Dt

]}
dr dθ dφ, (14.11) 

To solve this integral, we simply need to follow the steps described in Sect. (4.3.5), 
yielding 

.S(t |r0) = 1 − R

r0
erfc

(
r0 − R√
4Dt

)
, (14.12) 

where .erfc(x) is the complementary error function of argument x (see Sect. A.10.2 
of Appendix A). This function has the following property: .erfc(0) = 1. Then, when 
.t → ∞, 

.S(∞|r0) = 1 − R

r0
. (14.13) 

It is worth noting that this probability is finite, different from 0. Consequently, 
there is the probability that the particle will never be absorbed as it can escape 
to infinity, in contrast to the one-dimensional case, where the diffusing particle is 
always absorbed. 

To calculate the probability density of first-passage time, we introduce (14.12) 
into Eq. (2.34), yielding 

.ϕ(t |r0) = −dS(t |r0)
dt

= − d

dt

[
1 − R

r0
erfc

(
r0 − R√
4Dt

)]
. (14.14)
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Using the result of the derivative in Eq. (A.86), we finally obtain 

.ϕ(t |x0) = r0 − R√
4πDt3

(
R

r0

)
exp

{
− (r0 − R)2

4Dt

}
. (14.15) 

14.2 Concentric Spheres 

Consider diffusing particles between two concentric spheres with radii . Rin and .Rout , 
.Rin < Rout , for the inner and outer spheres, respectively, schematically represented 
in Fig. 14.1. Particles start at distance . r0 from the origin, located at the center of both 
spheres, .Rin < r0 < Rout . In this section, we will study the main properties of this 
system for different properties of the spheres when they are absorbing or partially 
absorbing. In the next section, we will focus on the case where both spheres are 
perfectly absorbing. 

14.2.1 Absorbing-Absorbing 

Let us assume that now both concentric spheres are perfectly absorbing. Con-
sider a particle with an initial position . r0, .Rin < r0 < Rout . As we already 
know, the propagator (Green’s function) satisfies Eq. (14.1), subject to the initial 
conditions .p(r, t = 0) = δ(r − r0)/(4πr20 ) and absorbing boundary conditions 
.p(r, t |r0)

∣∣
r=Rin

= p(r, t |r0)
∣∣
r=Rout

= 0. Then, the Laplace transform of Eq. (14.1) 
is given by 

.s p(r, s|r0) − 1

4πr20

δ(r − r0) = D

r2

d

dr

(
r2

d

dr
p(r, s|r0)

)
. (14.16) 

Using the change of variable .f (r, s|r0) = rp(r, s|r0), this last equation becomes 

Fig. 14.1 Schematic 
representation of two 
concentric spheres with radii 
.Rin and .Rout , .Rin > Rout
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.s f (r, s|r0) − 1

4πr20

δ(r − r0) = D
d2

dr2
f (r, s|r0), (14.17) 

subject to the boundary conditions .f (r, s|r0)
∣∣
r=Rin

= f (r, s|r0)
∣∣
r=Rout

= 0. This  
boundary problem is one-dimensional in the presence of two absorbing endpoints. 
Its solution can be obtained from Eq. (5.47) by dividing the delta function by . 4πr0
and setting the argument of the hyperbolic functions in Eq. (5.47) to .r − Rin and 
.Rout − r , which leads us to 

. p(x, s|x0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinh
[√

s
D

(Rout − r0)
]
sinh

[√
s
D

(r − Rin)
]

4πr0
√

sD sinh
[√

s
D

(Rout − Rin)
] for Rin ≤ r ≤ r0,

sinh
[√

s
D

(r0 − Rin)
]
sinh

[√
s
D

(Rout − r)
]

4πr0
√

sD sinh
[√

s
D

(Rout − Rin)
] for r0 ≤ r ≤ Rout .

(14.18) 

We can also calculate the respective probability fluxes for each sphere at time t , 
given by 

.

Jin(s|r0) = 4πR2
inD

∂p(s|x0)
∂r

∣∣∣∣
r=Rin

= 4πRinD
∂f (s|x0)

∂r

∣∣∣∣
r=Rin

=
Rin sinh

[√
s
D

(Rout − r0)
]

r0 sinh
[√

s
D

(Rout − Rin)
] ,

(14.19) 

and 

.

Jout (s|r0) = −4πR2
outD

∂p(s|x0)
∂r

∣∣∣∣
r=Rout

= −4πRoutD
∂f (s|x0)

∂r

∣∣∣∣
r=Rout

=
Rout sinh

[√
s
D

(r0 − Rin)
]

r0 sinh
[√

s
D

(Rout − Rin)
] .

(14.20) 

To calculate the conditional splitting probabilities, we have to integrate the fluxes 
over time from zero to infinity. Using Eq. (5.66), we have that they are the Laplace 
transforms at .s = 0, so by setting .s = 0 in Eqs. (14.19) and (14.20), we arrive at
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Fig. 14.2 Splitting 
probabilities as functions of 
the particle’s starting point, 
given in by Eqs. (14.21) and 
(14.22), for the following set 
of parameters: .a = 0.1, 
.Rin = 1, and . Rout = 5
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.θin = Rin(Rout − r0)

(Rout − Rin)r0
, (14.21) 

and 

.θout = Rout (r0 − Rin)

(Rout − Rin)r0
. (14.22) 

From these last expressions, we observe that . θin monotonically decreases from 1 to 
0, while .θout monotonically increases from 0 to 1, as . r0 increases from .Rin to .Rout . 
This behavior is shown in Fig. 14.2. 

The conditional mean first-passage times (MFPTs) are calculated by introducing 
Eqs. (14.19)–(14.22), into Eqs. (8.7) and (8.8), yielding 

. 〈t (r0)〉in =
∫ ∞
0 t J (0, t) dt

θ0(x0)
= 1

6D
(r0 − Rin)(2Rout − r0 − Rin), (14.23) 

and 

. 〈t (r0)〉out =
∫ ∞
0 t J (L, t) dt

θL(x0)
= 1

6D
(Rout − r0)(Rout + r0 − 2Rin). (14.24) 

As . r0 increases from .Rin to .Rout , .〈t0(r0)〉in monotonically increases from 0 at 
.r0 = Rin to .(Rout − Rin)

2/(6D) at .r0 = Rout . On the other hand, . 〈tL(r0)〉out

monotonically decreases from the mean transition path time . (Rout − Rin)
2/(6D)

at .r0 = Rin to 0 at  .r0 = Rout , as shown in Fig. 14.3. As  .Rout → ∞, the splitting 
probabilities reduce to .〈t0(r0)〉in = R/r0 and .〈t0(r0)〉out = 1 − R/r0, and both 
MFPTs diverge.



406 14 Three-Dimensional Systems

Fig. 14.3 Conditional 
MFPTs as functions of the 
particle’s starting point, given 
in by Eqs. (14.23) and (14.24) 
for the following set of 
parameters: .a = 0.1, 
.Rin = 1, and . Rout = 5
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14.3 Concentric Spheres Propagator Revisited: The Effect of 
Dimensionality 

In this section, we will study the solution to the diffusion equation in the Laplace 
space in d dimensions assuming angular independence when diffusion takes place 
into two concentric spheres, long cylinders, disks, or a line, where the boundaries of 
the d-dimensional spheres are given by .Rin and .Rout , .Rin < Rout . In such a case, 
the diffusion equation reduces to one dimension, namely, 

. 
∂p(r, t)

∂t
= D

rd−1

∂

∂r

(
rd−1 ∂p(r, t)

∂r

)
= D

[
∂2p(r, t)

∂r2
+ d − 1

r

∂p(r, t)

∂r

]
.

(12.84) 

The Laplace transform of this diffusion equation in d dimensions is given by 

.s p(r, s) − δ(r − r0)

Ωd rd−1 = D

[
∂2p(r, t)

∂r2
+ d − 1

r

∂p(r, t)

∂r

]
, (14.25) 

where . Ωd is the solid angle subtended by the complete .(d−1)-dimensional spherical 
surface of the unit sphere in a d-dimensional Euclidean space defined as 

.Ωd = 2π
d
2

𝚪
(

d
2

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1(
d
2 − 1

)!2π
d
2 for d even,

(
1
2 (d − 1)

)
!

(d − 1)! 2dπ
1
2 (d−1) for d odd,

(14.26) 

where . 𝚪 is the gamma function. Explicitly, .Ω1 = 2, .Ω2 = 2π , and .Ω3 = 4π . 
In the case when .d = 1, the factor of 2 appears because the origin-centered one-
dimensional “sphere” is the interval .[−r, r].
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To simplify Eq. (14.25), we use the following change of variable .x = r
√

s/D, 
leading to 

.p(x, s) − s(d−2)/2

Dd/2

δ(x − x0)

Ωd xd−1
0

= ∂2p(r, s)

∂r2
+ d − 1

x

∂p(r, s)

∂r
. (14.27) 

When performing the change of variable, it is essential that we take into account the 
factor arising from the change of variable of the delta function argument,1 which is 
in fact .

√
s/D. Multiplying Eq. (14.27) by . x2 becomes 

. x2 ∂2p(x, s)

∂r2
+ (d − 1)x

∂p(x, s)

∂r
− x2 p(x, s) = −x2 s(d−2)/2

Dd/2

δ(x − x0)

Ωd xd−1
0

,

(14.31) 

which is a modified Bessel equation. Its solution is a combination of .xνIν(r) and 
.xνKν(r), where .ν = 1− d/2. .Iν(r) and .Kν(r) are the modified Bessel functions of 
first and second kind, respectively. 

In the next two sections, we will apply the appropriate boundary conditions to 
this problem when both boundaries are perfectly reflecting and when one boundary 
is perfectly absorbing and the other one is perfectly reflecting. 

14.3.1 Perfectly Absorbing-Perfectly Absorbing 

The condition that the propagator has to be null at . Rin and .Rout , given by Eq. (5.41), 

.p(Rin, s|r0) = p(Rout , s|r0) = 0, (5.41) 

leads to the following solution: 

1 Consider the following definition of .δ(x): 

.δ(u) ≡ lim
b→0

1

| b | √
π

e−(u/b)2 . (14.28) 

Now, applying to this definition the following two changes of variables, .u = αx and . αc, we obtain 

.δ(αx) = 1

| α | lim
c→0

1

| c | √
π

e−(x/c)2 = 1

| α | δ(x). (14.29) 

From the first and last term of this equation, we conclude that .δ(x) =| α | δ(u). Finally, we have 
that 

.δ(x − x0) =| α | δ(u − u0). (14.30)
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. p(x, s) =

⎧⎪⎨
⎪⎩
Axν [Iν(x)Kν(Rin) − Iν(Rin)Kν(x)] for Rin ≤ x < x0,

Bxν [Iν(x)Kν(Rout ) − Iν(Rout )Kν(x)] for x0 < x ≤ Rout .

(14.32) 

Both solutions go to zero when .x0 → Rin, Rout , respectively. In fact, when .d = 1 or 
3, the functional form of these solutions can be written in a reduced form, namely, 

. − sinh(a − x)√
a x(d−1)/2

, (14.33) 

where .a = Rin or .Rout , depending on the interval. This function goes to zero when 
.x → a. The inclusion of an auxiliary function defined as 

.Q
(i)
α,β(w, z) ≡ Iα(w)Kβ(z) + (−1)iIβ(z)Kα(w), (14.34) 

can make operations more practical. Then, Eq. (14.32) simplifies to 

.p(x, s) =

⎧⎪⎨
⎪⎩
AxνQ

(1)
ν,ν(x, Rin) for Rin ≤ x < x0,

BxνQ
(1)
ν,ν(x, Rout ) for x0 < x ≤ Rout .

(14.35) 

Now, to determine the constants in Eq. (14.32) subject to two perfectly absorbing 
boundaries, we are going to follow the steps described in Sect. 5.4.2. In this section, 
we find that the joint conditions given by Eq. (3.39) and Eq. (3.42) lead to two 
relations that will help us to find the constants to be determined. Using the first 
relation, which imposes that the solution must be continuous at the starting point . x0, 
we have that 

.p(x, s|x0)
∣∣∣∣
x+
0

= p(x, s|x0)
∣∣∣∣
x−
0

. (3.39) 

Substituting Eqs. (14.35) into this relation leads to 

.A xνQ(1)
ν,ν(x, Rin) = B xνQ(1)

ν,ν(x, Rout ). (14.36) 

By using the second relation, the discontinuity condition, and the recurrence relation 
of .Q

(i)
α,β(a, z) and its derivative, given in Eq. (A.138), we arrive at  

. − s(d−2)/2

Dd/2

1

Ωd xd−1
0

= ∂p(x, s|x0)
∂x

∣∣∣∣
x+
0

− ∂p(x, s|x0)
∂x

∣∣∣∣
x−
0

. (14.37) 

Substituting Eqs. (14.35) into this last relation results in
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.xν
0

[
BQ

(2)
ν,ν−1(Rout , x0) − AQ

(2)
ν,ν−1(Rin, x0)

]
= − s(d−2)/2

Dd/2

1

Ωd xd−1
0

. (14.38) 

Solving the system given by Eqs. (14.36) and (14.38) leads to 

.A = s(d−2)/2

Dd/2

1

Ωd xd−1+ν
0

Q
(1)
ν,ν(Rout , x0)

Q
(1)
ν,ν(Rout , Rin)Q

(2)
ν,ν−1(x0, x0)

, (14.39) 

and 

.B = s(d−2)/2

Dd/2

1

Ωd xd−1+ν
0

Q
(1)
ν,ν(Rin, x0)

Q
(1)
ν,ν(Rout , Rin)Q

(2)
ν,ν−1(x0, x0)

, (14.40) 

respectively. Using these constants in Eqs. (14.35), we find that the propagator is 
given by 

. p(x, s) = s(d−2)/2

Ωd Dd/2 (xx0)
ν

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q
(1)
ν,ν(Rout , x0)Q

(1)
ν,ν(Rin, x)

Q
(1)
ν,ν(Rin, Rout )

for Rin ≤ x < x0,

Q
(1)
ν,ν(Rin, x0)Q

(1)
ν,ν(Rout , x)

Q
(1)
ν,ν(Rin, Rout )

for x0 < x ≤ Rout .

(14.41) 

All we need to do to calculate the first-passage properties is to obtain the flux, 
since we already know the lifetime probability density, .ϕ(s), is related with the 
flux probability density by means of Eq. (5.63). Moreover, the survival probability 
density is related in Laplace space with .ϕ(s) by means of Eq. (12.64). Then, 
taking the derivative of Eq. (14.41) with respect to x by means of the recurrence 
relation (A.138) yields 

. J (x, s) = s(d−2)/2

Ωd D
d
2 −1

(xx0)
ν

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q
(1)
ν,ν(Rout , x0)Q

(2)
ν,ν−1(Rin, x)

Q
(1)
ν,ν(Rin, Rout )

for Rin ≤ x < x0,

Q
(1)
ν,ν(Rin, x0)Q

(2)
ν,ν−1(Rout , x)

Q
(1)
ν,ν(Rin, Rout )

for x0 < x ≤ Rout .

(14.42) 

It is worth noting that the flux is obtained by multiplying the flux evaluated at the 
desired boundary by the perimeter of the chosen boundary.
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14.3.2 Perfectly Absorbing-Perfectly Reflecting 

If the inner d-dimensional sphere is perfectly reflecting and the outer d-dimensional 
sphere is perfectly absorbing, the boundary conditions are given by Eq. (5.97), 
namely, 

.p(x, s)

∣∣∣∣
x=Rin

= ∂p(x, s)

∂x

∣∣∣∣
x=Rout

= 0. (14.43) 

Then, we have to solve Eq. (14.27) subject to these boundaries. We can write the 
solution of this diffusion equation as a superposition of a Bessel function of the first 
and second kind, keeping the boundary conditions in mind. To this end, we have 
that 

. p(x, s) =

⎧⎪⎨
⎪⎩
Axν [Iν(x)Kν(Rin) − Iν(Rin)Kν(x)] for Rin ≤ x < x0,

xν [BIν(x) + CKν(x)] for x0 < x ≤ Rout .

(14.44) 

The upper term of the solutions should be the same as in Eq. (14.44), since both 
stand for a perfectly absorbing inner boundary. The lower term has two constants 
so as to allow us to fix one from the null flux and the other from the discontinuity 
condition. Then, applying the null flux condition at .Rout to Eq. (14.44), we arrive at  
the following relation: 

.
∂p(x, s)

∂x

∣∣∣∣
x=Rout

= Rν
out (BIν−1(Rout ) − CKν−1(Rout )) = 0, (14.45) 

which leads to 

.C = B Iν−1 (Rout )

Kν−1 (Rout )
, (14.46) 

so that Eq. (14.44) becomes 

. p(x, s) =

⎧⎪⎪⎨
⎪⎪⎩
A xν [Iν(x)Kν(Rin) − Iν(Rin)Kν(x)] for Rin ≤ x < x0,

B xν Iν(x)Kν−1(Rout ) + Iν−1 (Rout )Kν(x)

Kν−1(Rout )
for x0 < x ≤ Rout .

(14.47) 

In terms of function .Q
(i)
α,β(w, z), given by Eq. (14.34), this reduces to
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.p(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A xνQ
(1)
ν,ν(x, Rin) for Rin ≤ x < x0,

B xν
Q

(2)
ν,ν−1(x, Rout )

Kν−1(Rout )
for x0 < x ≤ Rout .

(14.48) 

Now, we will follow the same steps as in the preceding section to obtain the 
remaining constants using the joint conditions. From the continuity condition at the 
starting point, we see that 

.A xν
0Q(1)

ν,ν(x0, Rin) = B xν
0

Q
(2)
ν,ν−1(x0, Rout )

Kν−1(Rout )
. (14.49) 

On the other hand, using the recurrence formula (A.140), the discontinuity condition 
given by Eq. (14.37) yields 

. xν
0

[
−B

Q
(1)
ν−1,ν−1(Rout , x0)

Kν−1(Rout )
− AQ

(2)
ν,ν−1(Rin, x0)

]
= − s(d−2)/2

Dd/2

1

Ωd xd−1
0

.

(14.50) 

Solving the system of equations given by Eqs. (14.49) and (14.50) for . A and . B leads 
to 

.A = s(d−2)/2

Dd/2

1

Ωd xd−1+ν
0

Q
(2)
ν,ν−1(x0, Rout )

Qc

, (14.51) 

and 

.B = s(d−2)/2

Dd/2

1

Ωd xd−1+ν
0

Kν−1(Rout )Q
(2)
ν,ν−1(x0, Rout )

Qc

, (14.52) 

respectively, where we define the denominator of these two constants as 

. Qc = Q(1)
ν,ν(x0, Rin)Q

(1)
ν−1,ν−1(Rout , x0) + Q

(2)
ν,ν−1(Rin, x0)Q

(2)
ν,ν−1(x0, Rout ).

(14.53) 

Substituting the constants into Eq. (14.48), we arrive to  

. p(x, s) = s(d−2)/2

Ωd Dd/2

(xx0)
ν

Qc

⎧⎪⎨
⎪⎩

Q
(2)
ν,ν−1(x0, Rout )Q

(1)
ν,ν(x, Rin) for Rin≤x<x0,

Q
(2)
ν,ν−1(x0, Rout )Q

(2)
ν,ν−1(x, Rout ) for x0<x≤Rout .

(14.54)
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By means of the flux, we can obtain all the first-passage properties for the inner 
boundary. 

14.3.3 Splitting Probability Absorbing-Absorbing: The Effect 
of Dimensionality 

An interesting problem is raised by generalizing the study of free diffusion in 
the presence of two concentric perfectly absorbing spheres in d dimensions. 
Then, assuming angular independence, the differential equation for the splitting 
probability, given by Eq. (2.106), in spherical coordinates and d dimensions, reads 

.
d

dr0

(
rd−1
0

dθ(r0)

dr0

)
= 0, (14.55) 

where . r0 is the initial position. Let us denominate . θin and .θout probability of 
hitting the inner and outer spheres. These probabilities are subject to the following 
boundary conditions: 

.θin(Rin) = 1 and θin(Rout ) = 0 (14.56) 

and 

.θout (Rout ) = 1 and θout (Rin) = 0. (14.57) 

Now, to solve Eq. (14.55), we will split the problem into two separate cases, when 
.d = 2 and when .d /= 2. Integrating Eq. (14.55) with respect to . r0 for .d = 2 leads to 

.θ(r0) = A ln(r0) + B. (14.58) 

To obtain . θout , we have to find the integration constants by applying the boundary 
conditions given in Eqs. (14.57), from which we have that 

.θout (r0) = ln(r0/Rin)

ln(Rout/Rin)
. (14.59) 

. θin can be obtained from this last result since .θin + θout = 1, or by applying the 
boundary conditions given in Eqs. (14.56) into Eq. (14.58), namely, 

.θin(r0) = ln(Rout/r0)

ln(Rout/Rin)
. (14.60) 

Now, integrating Eq. (14.55) for .d /= 2, we obtain
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.θ(r0) = A
rd−2
0

+ B. (14.61) 

Applying the boundary conditions given by Eqs. (14.57), we find that 

.θout (r0) =
1 −

(
Rin

r0

)d−2

1 −
(

Rin

Rout

)d−2 , (14.62) 

and consequently 

.θin(r0) =
1 −

(
Rout

r0

)d−2

1 −
(

Rout

Rin

)d−2
. (14.63) 

Summarizing 

.θout (r0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0−Rin

Rout−Rin
for d = 1,

ln
(

r0
Rin

)

ln
(

Rout
Rin

) for d = 2,

1−
(

Rin
r0

)d−2

1−
(

Rin
Rout

)d−2 for d ≥ 3.

(14.64) 

Taking the limit when .Rout → ∞, we see that .θout (r0) = 0 in one and two 
dimensions and 

.θout (r0) = 1 −
(

Rin

r0

)d−2

(14.65) 

in three and more dimensions. Consequently, in one and two dimensions, the 
diffusing particles cannot drift to infinity and are absorbed by the inner sphere with 
a probability equal to 1. In three or more dimensions, there is a probability that the 
particles will escape to infinity. When .d → ∞, in three dimensions, .θout (r0) = 1. 
Then, in very high-number dimensions, there is so much space available for the 
diffusing particles that they will never hit the inner sphere. In contrast, when 
.Rin → 0, in one dimension .θout (r0) = r0/Rout , and .θout (r0) = 1 for three and 
more dimensions (see Fig. 14.4). 

Now, let us quantify the value for the initial position, . r1/2, at which the affinity of 
the diffusing particles to each boundary is the same. To such end, we set the splitting 
probability equal to one half. From Eqs. (14.59) and (14.62), one finds that
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Fig. 14.4 Splitting probability .θout (triangles up) and .θin (triangles down) as a function of 
dimension d. .θout is calculated using Eq. (14.64), since  . θin is calculated using the conservation 
of probability, .θin = 1 − θout . The inner radius is set at .Rin = 1 and .r0 = 2. Symbols in blue 
colors stand for .Rout = 3, since symbols in red tones stand for .Rout = 7. Lines are a guide to the 
eye that show the general trend of the data 

Fig. 14.5 Initial position . r1/2
as a function of d. The inner 
radius is set at .Rin = 1 and 
.r0 = 2. Symbols in blue stand 
for .Rout = 3, and symbols in 
red stand for .Rout = 7. Lines  
are a guide to the eye that 
show the general trend of the 
data 
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.r1/2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 (Rin + Rout ) for d = 1,

√
RinRout for d = 2,

[
1
2

(
R2−d

in + R2−d
out

)] 1
2−d

for d ≥ 3.

(14.66) 

As d increases, .r1/2 tends to . Rin (see Fig. 14.5). In the limiting case when . Rout ⪢
Rin, in one dimension, we have that .θout (r1/2) = (1/2)Rout and 

.

(
1

2

) 1
2−d

Rout (14.67) 

for three dimensions.
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14.3.4 Mean First-Passage Time: The Effect of Dimensionality 

In this section we will study the mean first-passage time (MFPT) or mean hitting 
time to either boundary in d dimensions. To such end, we have to solve Eq. (2.63) 
in spherical coordinates, namely, 

.
D

rd−1
0

d

dr0

(
rd−1
0

d〈t (r0)〉
dr0

)
= −1, (14.68) 

where . r0 is the initial position and D is the diffusivity, subject to the following 
boundary conditions: 

. 〈t (Rin)〉 = 〈t (Rout )〉 = 0. (14.69) 

First let us solve the problem in two dimensions. In such a case, Eq. (14.68) 
becomes 

.
D

r0

d

dr0

(
r0
d〈t (r0)〉
dr0

)
= −1. (14.70) 

Integrating the latter equation twice gives 

. 〈t (r0)〉 = − r20

4D
+ A ln(r0) + B. (14.71) 

Applying the boundary conditions given in Eq.(14.69), we arrive at 

. 〈t (r0)〉 = 1

4D

[(
R2

out − R2
in

) ln(r0/Rin)

ln(Rout/Rin)
−

(
r20 − R2

in

)]
. (14.72) 

Now, solving Eq. (14.68) for .d /= 2, we integrate it once and have 

.
d〈t (x0)〉
dr0

= − r0

dD
+ A

rd−1
0

. (14.73) 

Integrating this last expression again yields 

. 〈t (r0)〉 = − r20

2dD
+ A

r2−d
0

2 − d
+ B, (14.74) 

and imposing the boundary conditions given by Eq. (14.69) leads to 

. 〈t (r0)〉 = 1

2dD

[
R2

out − R2
in

R2−d
out − R2−d

in

(
r2−d
0 − R2−d

in

)
−

(
r20 − R2

in

)]
. (14.75)
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Fig. 14.6 Initial position 
.rmax as a function of d. The  
inner radius is set at . Rin = 1
and .r0 = 2. Symbols in blue 
stand for .Rout = 3, and  
symbols in red stand for 
.Rout = 7. Lines are a guide to 
the eye that show the general 
trend of the data 

0.0 2.0 4.0 6.0 8.0 10.0

 d 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

r m
ax

 R

out

=7 

R

out

=3 

From Eqs. (14.72) and (14.75), we can calculate the initial position that maximizes 
the MFPT, .rmax , and, consequently, maximize the survival probability as well. This 
initial position values is given by 

.rmax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

R2
out−R2

in

Rout−Rin
for d = 1,

[
1
2

R2
out−R2

in

ln(Rout /Rin)

] 1
2

for d = 2,

[
2−d
2

R2
out−R2

in

R2−d
out −R2−d

in

] 1
d

for d ≥ 3.

(14.76) 

It is worth noting that .rmax tends to .Rin as d grows (see Fig. 14.6). 

14.3.5 Partially Absorbing and Reflecting: MFPT 

Consider a particle diffusing between two concentric spheres of radii .Rin and .Rout , 
.Rin < Rout . The inner and outer spheres are partially absorbing and perfectly 
reflecting, respectively. The MFPT, which depends on the initial distance . r0 from 
the center of both spheres, denoted by .〈t (x0)〉, satisfies Eq. (14.70) subject to the 
following boundary conditions: 

.D
d〈t (r0)〉
dr0

∣∣∣∣
r0=Rin

= κ 〈t (Rin)〉 and
d〈t (r0)〉
dr0

∣∣∣∣
r0=Rout

= 0, (14.77) 

where D is the diffusivity and . κ is the trapping rate coefficient of the inner sphere 
surface. Introducing the boundary condition at .r0 = Rout into Eq. (14.73) and 
setting .d = 3, one finds that
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.A = R3
out

3D
. (14.78) 

By substituting this constant into Eq. (14.74), it transforms into  

. 〈t (r0)〉 = − r0

2dD
− R3

out

3Dr0
+ B. (14.79) 

Now, using the boundary condition at .r0 = Rin, the second constant is obtained: 

.B = 1

κ

[
R3

out

3R2
in

− Rin

3

]
+ R3

out

3DRin

+ R2
in

6D
. (14.80) 

Substituting this into the previous equation, we finally arrive at 

. 〈t (r0)〉 = 1

6D

(
R2

in − r20

)
− R3

out

3DRin

(
1 − Rin

r0

)
+ 1

3κR2
in

(
R3

out − R3
in

)
.

(14.81) 

This equation reduces to a relatively simple expression for the mean lifetime of 
a particle starting from the inner partially absorbing sphere, namely, 

. 〈t (Rin)〉 = R3
out − R3

in

3κR2
in

. (14.82) 

14.3.5.1 Circular Disk on a Reflecting Flat Surface: Absorbing 
Hemisphere Approximation 

The study of the trapping of diffusing particles by a circular disk on a reflecting 
flat surface, which will also be addressed in Sect. 14.4 in a more rigorous way, is 
one of the interesting applications of the findings from the earlier section, among 
other uses. In fact, the exact solution to this problem is unknown. In this section, 
we discuss an approximate solution to the problem where an absorbing hemisphere 
with the right radius replaces the absorbing disk. A schematic representation of this 
approximation is given in Fig. 14.7. 

With this replacement, the problem becomes effectively one-dimensional and 
angular-independent, allowing an approximate analytical treatment of the problem. 
To such end, we use the classical results by Smoluchowski, Hill, and Berg-Purcell 
for the rate constants that describe the trapping of diffusing particles by a perfectly 
absorbing sphere in free space and a perfectly absorbing disk on a reflecting flat 
surface, given by Eqs. (4.18) and (4.22), to establish a connection between the disk 
and hemisphere radii, denoted by a and . Rhs , respectively. To find the hemisphere 
radius .Rhs in terms of the disk radius a, it is necessary for the steady-state flux
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Fig. 14.7 Schematic representation of the absorbing hemisphere approximation. The absorbing 
hemisphere approximation consists of replacing the absorbing disk with an absorbing hemisphere 
of a properly chosen radius, in such a way that the absorbing hemisphere has the same flux of 
particles as the original disk. In other words, they have the same flux crossing their areas at the 
steady state 

through the disk to be equal to the current flux through the hemisphere (half of a 
sphere). As we already know, this flux is proportional to the rate constant and the 
concentration at infinity, given by Eqs. (4.17) and (14.112). Then, equating these 
two last equations, and replacing . kS by .kS/2, we have that .kHBP = kS/2. This leads 
to the following relation between the hemisphere and disk radii: 

.Rhs = 2

π
a, (14.83) 

which is the assumption on which this approximation is based. 
To check the accuracy of this angle-independent approach and establish the 

range of its applicability, one has to run three-dimensional Brownian dynamics 
simulations of the system with the absorbing disk on the reflecting flat surface and 
compare the obtained results with the corresponding theoretical predictions derived 
using the absorbing hemisphere approximation. This theoretical description from 
the splitting probability and the MFPT to the disk is obtained by replacing .Rin by 
.Rhs into Eqs. (14.21) and (14.23), leading to 

.θin = 2a(Rout − r0)

r0(πRout − 2a)
, (14.84) 

and 

. 〈t (r0)〉in = 1

6D

(
r0 − 2a

π

)(
2Rout − r0 − 2a

π

)
, (14.85) 

respectively. 
In simulations, it is convenient to surround the absorbing disk of radius a with a 

large absorbing hemisphere to count from those particles which escape to infinity.



14.4 Diffusion to an Absorbent Circular Disk: Weber’s Disk 419

Fig. 14.8 Conditional 
splitting probability . θin. The  
theoretical prediction given 
by Eq. (14.84) is compared to 
the results obtained by 
Brownian dynamics 
simulations (symbols) for 
three values of the azimuthal 
angle of the initial position: 
. 0◦ (blue diamonds), .30◦ (red 
circles), and .90◦ (green 
squares)
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Fig. 14.9 Conditional MFPT 
.〈t (r0)〉in. The theoretical 
prediction given by 
Eq. (14.85) is compared to the 
results obtained by Brownian 
dynamics simulations 
(symbols) for three values of 
the azimuthal angle of the 
initial position: . 0◦ (blue 
diamonds), .30◦ (red circles), 
and .90◦ (green squares) 
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From simulations shown in Figs. 14.8 and 14.9, it is observed that the angular 
dependencies of the splitting probabilities and the MFPT are really pronounced at 
small values of the initial position, .r0 ≤ 2a. On the other hand, it shows excellent 
agreement between the theory and simulations for .r0/a > 2. Moreover, even 
when the initial distance is only two disk radii, the maximum relative error of the 
theoretical predictions is around 10%. 

14.4 Diffusion to an Absorbent Circular Disk: Weber’s Disk 

Consider diffusing particles in a semi-infinite medium in the presence of a perfectly 
absorbing circular disk of radius a located on a flat reflecting surface. As soon as a 
particle reaches the surface of the absorbing disk, it is removed from the system, and 
consequently, the concentration at the disk is null. The concentration at infinity is 
uniform, .c(r, z, t)

∣∣
z→∞ = c∞. It is worth noting that the geometry of this problem 

is cylindrically symmetric. Then, assuming angular independence, the diffusion 
equation at steady state is given by
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.∇2c(r, z) = 1

r

∂

∂r

(
r
∂c(r, z)

∂r

)
+ ∂2c(r, z)

∂z2
= 0. (14.86) 

Applying the chain rule results in 

.
∂2c(r, z)

∂r2
+ 1

r

∂c(r, z)

∂r
+ ∂2c(r, z)

∂z2
= 0. (14.87) 

The boundary conditions on the surface are no concentration at the surface disk 
and no flux at the reflecting surface 

. c(r, z) = 0 z = 0, r ≤ a,

and 

. 
∂c(r, z)

∂z
= 0, z = 0, r > a,

respectively. Let’s solve Eq. (14.87) by applying the separation of variables method, 
assuming that 

.c(r, z) = R(r)G(z). (14.88) 

Substituting (14.88) into (14.87) results in 

.
∂2R

∂r2
G(z) + 1

r

∂R(r)

∂r
G(z) = −R(r)

∂2G(z)

∂z2
. (14.89) 

Since the right-hand side depends only on x and the left-hand side only on t , both 
factors must be equal to a constant, which, for practical purposes can be defined as 
.−λ2D. Consequently, two ordinary differential equations (ODE) arise: 

.
1

R(r)

(
∂2R(r)

∂r2
+ 1

r

∂R(r)

∂r

)
= − 1

G(z)

∂2G(z)

∂z2
= −λ2. (14.90) 

As a result, we have two ODEs, namely, 

.
∂2R

∂r2
+ 1

R

∂R

∂r
+ λ2R = 0, (14.91) 

and 

.
∂2G

∂z2
− λ2G = 0. (14.92) 

The general solution of this last equation is
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.G(z) = Aeλz + Be−λz. (14.93) 

Because the concentration must meet the following condition, .c(r, z, t)
∣∣
z→∞ = c∞, 

.A = 0, and the solution is 

.G(z) = Be−λz. (14.94) 

To solve Eq. (14.91), we first need to discuss certain properties of Bessel 
functions. The starting point corresponds to the following properties of the Bessel 
function of the first kind .Jn(x): 

.
dJ0(x)

dx
= −J1(x), (14.95) 

and 

.
d[xnJn(x)]

dx
= xnJn−1(x). (14.96) 

Setting .n = 1, we arrive at 

.
d

dx
[xJ1(x)] = xJ0(x). (14.97) 

Substituting (14.95) into (14.97), one finds that 

.
d

dx

[
x
dJ0(x)

dx

]
+ xJ0(x) = 0. (14.98) 

Applying the chain rule gives 

.x
d2J0
dx2 + dJ0

dx
+ xJ0(x) = 0. (14.99) 

Replacing x by . λr , it reduces to Eq. (14.91) and, consequently, 

.R(r) = C J0(λr). (14.100) 

By multiplying the right side of this equation by a function that depends on . λ, it  
continues to be a solution, so that 

.R(r) = C f (λ)J0(λr). (14.101) 

Substituting Eq. (14.94) and Eq. (14.101) into Eq. (14.88) yields 

.c(r, z) = βf (λ)e−λzJ0(λr), (14.102)
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where .β = AC. By the principle of superposition, the sum of the eigenfunctions 
.cλ = R(r)G(z) is also a solution, and in a continuous spectrum of . λ, the  most  
general solution is given by 

.c(r, z) = β

∫ ∞

0
f (λ)e−λzJ0(λr)dλ + α. (14.103) 

Setting .z → ∞, we find that .α = c∞. 
Now, by choosing .f (λ) = sin(λa)/λ, the boundary conditions are met when 

performing the integrals of the Bessel functions, since 

.

∫ ∞

0

sin(λa)

λ
J0(λr) dλ =

{
arcsin

(
a
r

)
, r > a

π
2 , r < a.

(14.104) 

For .r < a, the concentration should be as follows: 

.c(r, z) = c∞ − 2c∞
π

∫ ∞

0

sin(λa)

λ
e−λzJ0(λr) dλ. (14.105) 

The gradient of the concentration is found by taking the derivative with respect 
to z as follows: 

.
∂c

∂z
= ∂

∂z

[
−2c∞

π

∫ ∞

0

sin(λa)

λ
J0(λr)e−λz dλ

]
, (14.106) 

which satisfies .c(r, z, t)
∣∣
z→∞ = c∞. Now, the perpendicular flux, Eq. (2.74), to the  

flat reflecting surface is 

.J (r, z) = −D
∂c

∂z
= −D

2c∞
π

∫ ∞

0
sin(λa) J0(λr)e−λz dλ, (14.107) 

where D is the diffusivity. In fact, the flux through the absorbing circular disk is 
given by 

.J (r, z)

∣∣∣∣
z=0

= −D
2c∞
π

∫ ∞

0
sin(λa)J0(λr) dλ, (14.108) 

one of Weber’s discontinuous integrals. The solution of this integral is 

.

∫ ∞

0
J0(λr) sin(λa)dλ =

⎧⎨
⎩

1√
a2−r2

, r < a,

0, r > a.
(14.109) 

Then,
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.J (r, z)

∣∣∣∣
z=0

= 2c∞
π

1√
a2 − r2

. (14.110) 

Finally, we want to calculate the diffusion current or total flux, which is the 
number of particles trapped by the circular disk per unit time, and this is calculated 
by integrating over the entire disk, namely, 

.I =
∫ 2π

0

∫ a

0

2Dc∞
π

r√
a2 − r2

drdφ. (14.111) 

Solving this integral, we find that the flux current through the circular disk is given 
by 

.I = 4ac∞D. (14.112) 

This flux current is proportional not to the area of the disk, as one would expect, 
but to its radius. The ratio of the diffusion current to the particle concentration, 
.k = I (t)/c∞, is the  rate constant, and for a circular disk placed on a flat reflecting 
wall, it is given by the so-called Hill-Berg-Purcell formula: 

.kHBP = 4Da. (14.113) 

It is worth noting that the rate constant is in units of volume per time. 

14.5 Absorbing Patches of Arbitrary Shape 

In the preceding sections, we derived the rate constant for a perfectly absorbing 
circular disk and a perfectly absorbing ellipse on a flat reflecting wall. In this section, 
our goal is to extend this result to perfectly absorbing patches of any shape, given 
by the so-called Dudko-Berezhkovskii-Weiss (DBW) formula. To such end, we will 
need the rate constant for an elliptical patch attached to a reflecting wall. 

Consider diffusing particles in a semi-infinite medium in the presence of a 
perfectly absorbing elliptical patch of width .2a1 and height . 2a2, located on a flat 
reflecting surface. As soon as a particle reaches the surface of the absorbing ellipse, 
it is removed from the system, so then, the rate constant is 

.kelipse = 2πDa1

k(ϵ)
, (14.114) 

where .k(ϵ) is the complete elliptic integral of the first kind
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.k(ϵ) =
∫ π/2

0

dθ√
1 − ϵ2 sin2 θ

. (14.115) 

Now, we are ready to continue deducing the formula for our original problem, 
the rate constant for an absorbing patch of any shape. The dimensional analysis 
is the starting point for constructing an approximate formula for the rate constant 
for perfectly absorbing patches of general shape. The unit of the rate constant is 
length cubed over time. Consequently, let us assume that it must be proportional to 
diffusivity D and length. Furthermore let us assume that this length is proportional 
to the area A and perimeter P as .AνP ξ . Then, the resulting formula is 

.kDBW = α AνP ξ D. (14.116) 

where . α is a proportionality constant to be determined, as well as . ν and . ξ . As . AνP ξ

is in units of length and .ξ = 1 − 2ν, so then .AνP ξ = AνP 1−2ν . The constant . α
is obtained by requiring that .kDBW should reduce to .kHBP = 4Da for a circular 
receptor, where .A = πa2 and .P = 2πa. This leads to .α = (21−2ν)/(π1−ν). 
Substituting these constants into Eq. (14.116) yields 

.kDBW = 21−2ν

π1−ν
A1−2νP 1−2ν D. (14.117) 

Now, . ν will be found by requiring that this last formula to reproduce .kelipse, given  
by Eq. (14.114). To such end, we equate the expansion for small values of . ϵ of 
Eqs. (14.117) and (14.114). As we will show later, keeping terms up to . ϵ4 is enough 
to obtain a highly accurate, approximate formula. 

On the one hand, expanding the integral in the denominator of Eq. (14.117) in a 
Taylor series around . ϵ up to fourth order yields 

.

∫ π/2

0

1√
1 − ϵ2 sin2 θ

≈
∫ π/2

0

[
1 + sin2 θ

2
ϵ2 + 3 sin4 θ

8
ϵ4 + · · ·

]

= π

2

[
1 + ϵ2

4
+ 9

64
ϵ4 + · · ·

]
.

(14.118) 

Consequently, 

.k(ϵ) = 4Da1[
1 + ϵ2

4 + 9
64ϵ

4 + · · ·
] . (14.119) 

Expanding again the numerator of this last expression, we arrive at 

.kelipse = 4Da1

[
1 − ϵ2

4
− 5ϵ4

64
+ · · ·

]
. (14.120)
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On the other hand, substituting the area and perimeter of an ellipse, . Aϵ = πa1a2
and .Pϵ = 4a1E(ϵ), respectively, into Eq. (14.117), yields 

.kDBW = 21−2ν

π1−ν
[πa21

√
1 − ϵ2]ν[4a1E(ϵ)]1−2ν, (14.121) 

where 

.E(ϵ) =
∫ π/2

0

√
1 − ϵ2 sin2 θdθ. (14.122) 

Taylor expanding Eq. (14.121) up to fourth order, we have 

.kDBW = 4a1D

[
1 − ϵ2

4
− 3

64
(1 + 2ν)ϵ4 + · · ·

]
(14.123) 

Equating Eqs. (14.121) and (14.123), we obtain 

.5 = 3(1 + 2ν), (14.124) 

and solving for . ν, we find that 

.ν = 1

3
. (14.125) 

Finally, the formula for the rate constant for a perfectly absorbing patch of arbitrary 
shape is given by 

.kDBW =
(
25AP

π2

)1/3

D. (14.126) 

Using Brownian dynamics simulations, it has been shown that this formula works 
reasonably well for many different shapes, and its predictions have an error of less 
than 5% for moderately asymmetric patches with smooth (non-jagged) boundaries. 

14.6 Hyperboloidal Cone 

This specific 3D system is of great interest because it is one of the few exactly 
solvable cases in the study of diffusion. More specifically, both an effective diffusion 
coefficient and the flux can be found. These quantities will be calculated later in 
Sect. 18.4. 

Finding the solution of the diffusion equation for the hyperboloidal cone in 
Cartesian coordinates is not an easy task, reason why we need to consider studying
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in other curvilinear coordinates, specifically oblate spheroidal coordinates. First, let 
us write the gradient for a scalar function .f (q1, q2, q3) in curvilinear coordinates 
.(q1, q2, q3), which is 

.∇f (q1, q2, q3) = 1

h1

∂f

∂q1
ê1 + 1

h2

∂f

∂q2
ê2 + 1

h3

∂f

∂q3
ê, (14.127) 

and if we have a vector function 

.F(q1, q2, q3) = (F1(q1, q2, q3), F2(q1, q2, q3), F3(q1, q2, q3)), (14.128) 

its divergence is 

. ∇ · F(q1, q2, q3) = 1

h1 h2 h3

[
∂

∂q1
(V1 h2 h3) + ∂

∂q2
(V2 h1 h3)

+ ∂

∂q3
(V3 h1 h2)

]
, (14.129) 

making the Laplacian look as 

. ∇2f (q1, q2, q3) = ∇ · ∇f (q1, q2, q3)

= 1

h1 h2 h3

[
∂

∂q1

(
h2 h3

h1

∂f

∂q1

)
+ ∂

∂q2

(
h1 h3

h2

∂f

∂q2

)
+ ∂

∂q3

(
h1 h2

h3

∂f

∂q3

)]
.

(14.130) 

And the scale factors for the oblate spheroidal coordinates are given by 

. hξ = a

√
ξ2 + η2

1 + ξ2
, hη = a

√
ξ2 + η2

1 − η2
, hφ = a

√
(1 + ξ2)(1 − η2).

(14.131) 

Also, the coordinate transformation between oblate spheroidal and Cartesian coor-
dinates is 

. x = a

√
1 + ξ2

√
1 − η2 cos (φ), y = a

√
1 + ξ2

√
1 − η2 sin (φ), z = aξη.

(14.132) 
The domain of the coordinates is 

. − ∞ < ξ < ∞, −1 < η < 1, 0 ≤ φ < 2π. (14.133)
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To form the hyperboloidal cone, a fixed . η must be chosen. In this case, it is .η = η0. 
Also, if we want to have only the upper or positive part of the cone, the . ξ domain 
must be restricted to .0 < ξ < ∞. Then, the diffusion will take place inside the 
region defined by 

.0 < ξ < ∞, η0 < η < 1, 0 ≤ φ < 2π, (14.134) 

under the conditions 

. c(ξ = 0, η, φ) = 0, c(ξ → ∞, η, φ) = c0,
∂c(ξ, η, φ)

∂η

∣∣∣∣
η=η0

= 0,

(14.135) 

the first one of which tells us that the concentration is null at the origin of the 
coordinates. Also, very far from the origin, the concentration will be constant, and 
the third condition is no-flux, meaning that the hyperboloidal cone is a completely 
reflectant wall. 

Now, we can write the Laplacian operator over a concentration .c(ξ, η, φ) as 

. ∇2c(ξ, η, φ) = 1

a2(ξ2 + η2)

{
∂

∂ξ

[
(1 + ξ2)

∂c(ξ, η, φ)

∂ξ

]

+ ∂

∂η

[
(1 − η2)

∂c(ξ, η, φ)

∂η

]
+ ξ2 + η2

(1 + ξ2)(1 − η2)

∂2c(ξ, η, φ)

∂φ2

}
. (14.136) 

The diffusion equation in oblate spheroidal coordinates can be obtained from this 
last expression, namely, 

. 
∂c(ξ, η, φ)

∂t
= ∇2c(ξ, η, φ) = 1

a2(ξ2 + η2)

{
∂

∂ξ

[
(1 + ξ2)

∂c(ξ, η, φ)

∂ξ

]

+ ∂

∂η

[
(1 − η2)

∂c(ξ, η, φ)

∂η

]
+ ξ2 + η2

(1 + ξ2)(1 − η2)

∂2c(ξ, η, φ)

∂φ2

}
. (14.137) 

We are looking for a solution in the steady state, which is valid for long enough 
times, and this is equivalent to solving the Laplace equation as stated in Eq. (14.136) 
equated to zero. In this coordinate system, the Laplace equation is separable, which 
means that we can find the concentration by assuming that 

.c(ξ, η, φ) = Θ(ξ)H(η)Ф(φ), (14.138) 

which is substituted into Eq. (14.136), and dividing the entire expression by 
Eq. (14.138), yielding
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. 0 = 1

Θ(ξ)

∂

∂ξ

[
(1 + ξ2)

∂Θ(ξ)

∂ξ

]
+ 1

H(η)

∂

∂η

[
(1 − η2)

∂H(η)

∂η

]

+ 1

Ф(φ)

ξ2 + η2

(1 + ξ2)(1 − η2)

∂2Ф(φ)

∂φ2 . (14.139) 

To separate the equation, we must use a constant . m2, allowing us to write 

.
d2Ф(φ)

dφ2 + m2 Ф(φ) = 0, (14.140) 

and 

. m2 = (1 + ξ2)(1 − η2)

ξ2 + η2

{
1

Θ(ξ)

∂

∂ξ

[
(1 + ξ2)

∂Θ(ξ)

∂ξ

]

+ 1

H(η)

∂

∂η

[
(1 − η2)

∂H(η)

∂η

]}
. (14.141) 

This last equation can be also separated by means of another constant n, to obtain 

.
d

dξ

[
(1 + ξ2)

∂Θ(ξ)

∂ξ

]
+ m2

1 + ξ2
Θ(ξ) − nΘ(ξ) = 0, (14.142) 

and 

.
d

dη

[
(1 − η2)

dH(η)

dη

]
− m2

1 − η2
H(η) − nH(η) = 0. (14.143) 

Joining together all three separate equations reads 

.

d2Ф(φ)

dφ2
+ m2 Ф(φ) = 0,

d

dξ

[
(1 + ξ2)

∂Θ(ξ)

∂ξ

]
+ m2

1 + ξ2
Θ(ξ) − nΘ(ξ) = 0,

d

dη

[
(1 − η2)

dH(η)

dη

]
− m2

1 − η2
H(η) − nH(η) = 0.

(14.144) 

The solutions2 of the second and third equations are written as a linear combination 
of associated Legendre polynomials of the first kind, . P m

n , and of the second kind,

2 P. M. Morse & H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, 
1953. 
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. Qm
n . The first equation is obtained by a linear combination of sine and cosine 

functions, which can always be replaced by a complex exponential. 
Nevertheless, for the hyperboloidal cone, the solution of the diffusion equation 

is rather simple because of the symmetry of the figure, which makes Eq. (14.137) 
to void the derivative with respect to the . φ variable. Then, remembering that the 
system is in a steady state, we can write 

.0 = ∂

∂ξ

[
(1 + ξ2)

∂c(ξ, η, φ)

∂ξ

]
+ ∂

∂η

[
(1 − η2)

∂c(ξ, η, φ)

∂η

]
, (14.145) 

from where we can immediately separate the equations by means of a constant . α if 
we propose that .c(ξ, η) = Θ(ξ)H(η), substitute into Eq. (14.145), and divide the 
whole equation by .Θ(ξ)H(η), after which we can write it for . η

.
d

dη

[
(1 − η2)

dH(η)

dη

]
+ αH(η) = 0, (14.146) 

and for . ξ

.
d

dξ

[
(1 + ξ2)

dΘ(ξ)

dξ

]
− αΘ(ξ) = 0. (14.147) 

As the reader may note, both equations are fairly similar. The equation for . ξ can 
be manipulated (through a variable change that will be performed later) to take the 
form of the equation for . η, which is known as the Legendre equation. 

If a placeholder function .f = f (x) is used, we can find the solution for the 
generic equation, so then 

.
d

dx

[
(1 − x2)

df (x)

dx

]
+ αf (x) = 0, (14.148) 

which can be written to be seen as the Legendre equation, 

.(1 − x2) f ''(x) − 2x f '(x) + α f (x) = 0, (14.149) 

which is going to be solved by the power series method, better known as the 
Frobenius method. The first step is to propose that the solution .f (x) is a power 
series of the form 

.f (x) =
∞∑

n=0

an xn, (14.150)
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where its derivatives are 

.f '(x) =
∞∑

n=0

n an xn−1, f ''(x) =
∞∑

n=0

n(n − 1) an xn−2. (14.151) 

As Eq. (14.150) is a solution of Eq. (14.149), Eqs. (14.151) can be replaced into it, 
and the equality will hold. This yields 

.0 = (1 − x2)

∞∑
n=0

n(n − 1) an xn−2 − 2x
∞∑

n=0

n an xn−1 + α

∞∑
n=0

an xn, (14.152) 

which may be simplified to 

. 0 =
∞∑

n=0

n(n − 1) an xn−2 −
∞∑

n=0

n(n − 1) an xn −
∞∑

n=0

2n an xn +
∞∑

n=0

α an xn.

(14.153) 

The first sum may be rewritten by switching the index to .n → n − 2, that is, 

. 0 =
∞∑

n=−2

(n+ 1)(n+ 2) an+2 xn −
∞∑

n=0

n(n− 1) an xn −
∞∑

n=0

2n an xn +
∞∑

n=0

α an xn,

(14.154) 

where the first two terms of the first sum are null because for .n = −2, the factor 
.(n + 2) is zero, and for .n = −1, the factor .(n + 1) is also zero. This allows us to 
group everything under one sum as 

.0 =
∞∑

n=0

{(n + 1)(n + 2) an+2 − n(n − 1) an − 2n an + α an} xn. (14.155) 

As all the powers of x are linearly independent, we obtain 

.(n + 1)(n + 2) an+2 − n(n − 1) an − 2n an + α an = 0, (14.156) 

or 

.(n + 1)(n + 2) an+2 = +n(n − 1) an + 2n an − α an, (14.157) 

yielding 

.an+2 = n(n + 1) − α

(n + 1)(n + 2)
an. (14.158)
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This constitutes a recurrence relation for the coefficients of the power 
series (14.150), which can be quickly analyzed for convergence using the 
D’Alembert criterion, also known as the ratio test. This convergence criterion 
is 

. lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r < 1, (14.159) 

that is, the ratio of two successive terms of the series. If the inequality holds, then the 
series converges. Applying this to Eq. (14.150) with their corresponding coefficients 
from (14.158), it yields 

.r = lim
n→∞

∣∣∣∣ n(n + 1) − α

(n + 1)(n + 2)

∣∣∣∣ x2 = x2. (14.160) 

Then, to ensure convergence, the relation .x2 < 1 must hold, or equivalently, . −1 <

x < 1. As  .n ≥ 0, and it is an integer, two different solutions for the Legendre 
equation may be identified. The first one comes from choosing .a0 /= 0, and .a1 = 0, 
which makes .a1 = a3 = a5 = · · · = 0, then 

.

feven(x) = a0 x0 + a2 x2 + a4 x4 + · · ·

= a0 − 1

2
α a0 x2 + 6 − α

12
a2 x4

= a0 − α

2
a0 x2 − (6 − α)α

12 · 2 a0 x4 + · · · ,

(14.161) 

which can be written as 

.feven(x) = a0

[
1 − α

2
x2 − (6 − α)α

24
x4 + · · ·

]
. (14.162) 

But we can also take .a0 = 0 with .a1 /= 0, yielding .a0 = a2 = a4 = · · · = 0, to  
obtain 

.

fodd(x) = a1 x1 + a3 x3 + a5 x5 + · · ·

= a1 x + 2 − α

6
a1 x3 + 12 − α

20
a3 x5

= a1 x + 2 − α

6
a1 x3 + (12 − α)(+2 − α)

20 · 6 a1 x5 + · · · ,

(14.163) 

which becomes 

.fodd(x) = a1

[
x + 2 − α

6
x3 + (12 − α)(2 − α)

120
x5 + · · ·

]
. (14.164)
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Equations (14.164) and (14.162) are linearly independent by means of the powers 
of x and lead us to a general solution for the Legendre equation, which is 

.f (x) = A feven(x) + B fodd(x), (14.165) 

where . A and . B are constants to be fixed by the boundary conditions (BCs). 
Nevertheless, there is a loose end: choosing of value of the separation constant 

. α. This should be done keeping in mind the convergence of the series. The first 
approach is to truncate the series to ensure it remains finite, and this can be achieved 
by fixing the value of . α to .l(l + 1), so the polynomial of the series only contains 
powers of x up to the l-th one. This transforms the recurrence relation, Eq. (14.158), 
into 

.al+2 = l(l + 1) − α

(l + 1)(l + 2)
al. (14.166) 

Using these coefficients, the solution for our differential equation (14.149) can be 
written as polynomials known as the Legendre polynomials, denoted by .Pl(x), 
where l is their order. The convention is to set 

.Pl(1) = 1, (14.167) 

which is also known as normalization. The form of the polynomial will be obtained 
from Eqs. (14.162) and (14.164) if l is even or odd, respectively. As the solutions 
depends on their coefficients, we start by calculating .a0 /= 0, knowing that for .l = 0, 
we have .α = 0, then 

.a2 = 0, (14.168) 

and as a consequence, .a2 = a4 = a6 = · · · = 0. This allows us to calculate . P0(x)

from Eq. (14.162), yielding 

.P0(x) = a0, (14.169) 

and from the normalization condition 

.P0(x = 1) = a0 = 1, (14.170) 

from which all . al for an even l can be calculated using the recurrence relation. For 
odd values, we need to calculate . a1, so  .a1 /= 0. Knowing that for .l = 1 we have 
.α = 2, then 

.a3 = 0, (14.171) 

meaning that .a3 = a5 = a7 = · · · = 0. Furthermore, from Eq. (14.164), we obtain
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.P1(x) = a1 x, (14.172) 

and from the normalization condition, we arrive at 

.P1(x = 1) = a1 = 1, (14.173) 

then 

.P1(x) = x. (14.174) 

Now that we have . a0 and . a1, every coefficient of the series can be obtained from the 
recurrence relation, keeping in mind that the series must remain finite, the value of 
. α should be set accordingly. 

Up to this point, we have obtained solutions for the Legendre equation, which 
are known as Legendre polynomials, but as mentioned earlier, there is a second 
approach based on the assumption that . α takes a value that does not truncate the 
series. This means that solutions (14.162) and (14.164) keep it as an infinite series. 

Allow us to calculate the case for .α = 0, starting by substituting back into 
Eq. (14.162) to obtain 

.feven(x) = a1

(
x + 1

3
x3 + 1

5
x5 + · · ·

)
, (14.175) 

where some structure can be identified from the denominators and the powers. 
Recalling series (A.20) and (A.21) of the Appendix A.6.1, we can write 

. ln(1 + x)− ln(1 − x) =
(

x − 1

2
x2 + 1

3
x3 − · · ·

)
−

(
−x − 1

2
x2 − 1

3
x3 − · · ·

)
,

(14.176) 

from where we can see that the even powers vanish, to obtain 

. ln

(
1 + x

1 − x

)
= 2

(
x + 1

3
x3 + 1

5
x5 + · · ·

)
, (14.177) 

where logarithmic properties were used, identifying that the last expression is twice 
the Eq. (14.175) without . a1. Then, 

.Q0(x) ≡ feven(x) = 1

2
ln

(
1 + x

1 − x

)
a1, (14.178) 

and the value of .a1 = 1 is obtained by normalization, yielding 

.Q0(x) = 1

2
ln

(
1 + x

1 − x

)
. (14.179)
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This last equation is known as the Legendre function of the second kind and zero 
order. The general function is denoted by .Ql(x), and they are also known as second 
solutions for the Legendre equation. As we can see, Eq. (14.179) diverges in . x =
±1, a behavior that is avoided in the first solutions or Legendre polynomials. 

Now, the most general solution for the Legendre equation can be stated, namely, 

.f (x) =
∞∑

n=0

[An Pn(x) + Bn Qn(x)] , (14.180) 

where constants . An and . Bn are found from the BCs. 
Going back to our original problem, the solution of Eq. (14.146) will be 

.H(η) =
∞∑

n=0

[
Aη,n Pn(η) + Bη,n Qn(η)

]
, (14.181) 

and the corresponding solution for Eq. (14.147) will be presented after a variable 
change is made. Let us first define a variable 

.μ ≡ i ξ, (14.182) 

which yields 

.μ2 = −ξ2, (14.183) 

and the chain rule must be applied, that is, 

.
dΘ(μ)

dξ
= dΘ(μ)

dμ

dμ

dξ
= i Θ'(μ). (14.184) 

The calculated derivative is substituted back into Eq. (14.147) to obtain 

.
d

dμ

[
(1 − μ2)

dΘ(μ)

dμ

]
+ αΘ(μ) = 0, (14.185) 

which is the Legendre equation in terms of .Θ = Θ(μ), and its solution can be 
written using Eq. (14.180). Then 

.Θ(μ) =
∞∑

n=0

[
Aμ,n Pn(μ) + Bμ,n Qn(μ)

]
, (14.186) 

which is written back to the original variable . ξ , yielding 

.Θ(ξ) =
∞∑

n=0

[
Aξ,n Pn(i ξ) + Bξ,n Qn(i ξ)

]
, (14.187)
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which leads us to the solution of the steady-state diffusion equation in spheroidal 
oblate coordinates, namely, 

. c(ξ, η)=Θ(ξ)H(η)=
∞∑

n=0

[
Aξ,n Pn(i ξ)+Bξ,n Qn(i ξ)

] [
Aη,n Pn(η)+Bη,n Qn(η)

]
,

(14.188) 

where the multiple constants are to be determined from BCs. For our hyperboloidal 
cone, we have a no-flux condition. This means that all the diffusive processes are 
taking place inside the cone, namely, 

.
∂c(ξ, η)

∂η

∣∣∣∣
η=η0

= 0, (14.189) 

and the derivative of the concentration is 

. 
∂c(ξ, η)

∂η
=

∞∑
n=0

[
Aξ,n Pn(i ξ) + Bξ,n Qn(i ξ)

] [
Aη,n P '

n(η) + Bη,n Q'
n(η)

]
,

(14.190) 
which evaluating into .η = η0 yields 

. 0 =
∞∑

n=0

[
Aξ,n Pn(i ξ) + Bξ,n Qn(i ξ)

] [
Aη,n P '

n(η0) + Bη,n Q'
n(η0)

]
.

(14.191) 

We can note that now . P '
n and . Q'

n are being evaluated to a fixed argument . η0, but  
the .ξ -dependent quantities are not. Moreover, the equality must hold for every . ξ , so  
consequently 

.0 = Aη,n P '
n(η0) + Bη,n Q'

n(η0). (14.192) 

As not all constants .Aη,n and .Bη,n can be zero to avoid the trivial solution, we need 
to observe that every .Qn(η) has the term3 

. ln

(
1 + η

1 − η

)
, (14.193) 

the derivative of which is 

.
1

1 − η2
. (14.194)

3 D. Jackson, Legendre Functions of the Second Kind and Related Functions, Am. Math. Mon., 50 
(5), 291, DOI: 10.2307/2302827. 
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This implies that .Q'
n(η0) cannot be null for any arbitrary n, therefore .Bη,n = 0. The  

remaining equation is 

.0 = Aη,n P '
n(η0), (14.195) 

from where we deduce that .P '
n(η0) = 0. Furthermore, .Pn(η) = constant , and 

the only adequate Legendre polynomial is .P0(η) = 1. This condition reduces 
Eq. (14.188) to 

.c(ξ) = A0 P0(i ξ) + B0 Q0(i ξ), (14.196) 

where the constants were reduced to .A0 = Aη,n Aξ,n, and .B0 = Aη,n Bξ,n. For our 
hyperboloidal cone, concentration at .ξ = 0 must be null, then 

.c(0) = 0 = A0, (14.197) 

making Eq. (14.196) become 

.c(ξ) = B0 Q0(i ξ). (14.198) 

Also, far away from the origin of the coordinates, the concentration will be a 
constant concentration . c0, namely, 

.c(ξ → ∞) = c0. (14.199) 

Equation (14.198) with .Q0(i ξ) explicitly written is 

.c(ξ) = B0
1

2
ln

(
1 + i ξ

1 − i ξ

)
, (14.200) 

and for large . ξ values, it can be written as 

.c0 = c(ξ → ∞) = B0
1

2
ln

(
i ξ

−i ξ

)
= B0 ln(−1), (14.201) 

where we are looking for the univaluated natural complex logarithm, then 

.x + i y ≡ ln(−1), (14.202) 

with .x, y ∈ R, giving  

.ex+i y = −1 = ex [cos(y) + i sin(y)] , (14.203) 

where the imaginary part must be zero, and if the function is univaluated, then . y = π

and .x = 0. Therefore,
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. ln(−1) = i π. (14.204) 

This value is substituted into Eq. (14.201) to yield 

.B0 = −i
2

π
c0. (14.205) 

As we already have the values for every constant for the solution of Eq. (14.145), 
we can write 

.c(ξ, η) = −i
1

π
c0 ln

(
1 + i ξ

1 − i ξ

)
. (14.206) 

We might consider the problem solved, but allow us to rephrase it in another way to 
avoid the imaginary quantities. Then, by working with the complex logarithm, we 
can assume that the result can be written as 

.2w i = ln

(
1 + i ξ

1 − i ξ

)
, (14.207) 

from where the exponential is calculated 

.e2w i = 1 + i ξ

1 − i ξ
, (14.208) 

and rearranging terms gives 

.i ξ = e2w i − 1

e2w i + 1
, (14.209) 

and .e−w i is used to obtain 

.i ξ = ew i − e−w i

ew i + e−w i
. (14.210) 

From last equation, we can identify the exponential forms of the sine and cosine 
functions as listed in Eqs. (A.2) and (A.3), respectively (see Appendix A.1), 
allowing us to write 

.i ξ = i sin(w)

cos(w)
, (14.211) 

or 

.ξ = tan(w). (14.212)
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Remembering that we are looking for the value of the logarithm in .c(ξ, η), which is 
.2w i, we get 

.2w i = ln

(
1 + i ξ

1 − i ξ

)
= 2 i arctan(ξ). (14.213) 

This last equation is replaced into Eq. (14.206), yielding 

.c(ξ) = 2

π
c0 arctan(ξ). (14.214) 

Equation (14.214) is the concentration inside a steady-state diffusive system made 
by an hyperboloidal cone with a fixed .η = η0. As we have azimuthal (. φ) symmetry, 
there is no dependence on the . φ coordinate. Remarkably, the result does not depend 
on the . η coordinate either. 

14.7 Single Exponential Decay 

In 1991, Zhou and Zwanzig found that when a particle escapes from a cavity through 
a small window, its survival probability in the cavity decays in time as a single 
exponential. In fact, there is a general property typical for all single-exponential rate 
processes: The escape is a rare event, meanly that its characteristic time is much 
greater than all other characteristic times of the problem. When this condition is 
fulfilled, the survival probability, .S(t), for  .t = t1 + t2 is a product of the survival 
probabilities .S(t1) and .S(t2). Consequently, .S(t) satisfies 

.S(t1 + t2) = S(t1)S(t2). (14.215) 

The solution of this equation is given by 

.S(t) = e−κt . (14.216) 

The fact that the survival probability decays exponentially means that it satisfies a 
simple rate equation: 

.
dS(t)

dt
= −κS(t). (14.217) 

To identify k, let’s use Eq. (5.137), namely, 

.S(t |x0) ≈ e−k ceq t . (5.137)
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Consequently, in Eq. (14.217) .κ = k ceq , where . k is the rate constant. Now consider 
a large cavity of volume V containing a single particle. In such a case, the particle 
concentration is equal to .1/V , then 

.κ = k/V . (14.218) 

From Eq. (2.44) and using Eq. (14.216), the mean lifetime of the particle is 

. 〈t (x0)〉 =
∫ ∞

0
S(t |x0) dt =

∫ ∞

0
e− k

V
kt dt = V

k
, (14.219) 

which is the fingerprint if a single-exponential decay. 
As an example of the application of this last result, consider a perfectly absorbing 

disk of radius s located on an infinite reflecting wall (see Sect. 14.4). Let’s assume 
that, at .t = 0, particles are uniformly distributed in the semi-infinite space on one 
side of the wall and their concentration is at equilibrium and given by . ceq . We  
already know that the steady-state rate constant for this system is given by 

.kHBP = 4Ds. (14.113) 

Inserting this last result into Eq. (14.219), we have that the mean first-passage 
time of a particle diffusing into a volume V where a perfectly absorbing disk is 
placed is given by 

. 〈t (x0)〉 = V

4sD
. (14.220) 

For a particle escaping through a hole, the escape is evidently a rare event when 
the hole is small enough. This is why the escape is single-exponential even in the 
absence of a potential barrier. The reason is that the rate process is controlled by an 
entropy barrier, rather than an energy barrier. 

14.8 Computational Experiments: Perfectly Absorbent 
Sphere from the Inside 

In Sect. 14.1.1, we presented the propagator, Eq. (5.40), for a perfectly absorbent 
sphere of radius R. Its mean first-passage time (MFPT) was not explicitly calculated 
there, but it can be directly obtained from Eq. (14.24), namely, 

. 〈t (r0)〉out =
∫ ∞
0 t J (L, t) dt

θL(x0)
= 1

6D
(Rout − r0)(Rout + r0 − 2Rin). (14.24)
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This is the equation for the problem of two perfectly absorbent and concentric 
spheres of radius .Rin and .Rout , for the inner and outer spheres, respectively, where 
. r0 is the starting point of the diffusing particles and .Rin < r0 < Rout . 

As our problem states that we have only one absorbent sphere, we set .Rin = 0 in 
Eq. (14.24), obtaining 

. 〈t (r0)〉 = 1

6D

(
R2 − r20

)
, (14.221) 

where the subindex out has been removed because we now only have one sphere. 
In the specific case of the simulation presented in Listing 14.1, .r0 = 0, causing 
Eq. (14.221) to become 

. 〈t (r0)〉 = 1

6D
R2. (14.222) 

Listing continued on next page 

Listing 14.1 [abs-sphere.f90]: Fortran 90 program to simulate a 
perfectly absorbent sphere of radius R = 1. The particles start from a fixed 
point r0 inside the sphere.

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ abs-sphere.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code for the simulation
 15 ! of a 2D (circular) / 3D (spherical) channel of
 16 ! radius R.
 17 ! The whole circumference is completely absorbent.
 18 !
 19 ! The Brownian walkers start their path from the
 20 ! origin of the coordinates.
 21 ! The simulation for each of them ends when the
 22 ! absorbent shell is reached. Then, the Mean



14.8 Computational Experiments: Perfectly Absorbent Sphere from the Inside 441

Listing continued on next page 

Listing continued from last page

 23 ! First-Passage Time (MFPT or <tau>) is obtained.
 24 !
 25 ! The theoretical value is used to calculate the
 26 ! relative error of the simulation. D0 is the bulk
 27 ! diffusion constant, generally set to 1.
 28 !
 29 ! tau = R∗∗2 / (6 * D0)
 30 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 31
 32 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 33 ! To compile with GFortran, you must include the
 34 ! helpers.f90 module.
 35 ! gfortran helpers.f90 abs-sphere.f90
 36 ! Then you can run the program:
 37 ! ./a.out
 38 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 39
 40 program abssphere
 41
 42 ! Load the helpers module, which contains functions,
 43 ! constants, and more...
 44 use helpers
 45
 46 ! Mandatory declaration of data type variables
 47 ! and constants.
 48 implicit none
 49
 50 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 51 ! Declaration of constants
 52 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 53
 54 !!! Simulation parameters
 55 ! Seed of the PRNG
 56 integer, parameter :: RSEED = 0
 57 ! Number of random walkers (particles)
 58 integer, parameter :: NRW = 2500
 59 ! Circle / Sphere radius
 60 real(kind=dp), parameter :: R = 1.0_dp
 61 ! Temporal step size
 62 real(kind=dp), parameter :: DT = 1.0e-6_dp
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Listing continued on next page 

Listing continued from last page

 63
 64 !!! Physical parameters of the system
 65 ! Diffusion constant (bulk)
 66 real(kind=dp), parameter :: D0 = 1.0_dp
 67 ! Thermal energy inverse (1/k_b T)
 68 real(kind=dp), parameter :: BETA = 1.0_dp
 69 ! Standard deviation for Brownian motion
 70 real(kind=dp), parameter :: SIGMA &
 71 = dsqrt(2.0_dp * D0 * DT)
 72 ! Mean distribution for Brownian motion
 73 real(kind=dp), parameter :: MU = 0.0_dp
 74
 75 ! Theoretical value
 76 real(kind=dp), parameter :: THEOV &
 77 = R∗∗2 / (6.0_dp * D0)
 78
 79
 80 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 81 ! Declaration of variables
 82 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 83
 84 ! General counter
 85 integer :: i
 86 ! Initial position of the particle
 87 real(kind=dp) :: x0, y0, z0
 88 ! Current position of the particle
 89 real(kind=dp) :: x, y, z
 90 ! Current particle passage time
 91 real(kind=dp) :: tau
 92 ! Sum of passage times
 93 real(kind=dp) :: ttau = 0.0_dp
 94 ! MFPT (<tau>)
 95 real(kind=dp) :: mfpt
 96
 97
 98 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 99 ! Main simulation program
 100 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 101
 102 ! Set the seed of the PRNG to achieve repeatable results
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Listing continued on next page 

Listing continued from last page

 103 call setseed(RSEED)
 104
 105 ! The loop iterates over each (i) particle.
 106 do i=1, NRW
 107 !!! Initializing the needed variables.
 108 ! The passage time is set to zero
 109 tau = 0.0_dp
 110
 111 ! Every particle starts at the origin
 112 x0 = 0.0_dp
 113 y0 = 0.0_dp
 114 z0 = 0.0_dp
 115
 116 ! The particle's current position is set to the initial 

position.
 117 x = x0
 118 y = y0
 119 z = z0
 120
 121 !!! The random walk starts. Follow the particle until
 122 !!! it is removed by the shell at radius R.
 123 do
 124 ! Make a step in space
 125 x = x + nrand(MU, SIGMA)
 126 y = y + nrand(MU, SIGMA)
 127 z = z + nrand(MU, SIGMA)
 128 ! Make a step in time
 129 tau = tau + DT
 130
 131 ! This code also works for a 2D problem (CIRCLE),
 132 ! if you remove the «z» position so it is not taken
 133 ! into account for the calculation of the distance.
 134 ! If it's a 2D problem, just uncomment the next line
 135 ! z  = 0.0_dp
 136
 137 ! Check for removal of the particle.
 138 ! As we are inside a sphere (or a circle), the
 139 ! distance is calculated from the origin using
 140 ! the Euclidean distance.
 141 if( sqrt(x∗∗2 + y∗∗2 + z∗∗2) >= R ) then
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Listing continued from last page

 142 ! If it was removed from the channel, stop the
 143 ! simulation for this particle.
 144 exit
 145 end if
 146 end do ! End of i-particle's random walk.
 147
 148 ! We need to add the passage time of the i-particle to
 149 ! the total time.
 150 ttau = ttau + tau
 151
 152 ! You can print out the MFPT up to this point.
 153 print *, &
 154 '[' // nstr(i) // ' particles simulated | ' &
 155 // nstr(NRW-i) // ' to go]: ' &
 156 // TNL // TAB &
 157 // '<tau-sim> = ' // nstr(ttau / i) &
 158 // TNL // TAB &
 159 // '<tau-theo> = ' // nstr(THEOV) &
 160 // TNL // TAB &
 161 // 'Error = ' &
 162 // nstr( abs( (ttau/i) - THEOV ) / THEOV &
 163 * 100, 1) &
 164 // '%'
 165 end do ! End of the particle's loop.
 166
 167 ! At this point, every particle's simulation is done.
 168 ! Obtain the <tau>
 169 mfpt = ttau / NRW
 170
 171 ! Now we print out the MFPT, and show the theoretical
 172 ! value.
 173 print ∗
 174 print *, '=== Final result of simulation ==='
 175 print *, TAB // '<tau-sim> = ' // nstr(mfpt)
 176 print *, TAB // '<tau-theo> = ' // nstr(THEOV)
 177 ! Calculates and prints the percentage error.
 178 print *, TAB // 'Error = ' &
 179 // nstr( abs( mfpt - THEOV ) &
 180 / THEOV * 100, 1) &
 181 // '%'
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Listing ended

 182 ! As a reminder, print out the number of walkers.
 183 print *, TAB // 'NRW = ' // nstr(NRW)
 184 ! The time step.
 185 print *, TAB // 'dt = ' // nstr(DT, 6)
 186 ! And the PRNG seed.
 187 print *, TAB // 'PRNG seed = ' // nstr(RSEED)
 188
 189 end program abssphere 

Compiling and Running of Listing 14.1

 1 # Compile
 2 gfortran helpers.f90 abs-sphere.f90
 3
 4 # Run
 5 ./a.out
 6
 7 # Sample output

 8 
...

 9 [62 particles simulated | 2438 to go]:
 10 <tau-sim> = 0.156571
 11 <tau-theo> = 0.166667
 12 Error = 6.1%

 13 
...

 14 [2500 particles simulated | 0 to go]:
 15 <tau-sim> = 0.166057
 16 <tau-theo> = 0.166667
 17 Error = 0.4%
 18
 19 === Final result of simulation ===
 20 <tau-sim> = 0.166057
 21 <tau-theo> = 0.166667
 22 Error = 0.4%
 23 NRW = 2500
 24 dt = 0.000001
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14.9 Computational Experiments: Perfectly Absorbent 
Sphere from the Inside with Uniformly Distributed 
Particles 

As in the past experiment, we start from Eq. (14.24), that is, 

. 〈t (r0)〉out =
∫ ∞
0 t J (L, t) dt

θL(x0)
= 1

6D
(Rout − r0)(Rout + r0 − 2Rin). (14.24) 

Also, we need to set .Rin = 0, to keep only the external sphere, yielding 

. 〈t (r0)〉 = 1

6D
(R2 − r20 ), (14.223) 

where, again, the out subindex was removed because only one sphere is present. In 
this case, the random walkers should start by being uniformly distributed inside the 
sphere. To obtain the theoretical result to describe this system, we need to perform 
an integration over the whole sphere in order to consider the contribution of every 
possible starting position of the particles, and this result must be divided by the 
complete volume of interest, which is the sphere itself. 

The MFPT for the sphere of radius R, and uniformly distributed particles at the 
start, will be given by 

. 〈tu〉 =

∫ 2π

0

∫ π

0

∫ R

0
〈t (r0)〉 r20 sin θ dr0 dθ dφ

∫ 2π

0

∫ π

0

∫ R

0
r20 sin θ dr0 dθ dφ

, (14.224) 

or 

. 〈tu〉 = 1

6D

∫ 2π

0

∫ π

0

∫ R

0
(R2 − r20 ) r20 sin θ dr0 dθ dφ

4

3
πR3

, (14.225) 

which yields 

. 〈tu〉 = 1

6D
· 3

4πR3 · 4π
∫ R

0

[
R2 r20 − r40

]
dr0. (14.226) 

Then,
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. 〈tu〉 = 1

2D
· 1

R3

[
1

3
R2 r30 − 1

5
r50

] ∣∣∣∣
r0=R

r0=0
, (14.227) 

that is reduced to 

. 〈tu〉 = 1

2D
· 1

R3

[
1

3
R5 − 1

5
R5

]
, (14.228) 

leading to 

. 〈tu〉 = 1

15D
R2. (14.229) 

For comparative purposes, the simulation for .R = 1 can be seen in Listing 14.2. 

Listing continued on next page 

Listing 14.2 [abs-sphere-unif.f90]: Fortran 90 program to simulate 
a perfect absorbent sphere of radius R = 1. At the start, the particles are 
uniformly distributed inside the whole volume of the sphere.

 1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 2 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ abs-sphere-unif.f90 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 3 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 4 !
 5 ! Leonardo Dagdug, Ivan Pompa-García, Jason Peña
 6 !
 7 ! From the book:
 8 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 9 ! Diffusion Under Confinement:
 10 ! A Journey Through Counterintuition
 11 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 12
 13 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 14 ! This file contains the source code for the simulation
 15 ! of a 2D (circular) / 3D (spherical) channel of
 16 ! radius R.
 17 ! The whole circumference is completely absorbent.
 18 !
 19 ! The Brownian walkers start their path being uniformly
 20 ! distributed inside the sphere / circle.
 21 ! The simulation for each of them ends when the
 22 ! absorbent shell is reached. Then, the Mean
 23 ! First-Passage Time (MFPT or <tau>) is obtained.
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 24 !
 25 ! The theoretical value is used to calculate the
 26 ! relative error of the simulation. D0 is the bulk
 27 ! diffusion constant, generally set to 1.
 28 !
 29 ! tau = 1 / (15 * D0) * R∗∗2
 30 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 31
 32 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 33 ! To compile with GFortran, you must include the
 34 ! helpers.f90 module.
 35 ! gfortran helpers.f90 abs-sphere-unif.f90
 36 ! Then you can run the program:
 37 ! ./a.out
 38 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 39
 40 program abssphereunif
 41
 42 ! Load the helpers module, which contains functions,
 43 ! constants, and more...
 44 use helpers
 45
 46 ! Mandatory declaration of data type variables
 47 ! and constants.
 48 implicit none
 49
 50 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 51 ! Declaration of constants
 52 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 53
 54 !!! Simulation parameters
 55 ! Seed of the PRNG
 56 integer, parameter :: RSEED = 0
 57 ! Number of random walkers (particles)
 58 integer, parameter :: NRW = 2500
 59 ! Circle / Sphere radius
 60 real(kind=dp), parameter :: R = 1.0_dp
 61 ! Temporal step size
 62 real(kind=dp), parameter :: DT = 1.0e-6_dp
 63
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 64 !!! Physical parameters of the system
 65 ! Diffusion constant (bulk)
 66 real(kind=dp), parameter :: D0 = 1.0_dp
 67 ! Thermal energy inverse (1/k_b T)
 68 real(kind=dp), parameter :: BETA = 1.0_dp
 69 ! Standard deviation for Brownian motion
 70 real(kind=dp), parameter :: SIGMA &
 71 = dsqrt(2.0_dp * D0 * DT)
 72 ! Mean distribution for Brownian motion
 73 real(kind=dp), parameter :: MU = 0.0_dp
 74
 75 ! Theoretical value
 76 real(kind=dp), parameter :: THEOV &
 77 = (1.0_dp) / (15.0_dp * D0) * R∗∗2
 78
 79
 80 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 81 ! Declaration of variables
 82 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 83
 84 ! General counter
 85 integer :: i
 86 ! Initial position of the particle
 87 real(kind=dp) :: x0, y0, z0
 88 ! Current position of the particle
 89 real(kind=dp) :: x, y, z
 90 ! Current particle passage time
 91 real(kind=dp) :: tau
 92 ! Sum of passage times
 93 real(kind=dp) :: ttau = 0.0_dp
 94 ! MFPT (<tau>)
 95 real(kind=dp) :: mfpt
 96
 97
 98 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 99 ! Main simulation program
 100 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ !
 101
 102 ! Set the seed of the PRNG to achieve repeatable results
 103 call setseed(RSEED)
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 104
 105 ! The loop iterates over each (i) particle.
 106 do i=1, NRW
 107 !!! Initializing the needed variables.
 108 ! The passage time is set to zero
 109 tau = 0.0_dp
 110
 111 ! Initially, the particles should be uniformly
 112 ! distributed inside the whole volume of the sphere.
 113 ! For a cube in cartesian coordinates, this would be
 114 ! straightforward, but for spherical coordinates
 115 ! the strategy needs to be modified, as otherwise the
 116 ! points will be inside a cube of edge R, and some
 117 ! points will remain outside the sphere.
 118
 119 ! The calculation can be made using the sampling
 120 ! technique, which involves a cubic root and
 121 ! a transformation from spherical to cartesian
 122 ! coordinates.
 123 ! This can be computationally expensive and not
 124 ! readily understood, and some prefer to reject
 125 ! the points outside the sphere and get a new
 126 ! position until the point remains inside. The latter
 127 ! is the approach we are taking here.
 128 do
 129 x0 = urand(-R, R)
 130 y0 = urand(-R, R)
 131 z0 = urand(-R, R)
 132
 133 ! If the point lies inside the sphere of radius
 134 ! R, then we can continue.
 135 if( sqrt(x0∗∗2 + y0∗∗2 + z0∗∗2) < R )  then
 136 exit
 137 end if
 138 end do
 139
 140 ! The particle's current position is set to the
 141 ! initial position.
 142 x = x0
 143 y = y0
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 144 z = z0
 145
 146 !!! The random walk starts. Follow the particle until
 147 !!! it is removed by the shell at radius R.
 148 do
 149 ! Make a step in space
 150 x = x + nrand(MU, SIGMA)
 151 y = y + nrand(MU, SIGMA)
 152 z = z + nrand(MU, SIGMA)
 153 ! Make a step in time
 154 tau = tau + DT
 155
 156 ! This code also works for a 2D problem (CIRCLE),
 157 ! if you remove the «z» position so it is not taken
 158 ! into account for the calculation of the distance.
 159 ! If it's a 2D problem, just uncomment the next line
 160 ! z  = 0.0_dp
 161
 162 ! Check for removal of the particle.
 163 ! As we are inside a sphere (or a circle), the
 164 ! distance is calculated from the origin using
 165 ! the Euclidean distance.
 166 if( sqrt(x∗∗2 + y∗∗2 + z∗∗2) >= R ) then
 167 ! If it was removed from the channel, stop its
 168 ! simulation.
 169 exit
 170 end if
 171 end do ! End of i-particle's random walk.
 172
 173 ! We need to add the passage time of the i-particle to
 174 ! the total time.
 175 ttau = ttau + tau
 176
 177 ! You can print out the MFPT up to this point.
 178 print *, &
 179 '[' // nstr(i) // ' particles simulated | ' &
 180 // nstr(NRW-i) // ' to go]: ' &
 181 // TNL // TAB &
 182 // '<tau-sim> = ' // nstr(ttau / i) &
 183 // TNL // TAB &
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 184 // '<tau-theo> = ' // nstr(THEOV) &
 185 // TNL // TAB &
 186 // 'Error = ' &
 187 // nstr( abs( (ttau/i) - THEOV ) / THEOV &
 188 * 100, 1) &
 189 // '%'
 190 end do ! End of the particle's loop.
 191
 192 ! At this point, every particle's simulation is done.
 193 ! Obtain the <tau>
 194 mfpt = ttau / NRW
 195
 196 ! Now we print out the MFPT, and show the theoretical
 197 ! value.
 198 print ∗
 199 print *, '=== Final result of simulation ==='
 200 print *, TAB // '<tau-sim> = ' // nstr(mfpt)
 201 print *, TAB // '<tau-theo> = ' // nstr(THEOV)
 202 ! Calculates and prints the percentage error.
 203 print *, TAB // 'Error = ' &
 204 // nstr( abs( mfpt - THEOV ) &
 205 / THEOV * 100, 1) &
 206 // '%'
 207 ! As a reminder, print out the number of walkers.
 208 print *, TAB // 'NRW = ' // nstr(NRW)
 209 ! The time step.
 210 print *, TAB // 'dt = ' // nstr(DT, 6)
 211 ! And the PRNG seed.
 212 print *, TAB // 'PRNG seed = ' // nstr(RSEED)
 213
 214 end program abssphereunif 

Listing continued on next page 

Compiling and Running of Listing 14.2

 1 # Compile
 2 gfortran helpers.f90 abs-sphere-unif.f90
 3
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Listing continued from last page 

End of Compile and Run

 4 # Run
 5 ./a.out
 6
 7 # Sample output

 8 
...

 9 [3 particles simulated | 2497 to go]:
 10 <tau-sim> = 0.017252
 11 <tau-theo> = 0.066667
 12 Error = 74.1%

 13 
...

 14 [2500 particles simulated | 0 to go]:
 15 <tau-sim> = 0.066788
 16 <tau-theo> = 0.066667
 17 Error = 0.2%
 18
 19 === Final result of simulation ===
 20 <tau-sim> = 0.066788
 21 <tau-theo> = 0.066667
 22 Error = 0.2%
 23 NRW = 2500
 24 dt = 0.000001 

14.10 Concluding Remarks 

In this chapter, we introduce the interesting problem of concentric spheres in 
different dimensions and its main consequences related to mean first-passage times 
and splitting probabilities. For example, when the outer sphere goes to infinity, 
the splitting probability related to this boundary tends to zero for one and two 
dimensions while being finite for systems with three dimensions or more. 

We also study the absorption of a disk over a flat reflecting wall. At steady state, 
we can find the rate constant for such a system. An important extension to any shape 
is given by the Dudko-Berezhkovskii-Weiss formula. 

Finally, the most important equations that were obtained in this chapter are listed 
below:
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D. (Dudko-Berezhkovskii-Weiss formula) 
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Part VI 
Trapping Rate Coefficient and Boundary 

Homogenization 

The randomness of being reacted. 

“Truth is much too complicated to allow anything but 
approximations.” 

—John Von Neumann



Chapter 15 
Trapping Rate Coefficient 

The problem of entrapment of diffusing particles by heterogeneous boundaries 
with perfectly or partially absorbing regions on otherwise perfectly or partially 
reflecting surfaces plays an important role in the analysis of various processes in 
physics, chemistry, and biology. Examples include electric current through arrays 
of microelectrodes, porous membrane transport, reactions on supported catalysts, 
water exchange in plants, and ligand binding to cell surface receptors, to mention 
just a few. The boundary properties of these systems can be described by imposing 
mixed Dirichlet and Neumann boundary conditions. Evidently, this is an extremely 
complicated problem because it involves non-uniform boundary conditions. Bound-
ary homogenization (BH) is an approximate method that significantly simplifies 
the solution of such problems by using an approximate effective medium-type 
approach. The main idea is to replace the non-uniform boundary conditions on a 
surface for a uniform boundary condition with an appropriately chosen effective 
trapping rate coefficient (see Fig. 15.1). 

We can use BH as a useful approximation when, at sufficiently long distances, the 
steady-state particle fluxes and concentrations of the heterogeneous original system 
are indistinguishable from its effective counterpart. The trapping rate coefficient 
depends on the shape and size of the absorbing regions, as well as on their 
distribution on the surface, and is known only in a few special cases. Some of these 
cases are discussed in this chapter. 

15.1 The Rate Coefficient 

Smoluchowski’s seminal work on chemical kinetics is based on the simplification 
that the many-body aspects of kinetics can be studied as the reactions of only two 
reactant molecules when the concentration of reactants is low enough. The events 
in a reaction process can be depicted qualitatively in the two-body picture, where 
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Fig. 15.1 Schematic representation of boundary homogenization. The mixed Dirichlet (red) and 
Neumann (gray) BCs of the original problem (left) are transformed into an effective Dirich-
let(green) boundary condition (right). In other words, the problem of heterogeneous BCs is mapped 
to a homogeneous boundary condition by means of the Collins-Kimball formula, Eq. (15.61) 

two molecules move within a solvent and occasionally come into contact with each 
other. A reaction may or may not occur upon such an encounter. Smoluchowski 
theory applies at a rate limited only by the speed at which the reactants can approach 
each other when they are close enough to react chemically almost instantaneously. 
In such case, the reaction is only limited by diffusion and is known as diffusion-
controlled reaction or diffusion-limited reaction. 

If the chemical reaction is not instantaneous, the observed rate of reaction 
may be influenced by both the rate of approach and the rate of subsequent 
chemical reaction. Taking into account these phenomena, Collins and Kimball 
extended Smoluchowski’s theory. Indeed, while Smoluchowski’s theory focuses 
on the trapping rate for a sphere with a perfectly absorbing surface, the Collins-
Kimball approach is based on studying the trapping rate for a sphere with a partially 
absorbing surface. In this section, we will solve the diffusion equation imposing 
these two boundary conditions (BCs) in order to calculate the concentration, flux, 
and current of the diffusing particles, as well as the associated rate constants of the 
processes. 

15.1.1 Smoluchowski Formula: Perfectly Absorbing Sphere 

Consider a diffusing particle in the presence of a perfectly absorbing sphere of 
radius R, which particle is removed from the system as soon as it reaches the 
sphere’s surface. The diffusion equation must be solved under the following BCs 
if the concentration at infinity is kept constant: (a) perfectly absorbing on the 
surface of the sphere, .c(R, t) = 0, and (b) uniform concentration at infinity, 
.c(r, t)

|
|
r→∞ = c∞. Before solving the boundary value problem, let us give some 

preliminary definitions related to the flux. Because of the symmetry of the system,
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assuming angular independence, the flux in spherical coordinates is given by (see 
Sect. B.3 in Appendix B) 

.J(r, t) = −D
∂c(r, t)

∂r
êr . (15.1) 

From this last equation, we can find the diffusion current or total flux, .I (r, t), by  
integrating .J(R, t) over a surface S, which is the number of particles trapped by the 
sphere per unit time 

.I (t) =
f

S

J(R, t) · n̂ dA, (15.2) 

with . dA being the differential element of area and . ̂n the unit vector normal to the 
spherical surface.1 Thus, 

.

I (t) =
f 2π

0

f π

0

(

−D
∂c(r, t)

∂r

|
|
|
|
r=R

êr

(

· (−êr ) R2 sin θ dθ dφ

= 4πR2D
∂c(r, t)

∂r

|
|
|
|
r=R

.

(15.3) 

The ratio of diffusion current to particle concentration, .k(t) = I (t)/c∞, is the  rate 
coefficient, which has units of volume per unit time. It is worth mentioning that the 
diffusion-controlled rate constant or rate constant, . k, is defined in the long time 
limit .k(t)t→∞, when the system reaches the steady state and the rate coefficient 
becomes independent of time. Now, let’s define the normalized concentration as 

.Q(r, t) ≡ c(r, t)
c∞

. (15.4) 

The main idea of this definition is that the rate constant is calculated from the 
flux current divided by the uniform concentration at infinity. Consequently, the rate 
coefficient in terms of the normalized concentration is given by 

.k(t) = 4πR2D
∂Q(r, t)

∂r

|
|
|
|
r=R

, (15.5)

1 In Sect. 2.7.2, we defined  . ̂n as the unit normal vector pointing in the outward direction of the 
boundary (either eastward, .−êx , or westward, . ̂ex , depending on the case). For this system, we 
adopt a different convention, making the normal vector to the spherical surface point in the inward 
direction of the sphere. This ensures that the flux through the surface is positive if the vector field 
is flowing into the sphere and negative if is flowing outside the sphere. 
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which has units of volume per unit time. The primary intention of this section is to 
calculate such coefficient. For this purpose, we must first calculate .Q(r, t) from the 
diffusion equation. 

In terms of the normalized concentration, .Q(r), the diffusion equation, when 
considering spherical symmetry, is given by 

.
∂Q(r, t)

∂t
= D

1

r2

∂

∂r

(

r2
∂Q(r, t)

∂r

(

. (15.6) 

Taking the Laplace transform of Eq. (15.6) and integrating the time derivative by 
parts gives 

.sQ(r, s) − Q(r, 0) = D

r

∂2rQ(r, s)

∂r2
= D

(
∂2Q(r, s)

∂r2
+ 2

r

∂Q(r, s)

∂r

(

. (15.7) 

Using the change of variable 

.z = r

[

Q(r, s) − Q(r, 0)

s

]

, (15.8) 

the latter equation becomes 

.
∂2z

∂r2
− s

D
z = 0. (15.9) 

The solution of this equation is 

.z = A exp

(/

s

D
r

(

+ B exp

(

−
/

s

D
r

(

, (15.10) 

where . A and . B are constants of integration. Reverting this solution to the original 
variable .Q(r, s) leads to 

.Q(r, s) = 1

s
Q(r, 0) + A

r
exp

(/

s

D
r

(

+ B
r
exp

(

−
/

s

D
r

(

. (15.11) 

Once we have the general solution, we can now solve the boundary value 
problem. As we already mentioned, for the Smoluchowski approach, we have the 
following BCs: 

.Q(r, t)

|
|
|
|
r→∞

= 1 t ≥ 0, (15.12) 

and
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.Q(R, t) = 0 t ≥ 0. (15.13) 

Their corresponding Laplace transform are 

.Q(r, s)

|
|
|
|
r→∞

= 1

s
, (15.14) 

and 

.Q(R, s) = 0, (15.15) 

respectively. 
By substituting Eq. (15.14) into Eq. (15.11), and taking the limit .r → ∞, we  

observe that the first term on the left-hand side of such equation goes to . 1/s, the  
third goes to zero, and the second goes to infinity, consequently, .A = 0. Now,  
evaluating Eq. (15.11) at .r = R and using Eq. (15.15), leads to 

.0 = 1

s
Q(R, 0) + B

R
exp

(

−
/

s

D
R

(

. (15.16) 

Solving for . B, we obtain 

.B = −R

s
Q(r, 0) exp

(/

s

D
R

(

. (15.17) 

Substituting this last relation into Eq. (15.11) and using that .Q(r, 0) = 1 results in 

.Q(r, s) = 1

s

{

1 − R

r
exp

[/

s

D
(R − r)

]}

. (15.18) 

The inverse Laplace transform of the latter expression can be found using the same 
technique outlined in Sect. 3.2, where we obtained the inverse Laplace transform 
of Eq. (3.44), i.e., Eq. (3.59). Taking this into consideration, let us first apply the 
inverse Laplace transform operator .L−1 on both sides of Eq. (15.18),2 namely, 

2 Commonly, the operator .L−1 acting on a function .f (s) is defined as 

.f (t) = L−1 {f (s)} = 1

2πi
lim

T →∞

f γ+iT

γ−iT

est f (s) ds. (15.19) 

See Sect. A.8 for further details on the Laplace transform.
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.

Q(r, t) = L−1{Q(r, s)} = L−1
{
1

s
− R

sr
exp

[/

s

D
(R − r)

]}

= 1 − R

r
L−1

{
1

s
exp

[/

s

D
(R − r)

]}

,

(15.20) 

where we used the linearity of .L−1 together with Eq. (A.64). Now, by defining the 
following functions: 

.g(r, s) ≡ e
√

sα

s
and q(r, s) ≡ e

√
sα

√
s

, (15.21) 

with .α ≡ (R−r)/
√

D, we can say state that .g(r, s) is actually a factor of the second 
term in Eq. (15.20), still to be inverse transformed. Additionally, both functions 
.g(r, s) and .q(r, s) are intrinsically related through their derivatives, that is, 

.
∂
√

sg(r, s)

∂s
= ∂q(r, s)

∂s
= eα

√
s(α

√
s − 1)

2s3/2
. (15.22) 

Thus, we can establish a system of partial differential equations (PDEs), such as 

. 2s
∂g(r, s)

∂s
+ 2g(r, s) − αq(r, s) = 0 and 2s

∂q(r, s)

∂s
− αsg(r, s) + q(r, s) = 0.

(15.23) 
Using Eq. (3.50), i.e., 

.
∂m(−t)nf (t)

∂tm
= L−1

{

(s)m
∂nf (s)

∂sn

}

, (3.50) 

the inverse Laplace transform of each of the PDEs in Eq. (15.23) is obtained, 
yielding 

. 2t
∂g(r, t)

∂t
+ αq(r, t) = 0 and − 2

∂ [tq(r, t)]

∂t
− α

∂g(r, t)

∂t
+ q(r, t) = 0,

(15.24) 
from where we can determine that 

. − (α2 − 6t)
∂g(r, t)

∂t
+ 4t2

∂2g(r, t)

∂t2
= 0. (15.25) 

The solution of the latter equation reads 

.g(r, t) = A −
√
4πerf

(
α√
4t

)

α
B. (15.26)
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In order to find the integration constants . A and . B, we must compare . L−1 {g(r, s)}
and .Q(r, t), when the particles are infinitely close to the absorbing surface, i.e., in 
the limit where .α → 0. More specifically, by making a Taylor series around . α = 0
of .g(r, s), keeping the first two terms and inverse transforming such result, we arrive 
at (see Eqs. (A.64) and (A.66)) 

.L−1 {g(r, s)}α→0 = L−1
{
1

s
+ α

s
+ · · ·

}

= 1 + α√
πt

+ · · · , (15.27) 

while the first two terms of the Taylor series of Eq. (15.26) are 

.Q(r, t)α→0 = A − 2B√
t

+ · · · , (15.28) 

meaning that .A = 1 and .B = −α/
√
4π . Therefore, the complete solution, after 

substituting .α = (R − r)/
√

D, is  

.g(r, t) = 1 − erf

(
r − R√
4Dt

(

. (15.29) 

By introducing this result into Eq. (15.20), we finally arrive at 

.Q(r, t) = 1 − R

r
erfc

(
r − R√
4Dt

(

, (15.30) 

where, generally, .erfc(x) is the complementary error function of a complex variable 
x (see Sect. A.10.2 of Appendix A). This function has the following properties: 

.erfc(−x) = 2 − erfc(x), erfc(0) = 1, erfc(∞) = 0. (A.83) 

Using these properties, we obtain the correct values at the boundary for the 
normalized concentration, Eq. (15.30), namely, .r → ∞, .Q(r, t) = 1, and .r → R, 
.Q(R, t) = 0. Furthermore, the normalized concentration at steady state, when 
.t → ∞, is  

.Q(r) = 1 − R

r
. (15.31) 

This equation correctly predicts the behavior of normalized concentration for 
different values of r , for instance, when .r = R, .Q(r) = 0, and .r >> R, it tends to 1,
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as expected. Finally, using Eq. (15.30) into Eq. (15.5)3 to obtain the rate coefficient 
results in 

. 

kS(t) = 4πR2D
dQ(r)

dr

|
|
|
|
r=R

= 4πDR3

r2

⎡

⎣erfc

(
r − R√
4Dt

(

+ re− (r−R)2
4Dt√

πDt

⎤

⎦

r=R

= 4πRD

[

1 + R√
πDt

]

,

(15.33) 
namely, the well-known Smoluwchoski rate coefficient. At the steady state, when 
.t → ∞, we obtain the Smoluchowski rate constant, namely, 

.kS = 4πRD, (15.34) 

which is Eq. (4.18), as expected. It is important to mention that the Smoluchowski 
constant can be obtained using a considerably more direct technique. According to 
the final value theorem, it follows that 

. lim
t→∞ f (t) = lim

s→0
sf (s). (5.34) 

Thus, we are able to obtain the steady-state propagator from Eq. (15.18) by taking 
the limit of the product .sQ(r, s), yielding to 

.Q(r, t → ∞) = lim
s→0

(sQ(r, s)) = 1 − R

r
, (15.35) 

which is Eq. (15.31). Afterward, the process consists of substituting the latter 
equation into Eq. (15.5) to ultimately arrive at Eq. (15.34). 

15.1.2 Collins-Kimball Formula: Partially Absorbing Sphere 

Collins and Kimball suggested that the rate at which the chemically activated 
process leads to the formation of products from the encounter pair is proportional to 
the probability of the encounter pair existing, which can be expressed by means of 
the flux current as follows: 

3 The derivative of the complementary function is 

.
d

dx
erfc(x) = − 2√

π
e−x2 . (15.32)
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.k Q(R, t) = 4πR2D
∂Q(r, t)

∂r

|
|
|
|
r=R

. (15.36) 

Under this approximation, they generalized the Smoluchowski approach assuming 
that the surface of the sphere is partially absorbing. As we already know, taking limit 
.k → ∞ corresponds to the case of a perfectly absorbing sphere, and consequently, 
the Smoluchowski approach is recovered. Now, it is interesting to explore how the 
rate coefficient is modified when this boundary condition (BC) is imposed on the 
spherical surface. 

We start by taking the Laplace transform of the flux current, Eq. (15.36), yielding 

.k Q(R, s) = 4πR2D
∂Q(r, s)

∂r

|
|
|
|
r=R

. (15.37) 

Then, the general solution of the diffusion equation in terms of the normalized 
concentration in Laplace space, given by Eq. (15.11), must be solved by imposing 
Eqs. (15.37) and (15.14), i.e., .Q(r → ∞, s) = 1/s. On the one hand, by applying the 
latter condition, we again find .A = 0. On the other hand, by imposing Eq. (15.37) 
and recalling that the initial condition is .Q(r, 0) = 1, we obtain 

.

k

(
1

s
+ B

R
e−√

s
D

R

(

= −4πR2D

[ B
r2

(

1 +
/

s

D
r

(

e−√
s
D

r

]

r=R

= −4πD B
(

1 +
/

s

D
R

(

e−√
s
D

R.

(15.38) 

Solving for . B yields 

.B = −R

s
e
√

s
D

R k

k + 4πRD + 4πR2
√

sD
. (15.39) 

By substituting this expression into Eq. (15.11), it becomes 

.Q(r, s) = 1

s

[

1 − k

k + 4πRD + 4πR2
√

sD

R e
√

s
D

(R−r)

r

]

. (15.40) 

Finding the inverse Laplace transform of the latter equation is the final step. For 
such purpose, let us write Eq. (15.40) as follows: 

.Q(r, s) = 1

s
− kR

r

e−√
s α

s(β + Asph

√
sD)

, (15.41) 

where .β = k + kS , .α = (r − R)/
√

D, and .Asph = 4πR2. By applying the inverse 
Laplace transform operator to .Q(s, r), we obtain
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.

Q(r, t) = L−1

{

1

s
− kR

r

e−√
s α

s(β + Asph

√
sD)

e−√
s α

}

= 1 − kR

r
L−1

{

e−√
s α

s(β + Asph

√
sD)

}

.

(15.42) 

The first term is obtain in a straightforward manner from Eq. (A.64). Thereafter, our 
attention is directed solely toward the second term, for which we define 

.g(r, z) ≡ e−zα

z2(β + Asph

√
Dz)

, (15.43) 

i.e., a function in the Laplace space with the new Laplace variable given by .z ≡ √
s. 

The strategy we will implement involves finding the inverse Laplace transform of 
Eq. (15.43) to later connect it to .Q(r, t), which is in terms of our initial temporal 
coordinate, by means of 

.

Q(r, t) = 1 − kR

r

f ∞

0
L−1

{

e−√
sτ
}

g(r, τ ) dτ

= 1 − kR

r

f ∞

0

(

τ e−τ 2/4t

2
√

πt3

)

g(r, τ ) dτ,

(15.44) 

where we used Eq. (A.69). To ensure a clear understanding of the origin of this last 
equation, see Sect. A.8, specifically Eq. (A.62), where the formulation of the latter 
equation is validated. 

Now, resuming our original task, we see that 

.
∂[zg(r, z)]

∂z
= −Asphz

√
D(2 + zα) + β + zαβ

z2(Asph

√
Dz + β)2

e−zα. (15.45) 

The expansion of the product results in the following equation: 

. 

g(r, z) + z
∂g(r, z)

∂z

= −
{

(2Asph

√
D + αβ)

e−αz

z(Asphz
√

D + β)
+ Asphα

√
D

e−αz

Asphz
√

D + β

+ β
e−αz

z2(Asphz
√

D + β)

}
1

Asphz
√

D + β
,

(15.46)
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which, by means of Eq. (15.43) and after a small rearrangement, enables us to write 
an equivalent equation solely in terms of .g(z), specifically, 

. 

Asph

√
Dz2

∂g(r, z)

∂z
+ βz

∂g(r, z)

∂z
+ (3Asph

√
D + αβ)zg(r, z)

+ Asphα
√

Dz2g(r, z) + 2βg(r, z) = 0.
(15.47) 

Using Eq. (3.50), it is now possible to find the inverse Laplace transform of the 
complete partial differential equation. This process leads us to 

. 

Asph

√
D

∂2

∂t2
[(−t)g(r, t)] + β

∂

∂t
[(−t)g(r, t)] + (3Asph

√
D + αβ)

∂g(r, t)

∂t

+ Asphα
√

D
∂2g(r, t)

∂t2
+ 2βg(r, t) = 0,

(15.48) 
and eventually, we arrive at 

. Asph

√
D(α − t)

∂2g(r, t)

∂t2
+
[

Asph

√
D + β(α − t)

] ∂g(r, t)

∂t
+ βg(r, t) = 0.

(15.49) 

The solution to the latter partial differential equation (PDE) is given by 

. g(r, t) =
⎧

⎨

⎩
A exp

[

(α − t)β

Asph

√
D

]

−
Asph

√
D
[

Asph

√
D + β(α − t)

]

β2
B

⎫

⎬

⎭
H(t − α),

(15.50) 

where .H(t−α) is the Heaviside function of .t−α. Notice that the solution is different 
from zero when .t > α.4 Then, we determine the integration constants . A and . B by 
comparing Eq. (15.50) and the inverse Laplace transform of (15.43) when .α → 0. 
Thus, on the one hand,5 

4 See Appendix A, Sect. A.10.4 for further details on the Heaviside function. 
5 Every term in Eq. (15.51) can be computed by following the same technique described in 
Sects. 3.2, 15.1.1, and this present section. This process is excluded for the purpose of brevity, 
yet the results can be found in Eqs. (A.67) and (A.68).
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. 

L−1
z {g(r, z)}α→0 = L−1

z

{

1

z2(Asphz
√

D + β)
− α

z(Asphz
√

D + β)
+ · · ·

}

= −Asph

√
D

β2
+ Asph

√
D

β2
exp

(

− tβ

Asph

√
D

)

+ t

β
− α

β
+ · · ·
(15.51) 

On the other hand, the first four terms of the Taylor series of Eq. (15.50) are6 

. g(r, t)α→∞ = A exp

(

− tβ

Asph

√
D

)

− A2
sphD

β
B+ Asph

√
Dt

β
B− Asphα

√
D

β
B+· · ·
(15.52) 

from which we determine that 

.A = Asph

√
D

β2 and B = 1

Asph

√
D

. (15.53) 

For pragmatic reasons, although the integration constants have already been 
deduced, it is practical to express them as . A and . B instead of expressing them 
in their explicit form. Subsequently, by substituting .g(t), Eq. (15.50), inside the 
integral in Eq. (15.44), we obtain 

. 

f ∞

0

(

τ e−τ 2/4t

2
√

πt3

)

g(r, τ ) dτ

≈ A
2
√

πt3

f ∞

α

τ exp

(

−τ 2

4t

(

exp

[

(α − τ)β

Asph

√
D

]

dτ

− B
2
√

πt3

f ∞

α

τ exp

(

−τ 2

4t

(Asph

√
D
[

Asph

√
D + β(α − τ)

]

β2
dτ.

(15.54) 

The reader should be aware of the change of limits in the latter integral, i.e., a 
transition from .[0,∞) to .[α,∞): the reason for this is that .g(t < α) = 0. Upon 
performing the integrals, we obtain 

6 It is worth noting that each term in the Taylor series of .g(r, t) around .α = 0 should be multiplied 
by a Heaviside function of the form .H(t). Nevertheless, we can guarantee that t is always greater 
than zero within the physical system, yielding to .H(t) = 1 (see Eq. (A.102)).



15.1 The Rate Coefficient 469

.

f ∞

0
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τ e−τ 2/4t

2
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πt3

)
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= e−α2/4t
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√
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√
D erfc

(
α√
4t

(

β
B

−
β exp

⎡

⎣
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(
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⎦erfc
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⎝
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Asph

√
D√

4t

⎞

⎠

Asph

√
D
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(15.55) 

Now, from the last mathematical solution, we must work only with the physically 
congruent part of it. Since for short times the function must be convergent, we must 
get rid of every term leading to an indeterminate result at .t → 0, yielding to 
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f ∞

0

(

τ e−τ 2/4t

2
√

πt3

)

dτ =
Asph

√
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(
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⎠

Asph
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D
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(15.56) 

Finally, by substituting the latter equation into Eq. (15.44), together with the 
definition of all constants, including . A and . B in Eq. (15.53), we arrive at  

. 

Q(r, t) = 1 − R

r

k

k + 4πRD

{

erfc

(
r − R√
4Dt

(

− exp

[
(4πRD + k)(r − R)

4πR2D

]

×

× exp

[
(4πRD + k)2t

(4πR2)2D

]

erfc

(
r − R√
4Dt

+ 4πRD + k

4πR2
√

D/t

(}

.

(15.57) 

This equation gives us the normal concentration as a function of time and position 
in the presence of an immobile partially absorbing sphere placed at the origin and 
reproduces the correct limiting case, .Q(r → ∞, t) = 1. 

Finally, the Collins-Kimball rate coefficient is calculated by substituting . Q(r, t)

into Eq. (15.5), which gives
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. 

kCK(t) = kQ(R, t) = 4πRD k

k + 4πRD

{

1 + k

4πRD
exp

[

Dt

R2

(

1 + k

4πRD

(2
]

×

× erfc

[√
Dt

R

(

1 + k

4πRD

(]}

.

(15.58) 

There are some interesting limits to analyze in this last equation, which in fact are 
easily obtained if we focus on Eq. (15.57) instead of Eq. (15.58). At large values 
of . k, i.e., .k → ∞, Eq. (15.58) reduces to the density distribution predicted by 
Smoluchowski, Eq. (15.30). If  .k = 0, the diffusing particles and the sphere collide 
elastically. Additionally, the steady-state limit, taking .t → ∞, is given by 

.Q(r) = 1 − k

k + 4πRD

R

r
. (15.59) 

Consequently, substituting this density into Eq. (15.36), the Collins-Kimball rate 
constant results in7 

.kCK = 4πRD k

k + 4πRD
. (15.61) 

For a perfectly absorbing sphere, .k → ∞, . kS is recovered. Now, in terms of 
the Smoluchowski rate constant, Eq. (15.34), the latter formula can be rewritten as 
follows: 

.kCK = kS k

k + kS

. (15.62) 

This formula has a simple physical interpretation: It describes the decrease of the 
Smoluchowski rate constant by the factor 

.
k

k + kS

, (15.63) 

7 Note that the Collins-Kimball rate constant can be derived by using Eq. (5.34). Then, 

.

Q(r, t → ∞) = lim
s→0

sQ(r, s) = lim
s→0

s

[

1

s
− kR

r

e−√
s α

s(β + A
√

sD)

]

= 1 − κR

rβ
,

(15.60) 

where .Q(r, s) is substituted by Eq. (15.41). The latter equation is actually Eq. (15.59), which  
unambiguously leads us to Eq. (15.61).
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which is the trapping probability of a particle that starts from the surface of the 
disk. In other words, if the Smoluchowski rate constant alone stands for the first 
encounter of a Brownian particle with a perfectly absorbing sphere, in the Collins-
Kimball system, because the particle has a probability of not being trapped by 
the partially absorbing sphere in its first encounter, the latter factor stands for the 
trapping probability for a particle that starts from the surface of the sphere. 

Finding the corresponding . κ associated with . k is an important task because the 
trapping rate constant provides the proportionality between flux and concentration. 
Multiplying the definition of the partially absorbing boundary, given in Eq. (4.11), 
by the area and equating it with Eq. (15.36), results in (see Eq. (15.5)) 

.k = Aκ, (15.64) 

where A is the area of the partially absorbing surface, . k its rate constant, and . κ its 
trapping rate. Now, we can write Eq. (15.62) in terms of its trapping rate coefficient 
. κ , using  Eq. (15.64), namely, .k = κ Asph, so that 

.kCK = kS κ Asph

kS + κ Asph

, (15.65) 

where, again, .Asph is the area of the sphere. 
In the following section, we will address the problem of diffusion through 

a reflective sphere with absorbent circular patches uniformly distributed on its 
surface by means of the Collins-Kimball rate constant. Some of the results obtained 
for this system, besides having a large number of applications, are surprisingly 
counterintuitive. 

15.2 Berg-Purcell Formula: The Patchy Sphere 

Berg and Purcell studied chemotaxis8 and considered the trapping of diffusing 
particles by . N small perfectly absorbing circular disks of radius a, which are 
randomly and uniformly distributed over the surface of a perfectly reflecting sphere 
of radius R, where .R << a (see Fig. 15.1). It is important to keep in mind that 
the Hill-Berg-Purcell constant rate is computed for an absorbing disk with radius a 
placed on a flat reflecting surface. To obtain the rate constant for . N small perfectly 
absorbing circular disks on the surface of a reflecting sphere, we use the Collins-

8 Chemotaxis is referred to as the biological phenomenon in which molecules or organisms, e.g., 
cells, bacteria, and fungi, move in response to the gradient of a chemical substance in their 
environment. For instance, during an immune response, white cells utilize chemotaxis to detect 
and eliminate invading pathogens. 
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Kimball formula, Eq. (15.61). In this formula, the trapping efficiency is regulated 
by . k. 

On one hand, the trapping efficiency of Eq. (15.61) is regulated by . k. On the  
other hand, regarding the patchy sphere, the trapping efficiency would be given by 
the . N absorbing disks. Then, substituting the Hill-Berg-Purcell rate constant for . N
perfectly absorbing circular disks of radius a, .NkHBP = 4DaN, into the Collins-
Kimball formula, leads to the Berg-Purcell (BP) formula 

.

kBP = NkSkHBP

NkHBP + kS

= 4πDRaN

πR + aN
.

(4.23) 

According to this formula, when . N is small, .aN << R, the rate constant is equal to 
the sum of the rate constant of . N non-interacting perfectly absorbing disks, . 4DaN =
kSN (see Eq. (4.22)). In the opposite limiting case, .aN >> R, diffusing particles are 
trapped by the patchy sphere as if it were perfectly absorbing, .4πRD = kS . 

Now, let’s find a relation between .kBP and its related . κBP . Using  Eq. (15.64), this  
relation between the rate constant and its trapping rate coefficient is 

.kBP = Asph κBP , (15.66) 

where .Asph is the area of the patchy sphere. Substituting Eq. (4.23) in this last 
formula and the area of the sphere .Asph = 4πR2, it becomes 

.
4πDRaN

πR + aN
= 4πR2 κBP . (15.67) 

Solving Eq. (15.67) for . κ under the approximation .aN << R and using the 
definition of the fraction occupied by the disk results in 

.σ = a2N

4R2
. (15.68) 

Then, setting .N = 1, we obtain 

.κBP (σ ) = 4D

πa
σ = 2D

πR

√
σ . (15.69) 

This last expression is a simple approximate formula that works for a small disk 
compared to the size of the sphere. In fact, this expression gives only the leading 
term of the small-.σ -expansion of the dependence of .κ(σ ) over the entire range, i.e., 
.0 ≤ σ ≤ 1. The formula can be expressed in a more general way in to make it 
applicable for a bigger disk or cap, namely,
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.κ(σ ) = 4D

πa
σf (σ) = 2D

πR

√
σf (σ). (15.70) 

Among other techniques, a computer-assisted boundary homogenization approach 
can be used to determine the function .f (σ). In Sect. 16.1, we will thoroughly 
examine this procedure. 

15.3 Zwanzig-Szabo Formula: The Partially Absorbing 
Circular Disk and Diffusing Interference Between 
Binding Sites 

A similar formula to the Collins-Kimball formula can be derived for a partially 
absorbing circular disk of radius a, with rate constant . κ , on a reflecting flat surface. 
This formula is known as the Zwanzig-Szabo rate constant and is given by 

.kZS = κHBP κAdisk

κHBP + κAdisk

= 4πa2Dκ

4D + aπκ
, (15.71) 

where .0 ≤ κ ≤ 1 and .Adisk = πa2 is the area of the disk. Then, when .κ → ∞ the 
perfectly absorbing circular disk, .κHBP , is recovered, Eq. (4.22). In the opposite case, 
when .κ → 0, the diffusing particles and the disk collide elastically and the system 
becomes a perfectly reflecting wall. In a similar way to the Collins-Kimball formula, 
the Zwanzig-Szabo formula, Eq. (15.71), has a simple physical interpretation: It 
describes the decrease of the Hill-Berg-Purcell rate constant by the factor 

.
πaκ

4D + aκπ
. (15.72) 

Unlike the Collins-Kimball formula, which is an exact result, Eq. (15.71) provides 
a very good approximation.9 Additionally, we can compute the rate constant for . N
partially absorbing circular disks, each of radius a, on the surface of a perfectly 
reflecting sphere of radius R. This process is carried out by substituting . N times 
Eq. (15.71) into Eq. (15.62), yielding to 

9 The Zwanzig-Szabo formula, Eq. (15.71), is originally derived as the first member of a series of 
successively more accurate approximations. Moreover, it is reasonably accurate for all values of . κ
with a maximum deviation of less than . 4%.
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.

kZSPA = Adiskκ kHBPkS

kHBPkS + Adiskκ(kS + κNkHBP )

= 4πDRκa2N

4DR + aκ(aN + πR)
.

(15.73) 

Naturally, the later expression reduces to Eq. (4.23) at the limit .κ → ∞ and 
becomes null when .κ = 0. 

Up to now, all presented formulas were derived on the assumption that there are 
no competitive effects between absorbing patches. For instance, the BP formula 
is obtained considering that the size of a single receptor is much smaller than 
the typical distance between neighboring sites. According to Brownian dynamics 
simulations, Eq. (4.23) predicts good results at low coverage; however, when 
approximately .1/4 of the spherical surface is covered by receptors, simulations are 
about .5% higher than the results obtained with the BP formula. Based on these 
observations, we can impose an upper threshold to determine the appropriateness of 
using the BP formula. 

In order to consider the effect of interference between perfectly absorbing sites 
embedded a spherical reflecting surface, Zwanzig proposed a modification to the 
Berg-Purcell formula by including a term depending on the factor .1 − σ , which 
represents the total area of the sphere minus the area occupied by the patches, i.e., 
free reflecting surface (see Eq. (15.68)), leading to 

.kZint = kS

Na

Na + πR(1 − σ)
. (15.74) 

Later, Zwanzig’s modification was used by Zwanzig and Szabo to consider partially, 
instead of perfectly, absorbing sites. With the intention of outlining a clear path 
toward determining such rate constant, below is a comprehensive examination of 
the original derivation by Zwanzig and Szabo. 

The primary objective is to derive the rate coefficient, given generally by 
Eq. (15.5), for  . N partially absorbing disks experimenting the neighbor interference 
effect, embedded on the reflecting sphere. This task shall be accomplished by means 
of the Laplace transform and an effective medium approximation. Hence, for an 
observer who is far away from the reflecting sphere with . N partially absorbing disks, 
such arrangement resembles a partially absorbing sphere, i.e., an effective sphere, 
labeled as a system . E with rate coefficient .kE(t). 

In addition, the probability of locating a point that is on a reflecting region when 
randomly picking a place on the spherical surface is determined by .1 − σ , given  
that Eq. (15.68) stands for the probability of locating a point that is in a partially 
absorbing disk. In the vicinity of the chosen point, we construct a disk-shaped region 
and assign it the corresponding BC depending on its location, i.e., either outside or 
inside a partially absorbing disk. The latter and former cases are labeled as system 
system . PA with rate coefficient .kPA(t) and probability of occurrence . σ and system 
. R with rate coefficient .kR(t) and probability of occurrence .1 − σ , respectively. We
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can conclude that the BC for system . R is given by .∂QR(r, t)/∂r
|
|
r=R

= 0, while 
system . PA is to be solved together with the BC .D∂QPA(r, t)/∂r

|
|
r=R

= κQPA(R, t). 
Moreover, since the distant observer calculates the rate coefficient as .kE(t) when 
selecting any region, which also has Eq. (15.36) as a BC, then such solution can be 
written as an average of . PA and . R cases, yielding to the effective medium condition, 
namely, 

.kE(t) = σ kPA(t) + (1 − σ)kR(t). (15.75) 

Now, it is worth noting that the effective sphere, system . E, corresponds exactly to the 
Collins-Kimball problem, presented in Sect. 15.1.2, whose rate coefficient is given 
by 

.kE(t) = 4πR2D
∂QE(r, t)

∂r

|
|
|
|
r=R

, (15.76) 

or by Eq. (15.58), once we have substituted .QE(r, t) as in Eq. (15.57). Furthermore, 
for system . PA, the BC outside the disk is chosen to be the same as for system . E, 
leading to 

.
∂QPA(r, t)

∂r

|
|
|
|
r=R

= ∂QE(r, t)

∂r

|
|
|
|
r=R

outside the disk, (15.77) 

while the BC inside the disk reads 

.D
∂QPA(r, t)

∂r

|
|
|
|
r=R

= κQPA(R, t) inside the disk. (15.78) 

Thus, we can formulate an expression for the rate coefficient of system . PA as 
follows: 

.kPA(t) = (4πR2 − πa2)
∂QE(r, t)

∂r

|
|
|
|
r=R

+
f

in
JPA(R, t) · n̂ dA, (15.79) 

in which the first term stands for all contributions outside the disk-shaped region 
where the behavior of the effective sphere is dominant and the second term is to 
be integrated over the disk area. We can carry out the same process for system . R, 
resulting in10 

.kR(t) = (4πR2 − πa2)
∂QE(r, t)

∂r

|
|
|
|
r=R

. (15.80) 

10 Note that Eq. (15.80) has one term only because the BC inside the disk requires null flux.
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By substituting Eqs. (15.79) and (15.80) into Eq. (15.75), we find 

.kE(t) = kE(t) − πa2
∂QE(r, t)

∂r

|
|
|
|
r=R

+ σ

f

in
JPA(R, t) · n̂ dA, (15.81) 

meaning that 

.πa2
∂QE(r, t)

∂r

|
|
|
|
r=R

= σ

f

in
JPA(R, t) · n̂ dA. (15.82) 

Furthermore, we require a fourth case in which a single partially absorbing disk is 
placed on a reflecting sphere, say a system . S with rate coefficient . kS. At the end of 
the section, the reader will see that we only need to solve cases . E and . S. In the case 
of a single receptor, system . S, the BCs are 

.

D
∂QS(r, t)

∂r

|
|
|
|
r=R

= κQS(R, t) inside the disk,

∂QS(r, t)

∂t

|
|
|
|
r=R

= 0 outside the disk,

(15.83) 

as we would expect. 
The next step is to find .JPA(R, t), which will then allow us to establish a relation 

between the flux of systems . E and . S, i.e., .JE(r, s) and .JS(r, s), respectively. This 
process can be done more simply when using the Laplace transform. As we know, 
the Laplace transform of the diffusion equation is given by Eq. (15.7), which can be 
expressed as 

.sQ(r, s) − 1 = D∇2Q(r, s). (15.84) 

Therefore by using such equation, as well as the BC for the chosen system, the 
problem admits an exact solution. Additionally, given that the solution of every case, 
. E, . PA, . R, or . S, differs only in the BCs that they satisfy, this suggests a linear relation 
between solutions, namely, 

.QPA(r, s) = μSQS(r, s) + μEQE(r, s) + μC, (15.85) 

where . μS, . μE, and . μC are constants to be determined. By replacing the latter 
equation into Eq. (15.84), we find 

. s (μSQS(r, s) + μEQE(r, s) + μC) − 1 = D∇2 (μSQS(r, s) + μEQE(r, s) + μC)

(15.86) 

and after recursively using the linearity of Laplace’s equation, we are led to
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.1 − sμC = μS + μE. (15.87) 

Moreover, Eq. (15.85) implies that11 

.JPA(r, s) = μSJS(r, s) + μEJE(r, s), (15.89) 

and since .JA = JE outside of the disk, and also given that .JS = 0, we conclude that 
.μE = 1. On the contrary, inside the disk, we require that 

.

JPA(R, s) = κQPA(R, s)

= κ (μSQS(R, s) + μEQE(R, s) + μC) ,

(15.90) 

or 

.μSJS(R, s) + μEJE(R, s) = κμSQS(R, s) + μEJE(R, s). (15.91) 

By comparing these last two equations, we arrive at 

.μEJE = κ (μEQE(R, s) + μC) . (15.92) 

Thus, after performing various algebraic rearrangements, Eq. (15.85) can be 
formulated as follows: 

.QPA(r, s) = QE(r, s) +
(

QE(R, s) − JE(R, s)

κ

(

(sQS(r, s) − 1) . (15.93) 

The flux for system . PA can be obtained from the latter equation by taking the 
derivative with respect to r , yielding 

.JPA(r, s) = JE(r, s) +
(

QE(R, s) − JE(R, s)

κ

(

sJS(r, s). (15.94) 

By substituting Eq. (15.94), following the evaluation at the boundary, into 
Eq. (15.82), we obtain12 

11 Be aware that 

.Ji(R, t) = D
∂Qi(r, t)

∂r

|
|
|
|
r=R

. (15.88) 

The minus sign that usually appears in the computation of the probability flux, for example, in 
Eq. (15.1), becomes positive after making the scalar product with the unit normal vector . ̂n. 
12 Notice that Eq. (15.82) is originally written in real space, i.e., in terms of t . Nevertheless, after 
taking the Laplace transform of the entire equation, the result is an equation having the same 
mathematical structure.
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. 

πa2JE(R, s) = σ

f

in

[

JE(R, s) +
(

QE(R, s) − JE(R, s)

k

(

sJS(R, s)

]

dA

= σ

f

in
JE(R, s) dA + σs

(

QE(R, s) − JE(R, s)

k

(f

in
JS(R, s) dA,

(15.95) 

which, after integration over the area of a single receptor, simplifies to 

.πa2JE(R, s) = πa2σJE(R, s) + σs

(

QE(R, s) − JE(R, s)

κ

(

kS. (15.96) 

This leads to 

.(1 − σ)πa2JE(R, s) = σs

(

QE(R, s) − JE(R, s)

k

(

kS. (15.97) 

Furthermore, the solution in Laplace space for the propagator regarding the 
Collins-Kimball problem in Sect. 15.1.2 can be expressed more generally in terms 
of the flux evaluated at the spherical surface, that is, 

.QE(r, s) = 1

s
+ JE(R, s)R2

r(D + R
√

sD)
e
√

s
D

(R−r), (15.98) 

in which we have redefined .Q(r, s) as .QE(r, s), since system . E corresponds to 
the Collins-Kimball system, i.e., a partially absorbing sphere. The last equation 
naturally yields to Eq. (15.40), and, when evaluated at .r = R, it gives us a relation 
between .QE(R, s) with .JE(R, s), namely, 

.QE(R, s) = 1

s
+ JE(R, s)R

D + R
√

sD
. (15.99) 

Then, by substituting Eq. (15.99) into Eq. (15.97) and solving for .JE(R, s), we arrive  
at 

.JE(R, s) = kSσ

πa2(1 − σ) − kSsσ

κ
− kSRsσ

D + R
√

sD

. (15.100) 

Thereafter, we substitute .σ = Na2/4R2 solely in the numerator and take the limit 
at .s → 0, intending to outline a large time description, and, for simplicity purposes, 
we write the result in reciprocal form, leading to13 

13 It is important to pinpoint that the trapping efficiency is now controlled by the . N partially 
absorbing disks, meaning that . kS is replaced by Eq. (15.71).
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.
1

kZS
= 1

4aDN
+ 1

πa2κN
− σ

4DaN
− σ

πa2κN
. (15.101) 

Ultimately, by means of Eqs. (15.61) and (15.68), we rewrite the last term of the 
latter equation, that is, 

.
1

kZS
= 1

4aDN
+ 1

πa2κN
− σ

4DaN
+ 1

4πDR
− 1

kCK

. (15.102) 

The solution must simplify to the Smoluchowski formula at the limit .κ → ∞. 
Therefore by neglecting the last term, we arrive at the Zwanzig-Szabo formula 

.
1

kZS
= 1

kS

+ 1 − σ

NkHBP

+ 1

NκAdisk

, (15.103) 

where we have used Eqs. (4.22), (15.34), and .Adisk = πa2. 
Finally, it is worth noting that in the Berg-Purcell, Collins-Kimball, and Zwanzig-

Szabo formulas, the absorbing circular disk can be replaced by an absorbing or 
partially absorbing shape (spot), by means of .kDBW , given by 

.kDBW =
(
25AP

π2

(1/3

D, (14.126) 

where A and P are the area and perimeter of the selected absorbing site. 
In the following subsections, we will describe more systems for which these rate 

constants are known. Moreover, it should be noted that Eq. (15.103) is derived using 
a perturbative theory in . σ . In Sect. 16.1, we shall demonstrate that utilizing . 

√
σ

yields to significantly more suitable results. 

15.4 Chemoreceptors over a Spherical Cell 

Cell intercommunication (CI), also known as cell signaling, can be triggered by 
several factors, including physical, chemical, and biological signals. In a vast 
number of CI processes, the key ingredient in starting a signaling cascade that 
ultimately affects cell behavior is a ligand, i.e., a small protein or ion that binds 
to a specific chemoreceptor, which is a specialized sensory receptor embedded in 
cell membranes, e.g., the membranes present in sensory neurons or immune system 
cells. More precisely, the ligand-receptor interactions allow cells to communicate 
with each other and respond to different environmental conditions, where chemore-
ceptors are essential for the detection and response to chemical stimuli and ligands 
are the primary input in the process. 

The ligand-receptor interaction over a spherical cell can be roughly modeled 
using a reflecting sphere of radius R centered at the origin with . N perfectly absorbing
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circular patches, each of radius a, embedded on its surface. Within the framework of 
this model, the reflecting sphere, absorbing patches, and constant concentration of 
Brownian particles at infinity will take the place of the cell, the chemoreceptors, and 
the concentration gradient of ligands, respectively. This description is actually the 
Berg-Purcell patchy sphere, from which we have obtained the rate constant, namely, 

.kBP = 4πDRaN

πR + aN
. (4.23) 

As previously mentioned, the units of the rate constant are volume per unit time, 
meaning that, in this case, it would be describing the volume of ligands per unit time 
binding into chemoreceptors. Therefore, a large value of . k indicates a remarkable 
trapping efficiency of ligands. Moreover, the more ligands that can be captured with 
the least possible absorbing area, the better the configuration of chemoreceptors 
regarding geometry and distribution. In preparation for further exploration of this 
topic, let us present a mental experiment to be able to understand the counterintuitive 
results behind Eq. (4.23). 

15.4.1 A Counterintuitive Experiment: Circular and Elliptical 
Absorbing Patches 

Suppose we have two spheres of the same radius. One of the spheres has one 
reflective and one absorbing hemisphere, meaning that 1/2 of its surface is capable 
of absorbing ligands. In contrast, the second sphere has tiny, uniformly distributed 
absorbing circular patches on its reflecting surface, so that, combined, they occupy 
minimal on the sphere, say four hundredths of it. This arrangement is represented in 
Fig. 15.2 and the related question is: Which configuration can absorb more ligands 
if they are immersed in a fluid with a specific concentration gradient? The answer 

Fig. 15.2 Schematic representation of a sphere having one reflecting and one absorbing hemi-
sphere (green cap) on the left-hand side and a reflecting sphere with . N absorbing circular receptors 
(red spots) embedded on its surface on the right-hand side. Even though on .1/2 of the sphere on 
the left is an effective absorbent area, which is much larger than the .1/400 effective absorbing area 
associated with the sphere on the right, both configurations are able to bind the same amount of 
molecules in their environment
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seems to be obvious, as the first sphere has a bigger absorbing surface than the 
second one. Nevertheless, upon close examination of this question, we come to a 
different conclusion: From Eqs. (4.23) and (15.34), we see that the rate constant 
of the Berg-Purcell patchy surface, . kBP , is smaller than the Smoluchowski rate 
constant, . kS , by a factor of .1 + πR/Na. Moreover, the number of circular patches 
needed to equalize the rate constant of an absorbing hemisphere, i.e., .kS/2, is given  
by 

.N∗ = R

a
π, (15.104) 

a number that depends on the ratio of the radius of the sphere to the radius of 
the chemoreceptors. Now, on determining who many circular patches we need, we 
must provide specific values to R and a: It is worth noting that the specific size of 
a chemoreceptor can vary among different organisms and specific receptor types. 
However, as an approximation and useful example, let us define .R = 1μm and 
.a = 2 nm. This cell size is very similar to that found in prokaryotic cells, e.g., 
Escherichia coli (E.coli), and in spherically shaped bacterium, e.g., Staphylococcus 
aureus (S. aureus), a useful member of the microbiota of the human body (and 
sometimes an opportunistic pathogen, which can cause infections). Regarding the 
chemoreceptors, these are modeled to be about 500 times smaller than the cell 
membrane. In order to have a clearer picture of the difference in size between these 
two components, we would have to increase the size of the cell to that of an average 
bowling ball (21.6 cm) to see chemoreceptors in the size of a grain of salt. 

Using these values, we see that the number of patches needed to equalize 
the absorbing hemisphere is .N∗ ≈ 1,570 and the ratio of the total area of the 
chemoreceptors to the area of the sphere is .σ = a2N∗/4R2 ≈ 1.16 × 10−3. 
Additionally, we are able to compute the distance between neighboring sites through 
.(4πR2/N∗)1/2 ≈ 0.089μm, which is about 45 times larger than the chemoreceptor 
radius, allowing us to neglect the interference or competitive effects between 
absorbing patches and consider the binding to a single receptor to be reaction-
limited. Under these assumptions and scales, we find that the rate constant to . N
absorbing patches over a spherical cell can be described by Eq. (4.23), namely, 

.kBP−DBW = NkSkDBW

NkDBW + kS

, (15.105) 

where we have replaced the Hill-Berg-Purcell rate constant, .kHBP , with the more 
general rate constant derivation for an arbitrary-shaped absorbing patch with area 
A and perimeter P placed on a reflecting plane. There is an interesting feature 
of the latter result: The strong dependence on area and perimeter of Eq. (14.126) 
is  passed on to Eq. (15.105). This means that if we restrict the area of a single 
chemoreceptor to that obtained for a circular patch, the best chemoreceptor would 
be the one with the largest perimeter. Let us compare the number of chemoreceptors 
needed to equalize half the Smoluchowski rate constant when using circular patches,
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i.e., .N∗ ≈ 1, 570, to what we obtain when using elliptical absorbing sites, each with 
semi-major axis . a1, semi-minor axis . a2, and eccentricity . ε. For this purpose, we 
substitute Eq. (14.114), i.e., 

.kellipse = 2πDa1

k(ε)
(14.114) 

where .k(ε) is given by 

.k(ε) =
f π/2

0

dθ
√

1 − ε2 sin2 θ
, (14.115) 

into Eq. (4.23), resulting in 

.kBPE = 4πDR N a1
√
1 − ε2

Na1
√
1 − ε2 + 2R k(ε)

. (15.106) 

Thus, in the process of making .kBDE = kS/2 and solving for . N, the value of  . N
satisfying the absorbing hemisphere, we find 

.Nε∗ = 2k(ε)R

a1
√
1 − ε2

, (15.107) 

which reduces to Eq. (15.104) at the limit .ε → 0, since the first term in the 
Taylor series of .(1 − ε2 sin2 θ)−1/2 is 1. Now, by imposing the area of a single 
elliptical receptor, .Aellipsoid = πa21

√
1 − ε2, to be equal to that of a circular patch, 

.Adisk = πa2, we are  led to  .a1 = a(1 − ε2)−1/4. Consequently, using the same 
values for R and a defined above, we obtain .Nε∗ ≈ 1, 348, denoting that the use of 
elliptical chemoreceptors reduces the area occupied by patches on the spherical cell 
membrane by approximately 15. %. Moreover, regarding the ratio of . N∗ to . Nε∗, we  
find 

.
N∗
Nε∗

= 2k(ε)

π(1 − ε2)1/4
, (15.108) 

a number that is always smaller than 1. 
Overall, a circular chemoreceptor distribution is as good as a perfectly absorbent 

hemisphere, and it can be even better if elliptical receptors are considered instead. 
Furthermore, the most effective geometry will be the one with the largest perimeter 
once the area of a single binding site has been restricted. In the following section, 
study the effective rate coefficient and mean first-passage time of a sphere with an 
absorbing cap.
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15.5 Reaction Between Charged Particles: 
Debye-Smoluchowski Formula 

In Sects. 15.1.1 and 15.1.2, a theory on diffusion-limited chemical reactions has 
been described for two situations: (a) where the encounter pair reacts much more 
quickly than it forms and (b) where these rates are of equivalent magnitude. 
Moreover, the fact that one of the reacting particles was stationary was a crucial 
simplification. In this section, we will show that an interaction potential between the 
diffusing reactant particles has an important effect on the flux current and the rate 
constant. As an example, we will quantify this effect for a Coulomb-type interaction. 
Furthermore, we will now study the case in which the two particles, or molecules, 
are diffusing. 

15.5.1 Debye-Smoluchowski Equation 

To analyze the evolution of the propagator of a reacting pair of particles, we need 
information on its relative motion. Let . ri and . rj denote the position of particles i and 
j at time t , with .C = C(ri , rj , t |ri (0), rj (0)) being the propagator. This propagator 
is the joint probability density for finding particle i at . ri and particle j at . rj at time 
t . We will show that it is possible to decompose this concentration into two parts, 
only one of which describes the relative motion of the reactants. The evolution of . C
is governed by the Smoluchowski equation, Eq. (6.25), then 

.
∂C
∂t

= [Li (ri |rj ) + Lj (rj |ri )
]

C, (15.109) 

where 

.Li (ri |rj ) ≡ Di∇ri ·
[

e−βU(rj −r i ) ∇ri e
βU(rj −r i )

]

. (15.110) 

.β = 1/kβT , where . kβ is the Boltzmann’s constant and T is the absolute 
temperature. The operator . Lj is obtained interchanging i by j in this last definition, 
while . Di and . Dj are the diffusivity of each reacting particle. Equation (15.109) is 
to be solved subject to 

.C(ri , rj , t |ri (0), rj (0)) = δ(ri − ri (0)) δ(rj − rj (0)). (15.111) 

To reduce the problem to one involving relative motion, the coordinate .(ri , rj ) is 
replaced by .(r,R) defined as follows: 

.r ≡ rj − ri , (15.112)
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and 

.R ≡ Djri + Dirj

Di + Dj

, (15.113) 

respectively. The coordinate . R is analogous to the center of mass but weighted by 
diffusion constants rather than by particles masses. Moreover, . r is the coordinate 
that accounts for the relative motion of the two particles. In these variables, we 
observe that 

.ri − R = −Di

D
r, (15.114) 

and 

.rj − R = Dj

D
r, (15.115) 

where .D = Di + Dj . By using the chain rule, the reader can verify the following 
relation between the corresponding operators: 

.∇ri = Dj

D
∇R − ∇r, (15.116) 

and 

.∇rj = Di

D
∇R + ∇r. (15.117) 

By substituting Eqs. (15.116) and (15.117) into Eq. (15.109), after some manipu-
lations, we obtain the Smoluchowski equation in terms of coordinates .(r,R), which 
is given by 

.
∂C
∂t

=
[

DR∇2
R + L(r)

]

C, (15.118) 

where 

.DR = DiDj

Di + Dj

, (15.119) 

and .C = C(r,R, t |r(0),R(0)). Since the first term on the right-hand side of this last 
equation stands for standard diffusion, the second operator describes the evolution 
of the relative motion in terms of the interactions of the two diffusing particles. 
The motion with respect to variables . r and . R is independent, and therefore, the 
propagator can be expressed by means of two functions, each depending on only 
one of these variables, namely,



15.5 Reaction Between Charged Particles: Debye-Smoluchowski Formula 485

.C = c(r, t |r0)g(R, t |R0). (15.120) 

Substituting this factorization into Eq. (15.118) leads to 

.
∂g(R, t |R0)

∂t
−DR∇2

Rg(R, t |R0) = ∂c(r, t |r0)
∂t

−L(r)c(r, t |r0) = 0. (15.121) 

Now, we are interested in the evolution of the relative motion of the particles, 
given by the description of the propagator .c(r, t |r0) and its differential equation, 

.
∂c(r, t |r0)

∂t
= L(r)c(r, t |r0). (15.122) 

For the sake of simplicity, let us write the latter equation as Eq. (6.16), in terms of 
the normalized concentration, by means of Eq. (15.4), yielding 

.
∂Q(r, t |r0)

∂t
= D ∇ · [∇Q(r, t |r0) + Q(r, t |r0) β ∇U(r)] , (15.123) 

the so-called Debye-Smoluchowski equation. 

15.5.2 Steady-State Rate Constant 

If we want to include the Coulomb interaction between the reactant particles, then 
the potential energy of particles placed at . ri and . rj having charges . zi and . zj , 
respectively, is given by 

.U(ri , rj ) = zizj e
2

4πε0ε|rj − ri | = βrc

4πε0|r| , (15.124) 

where e is the absolute electron charge, . ε0 the permittivity of the free space, . ε the 
relative permittivity of the solvent, and . rc the Onsager distance .zizj e

2/εβ, i.e., the 
distance where the Coulomb energy is . β. Over separations less than . rc, the Coulomb 
interactions dominate diffusion. 

Substituting Eq. (15.124) into Eq. (15.123), assuming angular independence at 
steady stated, reads 

.
1

r2

∂

∂r
r2 D

[
dQ(r)

dr
− Q(r)

rc

r2

]

= 0. (15.125) 

Integrating over r leads to 

.r2
[
dQ(r)

dr
− Q(r)

rc

r2

]

= A. (15.126)
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To solve this canonical first-order linear differential equation, we will use the 
integrating factor method. To such end, let us write Eq. (15.126) as follows: 

.
dQ(r)

dr
+ P(r)Q(r) = Q(r), (15.127) 

where 

.P(r) = − rc

r2
, (15.128) 

and 

.Q(r) = A
r2

. (15.129) 

By multiplying Eq. (15.127) by the integrating factor .e
f

P(r)dr , we find that its 
general solution is 

.Q(r) = e− f P(r)dr
(f

Q(r)e
f

P(r)dr dr

(

+ B e− f P(r)dr . (15.130) 

By substituting Eqs. (15.128) and (15.129) in this last expression, performing the 
integrals over r , and after some manipulations, we find 

.Q(r) =
[

B − A
rc

exp
( rc

r

)]

exp
(

− rc

r

)

. (15.131) 

To set the boundary conditions, let us reduce our problem to one in which there 
is a reaction of a species i with a vast excess of j ; then, it can be considered as one 
where the j species are statistically independent of each other. As the density . Q(r)

at large distances of separation may be considered constant, then, 

.Q(r)

|
|
|
|
r→∞

= 1. (15.132) 

When encounter particles i and j react much faster than they come together, 

.Q(R) = 0, (15.133) 

where R is the radius of particle i. Finally, when substituting Eqs. (15.132) 
and (15.133) into Eq. (15.131), this yields 

.Q(r) =
1 − exp

( rc

R
− rc

r

)

1 − exp
( rc

R

) . (15.134)
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The flux can be calculated by means of Eq. (6.15), which in spherical coordinates 
reads 

.J = D
dQ(r)

dr
+ β Q(r)

dU(r)

dr
. (15.135) 

From this last equation, we can obtain the current flux at R, which for the normalized 
concentration is the rate constant, namely, 

. k = 4πR2 D

[
dQ(r)

dr
+ β Q(r)

dU(r)

dr

]

r=R

= 4πrc D
[

exp
( rc

R

)

− 1
]−1

.

(15.136) 
It is worth noting that repulsive forces reduce the rate of reaction, while attractive 
forces conversely increase such rate of reaction above the Smoluchowski values. 
This theory is applicable to ionic reactions in solution. 

15.6 Concluding Remarks 

By means of boundary homogenization, one can replace non-uniform boundary 
conditions on a surface with an effective uniform partially absorbing boundary 
condition with the proper effective trapping rate. This approach reduces the 
initial two- or three-dimensional problem with non-uniform boundary conditions 
to an effective one-dimensional problem, significantly simplifying the study of the 
problem. 

The replacement is based on the observation that at distances that are sufficiently 
far from the boundary, the fluxes are uniform and directed normal to it. The trapping 
rate entering the radiation boundary conditions on these surfaces should be chosen 
so that it correctly reproduces the steady-state fluxes far away from the surface. 
Numerical tests demonstrate good agreement between the rates predicted by the 
theory and obtained from Brownian dynamics simulations for different systems. 
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Chapter 16 
Boundary Homogenization 

More examples of the boundary homogenization technique for two- and three-
dimensional geometrical systems with complex heterogeneous boundaries and 
abrupt geometry changes will be provided in this chapter. 

16.1 Sphere with an Absorbing Cap 

Consider the trapping of diffusing particles by a sphere with an absorbing cap of 
arbitrary size on the otherwise reflecting surface, shown in Fig. 16.1. In this system, 
we will focus on describing the analysis to obtain the rate constant as a function of 
the ratio of the area occupied by the absorbing cap to the total spherical surface, i.e., 
. σ , by means of the so-called computer-assisted boundary homogenization approach. 
This method consists of two primary steps: (a) First, express the trapping rate 
coefficient, . κ , as the product of a dimensional factor, with units of length per unit 
time, and a dimensionless function of the surface ratio . σ , .f (σ); (b) second, find 
a relatively simple expression for this function by approximating the numerically 
computed values of the trapping rate, .κ = κ(σ ), for different values of . σ . In  
this concluding step, it is desirable for the formula thus obtained to be capable of 
reproducing the behavior throughout the entire range of . σ , namely, .0 ≤ σ ≤ 1. 
Equation (15.70) is an example of such an expression for a sphere with . N perfectly 
absorbing disks. 

For a sphere with an absorbing cap, the theoretical formula is constructed starting 
from the asymptotic behavior for a small cap, for .σ → 0. At this limit, the cap can be 
approximated as a disk, and the theoretical expression should reduce to Eq. (15.69), 
namely, 

.κ(σ )BP = 2D

πR

√
σ . (15.69) 
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Fig. 16.1 Spheres with 
absorbing caps (red) with 
.σ = 0.1, 0.3, 0.5, and 1. This  
last value represents a 
perfectly absorbing sphere. 
Conversely a perfectly 
reflecting sphere is obtained 
when . σ = 0

As mentioned in Sect. 15.2, in order for .κ(σ ) to be applicable over the entire range 
of . σ , it need to be written as 

.κ(σ ) = 2D

πR

√
σ f (σ). (15.70) 

Now, on directing our attention at the limit when .σ → 1, we observe from 
simulations that .κsim(σ )

∣
∣
σ→1 diverges as .1/(1 − σ)3/2. With these two asymptotic 

behaviors, we propose the following formula for the effective rate coefficient: 

.κ(σ ) = 2D

πR

√
σ
1 + A

√
σ − Bσ 2

(1 − σ)3/2
, (16.1) 

where A and B are constants. 
To find the mathematical expression for .κ(σ ) using the computer-assisted bound-

ary homogenization approach, we compute the mean first-passage time (MFPT) 
of a particle diffusing in a spherical layer between two concentric spheres by 
running Brownian dynamics simulations. The system is set as follows: Consider 
an outer perfectly reflecting sphere of radius .Rout and an inner sphere of radius . Rin

(.Rin < Rout ) with an absorbing cap that occupies a fraction . σ of the total spherical 
surface, which is otherwise perfectly reflecting. This configuration is shown in 
Fig. 16.2. 

From Brownian dynamics simulations, the MFPT, .〈tsim(σ )〉, was obtained by 
averaging the first-passage time over .1 × 106 particle trajectory realizations, where 
the initial position of the particle was uniformly distributed over the surface of 
the inner sphere. This MFPT from simulations is compared with its counterpart 
predicted by the theory obtained in Sect. 14.3.5 and given by Eq. (14.82), namely, 

.〈ttheory(Rin)〉 = R3
out − R3

in

3κR2
in

. (14.82)
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Fig. 16.2 Schematic 
representation of two 
concentric spheres with radii 
.Rin and .Rout (.Rin > Rout ). 
The inner reflecting sphere 
has a perfectly absorbing cap 
shown in red, while the outer 
sphere is perfectly reflecting 

Table 16.1 Values of the MFPT .〈tsim〉, obtained from Brownian dynamics simulations and the 
corresponding effective trapping rate .κsim. All values of .κsim are calculated by substituting . 〈tsim〉
into Eq. (16.2). The results are shown for three different values of . σ , .σ = 0.25, 0.5, and 0.75, as a 
function of . Rout

.σ = 0.25 .σ = 0.50 . σ = 0.75

.Rout .〈tsim〉 .κsim .〈tsim〉 .κsim .〈tsim〉 . κsim

0.5 1.5251679 0.519069 1.1968618 1.94954 0.18859636 4.19768 

1.0 3.0101097 0.775166 1.1968618 1.94954 0.42745918 5.45861 

2.0 9.1517757 0.946993 3.7009341 2.34175 1.4142088 6.12828 

3.0 20.977742 1.00106 8.6014151 2.44146 3.3088036 6.3467 

4.0 40.234302 1.02732 16.521454 2.5018 6.4869618 6.37176 

5.0 70.223754 1.02055 28.247285 2.53712 11.194770 6.4018 

6.0 110.16816 1.03478 44.893695 2.53933 17.696684 6.44188 

7.0 165.39188 1.02988 66.699141 2.55376 26.580346 6.40824 

8.0 233.68433 1.03844 94.623539 2.56455 37.505649 6.47014 

Assuming that .〈tsim(σ )〉 = 〈ttheory(r0)〉, and solving this last equation with respect 
to . κ , yields 

.κsim(σ ) = R3
out − R3

0

3〈tsim(σ )〉R2
in

. (16.2) 

For values of .Rout that are not too large, .κ(σ ) is a function of .Rout as stated 
in Eq. (16.2). Nevertheless, as .Rout increases, .κ(σ ) becomes independent of . Rout

approaching its plateau value, which gives us the effective trapping rate we are 
looking for. Table 16.1 displays the .Rout -dependence of .κ(σ ) for .σ =0.25, 0.5, 
and 0.75. The values of .κ(σ ) were calculated from Eq. (16.2). .〈tsim(σ )〉 is obtained 
from Brownian dynamics simulations where diffusivity D and radius .Rin are set 
equal to 1, and the time step is set to .Δt = 10−7. 

Finally, using the plateau value from .κsim(σ ), the best fit to Eq. (16.1), shown  in  
Fig. 16.3, gives us that .A = 2.61 and .B = 3.22. Consequently,
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Fig. 16.3 Plot of trapping rate .σ -dependencies when the starting positions of Brownian particles 
are uniformly distributed over the shell of the inner sphere. Up triangles in red are obtained by 
Brownian simulations. The best-fit formula was determined by fitting these simulation data to 
Eq. (16.3), with .A = 2.61 and .B = 3.22, which accurately described the observed behavior (solid 
line) 

.κ(σ )cap = 2D

πR

√
σ
1 + 2.61

√
σ − 3.22σ 2

(1 − σ)3/2
. (16.3) 

With exception of .σ < 0.05, where the relative error is approximately 6%, this 
formula is accurate within 5% for all values of . σ . 

The effective trapping rate given by Eq. (16.3) can be used to determine the rate 
constant that characterizes the trapping of diffusing particles by a sphere with an 
absorbing cap of any size. Substituting Eq. (16.3) into the Collins-Kimball formula, 
Eq. (15.65), leads to 

.kcap(σ ) = 8πDR
√

σ(1 + 2.61
√

σ − 3.22σ 2)

π (1 − σ)3/2 + 2
√

σ(1 + 2.61
√

σ − 3.22σ 2)
. (16.4) 

When .σ = 1, this rate constant reduces to the Smoluchowski rate constant, 
Eq. (15.34). Conversely, when .σ → 0, for a small disk of radius .a = 2R

√
σ , it  

reduces to Eq. 15.69. 
It is worth remarking that the computer-assisted boundary homogenization 

approach is a very powerful method for simplifying complicated problems, as we 
will see in the remaining sections of the chapter. 

16.2 Absorbing Circular Spot at a Cylinder End Wall 

Modern crystallography and electron microscopy studies have shown that ion and 
metabolite channels of cell and organelle membranes are not perfect cylinders or 
even cylinders with smoothly varying radii. Instead, they are characterized by abrupt
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Reflecting Partially 
absorbing 

x 

Fig. 16.4 Top panel: Schematic representation of a 3D cylindrical tube with radius R and length L, 
with a perfectly absorbing circular disk of radius a placed on the right circular wall. Bottom panel: 
A simplified boundary homogenization one-dimensional model is used to describe the particle 
dynamics in the system with a proper trapping rate coefficient . κ

changes in the water-filled pore radii measured along their central axis. Diffusion in 
these systems can be studied using boundary homogenization. We will show how to 
solve some of these systems in the subsequent sections. 

Consider a point particle diffusing in a cylindrical cavity of radius R and length L 
with a perfectly absorbing circular spot of radius a located in the center of the cavity 
end wall as shown in Fig. 16.4, where .0 < a ≤ R. Initially, at .t = 0, particles are 
uniformly distributed over the cavity cross section at .x = x0, where the x-coordinate 
measures the particle position along the cavity axis and .0 ≤ x0 ≤ L. To study the 
MFPT of the diffusing particles, we apply the boundary homogenization approach 
to replace the non-uniform BCs on the cylinder end wall with an effective partially 
absorbing BC, by properly choosing an effective trapping rate (see bottom panel of 
Fig. 16.4). 

Now, let’s reduce the original problem to a one-dimensional system. The 
concentration of particles satisfies the diffusion equation, more specifically 

.
∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2 , 0 ≤ x ≤ L, (2.16) 

subject to the initial condition .c(x, t = 0|x0) = δ(x − x0), as well as reflecting or 
partially absorbing BCs at .x = 0 and .x = L, 

.
∂c(x, t)

∂x

∣
∣
∣
∣
x=0

= 0, (4.9) 

and 

.D
∂c(x, t)

∂x

∣
∣
∣
∣
x=L

= κ c(L, t), (4.11)
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respectively. Now, we need to find a proper value of . κ such that it replaces the 
non-uniform BCs on the surface for a uniform radiation-type boundary condition, 
Eq. (4.11) (see Fig. 16.4, bottom panel). We know that the leading terms of an 
expansion of . κ are given by Eq. (15.64), namely, 

.k = Aκ. (15.64) 

For this system, . k is the rate constant of a disk, .kHBP = 4Da, and A is the area of 
the cylinder wall, .πR2, consequently, .κ = 4Da/πR2. 

As we know, this formula can be written in a more general form as follows: 

.κ(ν) = 4D

πa
σf (σ) = 4Da

πR2
f (ν), (16.5) 

where .σ = πa2/πR2, and the normalized variable . ϶ is given by .ν = a/R = √
σ , 

.0 < ν ⩽ 1. Berezhkovskii et al., by fitting the dependencies obtained numerically 
for . κ , determined an approximate formula for the trapping rate coefficient by means 
of Eq. (16.5), namely, 

.κBMMS(ν) = 4Da

πR2

[
1 + 1.37ν − 0.37ν2

(1 − ν2)4

]

, (16.6) 

meaning that 

.f (ν) = 1 + 1.37ν − 0.37ν2

(1 − ν2)4
. (16.7) 

The relative error of Eq. (16.6) is less than 1% over the range of .ν < 0.9. 
This formula monotonically increases from 1 at .ν = 0 to infinity as .ν → 1. 
Consequently, .κBMMS monotonically increases from .4Da/πR2 for small a to infinity 
as a approaches R. 

As previously shown, the solution of our boundary value problem, posted by 
Eqs. (4.9) and (4.11), is given in Sect. 5.7. In particular, the MFPT is given by (see 
Eq. (5.156))1 

.〈t (x0)〉 = L2 − x2
0

2D
+ L

κ
. (16.8) 

Substituting .κBMMS(ν), Eq. (16.6), into the latter equation, we arrive at

1 It is worth noting that in Sect. 5.7, we solved the boundary value problem placing the partially 
absorbing boundary at the origin .x = 0 and the reflecting boundary at .x = L. In the present case, 
such boundaries are placed in the opposite way. Then, to express the correct solution, we apply the 
transformation .x0 → L − x0. Consequently, .x0(2L − x0) is mapped to .L2 − x2

0 . 
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Fig. 16.5 The .σ -dependencies of the mean particle lifetime given by Eq. (16.9) with . x0 = L/2
and .L/R = 1, 2, 4, 6, 8, and 10 (solid curves) and obtained from Brownian dynamics simulations 
(symbols). The simulations were averaged over 50,000 trajectories setting the time step at 
.10−6R2/D. The starting positions of the trajectories were evenly distributed over the cavity cross 
section at .x0 = L/2. D was set equal to 1 

.〈t (x0)〉 = L2 − x2
0

2D
+ V

4Daf (ν)
, (16.9) 

where V is the volume of the cylinder. 
To obtain the MFPT when particles are uniformly distributed over the cylinder, 

we have to average over the uniform distribution of the particles’ starting point by 
means of 

.〈t (xu)〉 =

∫ L

0
〈t (x0)〉dx0
∫ L

0
dx0

. (16.10) 

Then, substituting Eq. (16.9) into this last equation leads to 

.〈t (xu)〉 = V

4Da

[
4νL

3πR
+ (1 − ν2)2

1 + 1.37ν − 0.37ν4

]

. (16.11) 

The .ν-dependence predicted by Eq. (16.9) is compared with the values of the 
ratio .4Da〈t (x0)〉/V , which is obtained by from Brownian dynamics simulations 
at .x0 = L/2. In Fig. 16.5, we present a comparison between the theoretical and 
numerical results for different values of ratio .L/R, specifically, 1, 2, 4, 8. As the 
reader can see, the numerical results are in excellent agreement with the theoretical 
predictions. 

Finally, .ν-dependency predicted by Eq. (16.11) is compared with the values 
.4Da〈t (xu)〉/V obtained from Brownian dynamics simulations for .L/R = 10 in
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Fig. 16.6 The .σ -dependencies of the mean particle lifetime given by Eq. (16.11) with . x0 = L

and .L/R = 10 (solid curve) and obtained from Brownian dynamics simulations (symbols). The 
simulations were averaged over 50,000 trajectories, and a time step of .10−6R2/D was used. The 
starting positions of the trajectories were evenly distributed over the entire cylinder. D was set 
equal to 1 

Fig. 16.6. Once again, we emphasize that the theoretical predictions are in perfect 
agreement with the numerical results. 

16.3 Cylinder with Absorbing Stripes 

In this section, we will study the trapping of diffusing particles by a cylindrical sur-
face containing alternating absorbing and reflecting stripes. Figure 16.7 shows the 
unfolded surface area of the cylindrical wall. We use the boundary homogenization 
approach to replace the non-uniform boundary conditions on the tube wall with an 
effective partially absorbing boundary condition. Additionally, we noticed that the 
exact solution for the effective trapping rate, known for a flat striped surface, is still 
an excellent approximation when this surface is rolled into a cylindrical tube. This 
approximation is very accurate for both internal and external problems, where the 
particles diffuse inside and outside the striped tube. 

There is a simple analytical expression for the effective trapping rate for such a 
system, which is valid for all values of the stripe surface ratio. If L and l are the 
period and the width of individual absorbing stripes, respectively, the stripe surface 
fraction, . σ , is given by 

.σ = l

L
, (16.12) 

and the effective trapping rate, as a function of . σ and L, by  

.kMMS(σ ) = πD

L ln
[

1/ sin
(

πσ
2

)] , (16.13)
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Fig. 16.7 Schematic 
representation of an infinite 
plane surface formed by 
equally spaced absorbing 
stripes of length l (red 
stripes), on an otherwise 
reflecting surface (orange 
stripes), with period L l L  

x 

z 

l 

which is the so-called Moizhes-Muratov-Shvartsman formula. 
Once we know the effective trapping rate, we proceed as in the previous section. 

In fact, we will solve two different configurations: when the stripes are oriented (a) 
perpendicular and (b) parallel to the z-axis, as shown on the top panels of Figs. 16.8 
and 16.12, respectively. For each orientation, we study the internal and external 
problems, schematically represented on the top panels of Figs. 16.10 and 16.15, 
respectively. For every configuration, we will calculate theoretical expressions for 
the MFPT using the homogenized boundary approach, and then, we will compare 
these times with the times obtained by Brownian dynamics simulations. 

In our theoretical approach for calculating the MFPT, we make use of the fact 
that the trapping problem in a striped cylindrical tube becomes effectively a one-
dimensional problem after boundary homogenization. Consequently, the internal 
problem is defined as follows: Consider a diffusing point particle in a circular disk 
of radius R bounded by a partially absorbing boundary characterized by a trapping 
rate . κ at R, given by .kMMS(σ ). The external problem is defined as follows: Consider 
a diffusing point particle in the annulus bounded by two concentric circles of radii R 
and .Rout , .Rout > R. The outer circle of radius .Rout is a reflecting one, whereas the 
inner circle of radius R is a partially absorbing one, characterized by a trapping rate 
. κ , given by .kMMS(σ ). This last assertion states that once we roll on the striped plane 
surface to create the cylinder, the same rate constant is applicable. This is the main 
idea behind the application of boundary homogenization to these types of systems. 

As we already proved in Sects. 12.1 and 12.4.2, the MFPTs for such systems are 
given by Eqs. (12.70) and (12.108), namely, 

.〈tin(r0)〉 = 1

4D

(

R2 − r20

)

+ R

2κ
, (12.70) 

and 

.〈tout (r0)〉 = 1

4D

[

2R2
out ln

( r0

R

)

− r20 + R2
]

+ R2
out − R2

2κR
, (12.108)
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respectively, where . r0 is the initial position and D the diffusivity. In these formulas, 
we have to replace . κ for .kMMS(σ ). Explicitly, by substituting Eq. (16.13) into the 
preceding equations, we arrive at 

.〈tin(r0)〉 = 1

4D

(

R2 − r20

)

+ R L

2πD
ln

[
1

sin (πσ/2)

]

, (16.14) 

and 

. 〈tout (r0)〉 = 1

4D

[

2R2
out ln

( r0

R

)

− r20 + R2
]

+
(

R2
out − R2

)

L

2πD
ln

[
1

sin (πσ/2)

]

.

(16.15) 

Moreover, assuming an initially uniform distribution of particles over the entire 
system, and averaging Eq. (16.14) over . r0, we find that 

.〈tinu〉 = R2

8D
+ R L

2πD
ln

[
1

sin (πσ/2)

]

. (16.16) 

Finally, we have obtained all the information needed to determine the range of 
applicability of our hypothesis through the MFPT for both cases, i.e., when the 
stripes are oriented perpendicular and parallel to the z-axis, either for the internal or 
external problem. 

16.3.1 Stripes Perpendicular to the Tube Axis 

A tube with absorbing stripes perpendicular to the tube axis is obtained when the flat 
striped surface is rolled around the x-axis, as in Fig. 16.7. In this case, the system is 
defined by two dimensionless parameters (refer to Fig. 16.8): (a) the stripe surface 

Fig. 16.8 Top panel: 
Schematic representation of a 
3D cylindrical tube with 
radius R and length L, with  
absorbing stripes 
perpendicular to the tube axis. 
Bottom panel: A simplified 
boundary homogenization 
one-dimensional model is 
used to describe the particle 
dynamics in a system with 
. κ = kMMS(σ )

r
 

0 

Partially 
absorbing 

r
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Fig. 16.9 The 
.σ -dependencies of the mean 
particle lifetime given by 
Eq. (16.16) with . r0 uniformly 
distributed and 
.L = R = D = 1 (solid 
curve) and the time obtained 
from Brownian dynamics 
simulations (symbols). The 
simulations were based on 
50,000 trajectories and used a 
time step of .10−6
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Fig. 16.10 Top panel: 
Schematic representation of a 
3D cylindrical tube with 
radius R and length L, with  
absorbing stripes 
perpendicular to the tube axis. 
Bottom panel: A simplified 
boundary homogenization 
one-dimensional model is 
used to describe the particle 
dynamics in a system with 
. κ = kMMS(σ )

fraction, .σ = l/L, and (b) the ratio of the stripe period to the tube radius, namely, 
.L/R. 

Figure 16.9 shows a comparison between the Brownian dynamics simulations, 
when particles are uniformly distributed inside the cylinder, and Eq. (16.16). 
The relative error of the theoretical predictions compared with the result of the 
simulations does not exceed 3%. 

To assess the accuracy for the external problem, we set .L = R = D = 1 and 
.σ = 0.6. The  .Rout -dependencies of the MFPT when .r0 = 0, uniformly distributed 
over L, are shown in Fig. 16.10. The error of the theoretical predictions given by 
Eq. (16.15) (setting .r0 = 0) depends on the difference between R and .Rout . The  
error does not exceed 3% for .Rout ≥ 1.4R, as shown in Fig. 16.11. It is important 
to keep in mind that boundary homogenization is applicable when the distances 
between the boundaries are sufficiently large. 

16.3.2 Stripes Parallel to the Tube Axis 

A tube with absorbing stripes parallel to the tube axis is obtained when the 
flat striped surface is rolled around in the z direction, as in Fig. 16.7. The final
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Fig. 16.11 Mean first-passage time against . σ . Comparison of theoretical prediction, Eq. (16.15) 
(solid curve) with the values obtained from Brownian dynamics simulations (symbols). The 
simulations were averaged over 50,000 trajectories using a time step of .10−6. The initial position 
was set at .r0 = R and uniformly distributed along the z direction over L, when . L = R = D = 1

Fig. 16.12 Top panel: 
Schematic representation of a 
3D cylindrical tube with 
radius R and length L, with  
stripes parallel to the tube 
axis. Bottom panel: A 
simplified boundary 
homogenization 
one-dimensional model is 
used to describe the particle 
dynamics in a system with a 
proper . kMMS(σ )
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configuration is shown on Fig. 16.12. In this case, the tube radius R cannot be 
arbitrary. The periodicity of a tube created from a periodically striped flat surface 
with a period L is only retained when the tube’s radius R satisfies 

.R = nL

2π
, (16.17) 

where n is the number of absorbing stripes, .n ≥ 1. 
When the stripes are parallel to the tube axis, i.e., z-axis, the problem exhibits 

translational invariance in this direction. Consequently, the system is simplified to 
the plane orthogonal to the tube axis, as shown on the left panel of Fig. 16.13. 
Then, to assert the accuracy of the theory, simulations can be performed in two-
dimensional disks. For the internal problem, the simulations were performed within 
a circular disk of radius R, with the inclusion of 1, 2, 3, and 4 identical and equally 
spaced absorbing arcs of length l. The line fraction occupied by the arcs, . σ , is  
equivalent to the stripe surface fraction and can be expressed as
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Fig. 16.13 The left panel depicts a schematic representation of a disk with radius R, while right 
panel illustrates an annulus enclosed by the inner and outer circles with radii of R and .Rout (where 
.Rout > R), respectively, and .n = 3. In the left panel, the line ratio .σ = nl/L = 3l/(2πR) of the 
boundary of the disk is occupied by three identical and evenly spaced absorbing arcs of length l, 
while on the right panel, the same line ratio . σ is occupied by these arcs in the inner circle 

0.0 0.2 0.4 0.6 0.8 1.0

 σ 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

〈t 
in

u〉
 

n = 1 

n = 2 

n= 3 

n = 4 

Fig. 16.14 The .σ -dependencies of the mean particle lifetime given by Eq. (16.16) (solid lines) and 
Brownian dynamics simulations (symbols) for four values of n (1, 2, 3, and 4). The initial values of 
the Brownian dynamics particles were uniformly distributed over the entire disk. The simulations 
were based on 50,000 trajectories and used a time step of .10−6. The radius and the diffusivity were 
set . R = D = 1

.σ = l

L
= nl

2πR
. (16.18) 

The values of the MFPT obtained for different n and . σ are shown in Fig. 16.14, 
where the theoretical predictions (solid lines) are calculated from Eq. (16.16). The  
error of the theoretical predictions does not exceed 3% the value obtained by 
simulations (symbols). Finally, it is worth mentioning that in the case of only one 
absorbing stripe, Eq. (16.16) provides an exact solution. Even though the analysis 
within the boundary homogenization approach is advantageous in terms of its 
simplicity, it is limited by the requirement that the outer circle must be distant 
enough from the inner circle.
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Fig. 16.15 Top panel: 
Schematic representation of a 
3D cylindrical tube with 
radius R and length L, with  
parallel stripes to the tube 
axis. Bottom panel: A 
simplified boundary 
homogenization 
one-dimensional model is 
used to describe the particle 
dynamics in the system with a 
proper . kMMS
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Fig. 16.16 The .σ -dependencies of the first-passage times given by Eq. (16.15) for . Rout = 3
(solid lines) and Brownian simulations (symbols) for .n = 1, 2, 3, and 4. The initial values of the 
Brownian particles were uniformly distributed over the outside boundary, at .Rout . The simulations 
were based on 50,000 trajectories and used a time step of .10−6. The radius and the diffusivity were 
set at . R = D = 1

The external problem of a concentric cylinder with an external perfectly reflect-
ing boundary and a striped internal cylinder, as shown in Fig. 16.15, can be reduced 
to a two-dimensional annuli (see right panel of Fig. 16.13). In such a case, the 
external boundary is a perfectly reflecting circle, while the internal boundary is a 
circle having identical and evenly distributed absorbing arcs along its perimeter. To 
assess the accuracy of the theoretical predictions of the external problem, given by 
Eq. (16.15), we perform Brownian dynamics simulations in annuli that are enclosed 
by the inner circle with a radius R and outer circles of radii .Rout . 

In Fig. 16.16, we show some values for the .σ -dependence of the MFPT by 
setting .Rout = 3. The theoretical prediction given by Eq. (16.15) (solid lines) is 
compared to the results obtained by Brownian dynamics simulations (symbols). The 
theoretical predictions have a relative error of no more than 3% for values of . Rout

greater than or equal to three times the radius R, i.e., .Rout ≥ 3R. This inequality 
sets the criterion for when the boundary homogenization approach is valid for the
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Fig. 16.17 Typical trajectory 
obtained by Brownian 
dynamics simulation. Particle 
starts from the inner circle 
and leaves the systems as 
soon as it touches the 
perfectly absorbing arc for the 
very first time. The absorbing 
arc is .0.2R, which has been 
placed from 0 to 72 degrees, 
.Rout = 2, .D = 1, and  the  
time step .Δt = 10−6, in such  
a way that .

√
2D0Δt ⪡ 1

-2 -1 0 1 2
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external problem in the two-dimensional geometry depicted in Fig. 16.12. When the 
outer circle radius decreases and falls below 3R, the relative error increases rapidly. 

Finally, to gain further insight into the diffusion of a Brownian particle in the 
system, we show a typical realization in Fig. 16.17. When running simulations, we 
take diffusivity .D = 1 and the time step .Δt = 10−6, so that .

√
2D0Δt ⪡ 1. 

The actual particle position . rn is given by .rn = r0 + rran, where . r0 is the former 
position and .rran is a vector of pseudorandom numbers generated with Gaussian 
distribution .(μ = 0, σ = √

2D0Δt). For more details related with Brownian 
dynamics simulations, see Chap. 10. 

Boundary homogenization can be successfully used to find higher moments 
of the MFPT, as well as the particle survival probability, .S(t), and the lifetime 
probability density, .ϕ(t). In Sect. 12.1, we find the formulas for these last two values 
for a particle diffusing in a circular disk with a partially absorbing boundary. When 
the particle’s starting point is uniformly distributed over the disk area, the lifetime 
probability density, in the Laplace space, is given by Eq. (12.60), namely, 

.ϕ(s) =
2κ

√
D I1

(√
s

D
R

)

R
√

s

[

κ I0

(√
s

D
R

)

+ √
sD I1

(√
s

D
R

)] , (12.60) 

where .I0(z) and .I1(z) are the modified Bessel functions. Furthermore, the relation 
between the survival probability and the density of first-passage time, or lifetime 
probability density, is given by Eq. (12.64). 

The survival probability and the density of first-passage time, obtained from the 
simulations of the internal problem in the cylindrical tube of radius .R = L/π with 
stripe line fraction .σ = l/L = 0.2 (n = 2) and two different stripe orientations, 
perpendicular and parallel to the tube axis, are presented in Fig. 16.18. The particle’s 
initial position inside the tube was uniformly distributed in all simulations. The
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Fig. 16.18 Theoretical predictions using the boundary homogenization approach are compared 
with the survival probability .S(t) and its lifetime probability density .ϕ(t) (inset) obtained from 
simulations for the internal problem. The strip surface fraction, in both orientations, were set to . σ =
l/L = 0.2 (.n = 2). The tube radius is given by .R = L/π . The simulation results for perpendicular 
and parallel strip orientations with respect to the tube axis are represented by circles and squares, 
respectively, while the theoretical curves are given by numerically inverting the Laplace transforms 
of .S(t) and .ϕ(t) as  given by Eqs. (12.64) and (12.60), shown as solid lines 

solid curves in this figure represent the Laplace transforms of .S(t) and .ϕ(t), which 
were numerically inverted (the numerical method and the code used is described 
in Appendix 5.A). Again, we found an excellent agreement between theory and 
simulations independent of the stripe orientation. 

Finally, it is worth noting that the boundary homogenization approach, used to 
describe trapping of diffusing particles in a striped cylinder, is not limited to the two 
specific stripe orientations discussed above; it can also be applied to cylinders with 
stripes oriented in an arbitrary direction. 

16.4 Trapping of Particles Diffusing in a Two-Dimensional 
Rectangular Chamber by an Absorbing Strip 

Consider diffusing particles within a two-dimensional rectangular chamber in the 
presence of an absorbing trap, as illustrated in Fig. 16.19. By using boundary 
homogenization, we can reduce the original problem to a one-dimensional system, 
as done in the previous section. Then, we have to solve the diffusion equation in 
one dimension, Eq. (2.16), subject to the BCs of one reflecting and one partially 
absorbing boundary, given by Eqs. (4.9) and (4.11), respectively. The problem 
reduces to finding . κ , such that it replaces the non-uniform boundary conditions (see 
the bottom panel of Fig. 16.19). For our present problem, . κ is known and given by 
the Moizhes-Muratov-Shvartsman formula, Eq. (16.13), where now .σ = w/W and 
.L = W , namely,
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Fig. 16.19 Top panel: 
Schematic representation of a 
rectangular chamber 
characterized by length L and 
width W , which contains an 
absorbing strip of width 
.w ≤ W positioned at the 
center of its right wall. 
Bottom panel: A simplified 
boundary homogenization 
one-dimensional model is 
used to describe the particle 
dynamics in the system with 
the use of a proper . κ
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.kMMS = πD

W ln
[

1/ sin
(

πw
2W

)] . (16.19) 

As we know, the mean first-passage time of the simplified one-dimensional 
model is given by Eq. (5.156). By substituting Eq. (16.19) into (5.156), we have2 

.〈t (x0)〉 = L2 − x2
0

2D
+ LW

πD
ln

[

1/ sin
(πw

2W

)]

. (16.20) 

If we average .〈t (x0)〉 across . x0, using  Eq. (16.10), assuming that all initial 
particle positions within the chamber are equally likely, we arrive at 

.〈tu〉 = L2

3D
+ LW

πD
ln

[

1/ sin
(πw

2W

)]

. (16.21) 

In order to verify the precision of these two equations and determine the 
applicable range of the boundary homogenization approach, we compare the value 
of .〈t (L)〉 predicted by the theory, given by Eq. (16.20), to that obtained through 
Brownian dynamics simulations. Table 16.2 displays the relative error associated 
with our theoretical predictions, which are evaluated for six different values of 
the chamber length, .L/W = 0.25, 0.5, 0.75, 1.0, 2.0, and 3.0, and three values 
of the sleeve entrance width, .w/W = 0.25, 0.5, and 0.75. When the length of 
the chamber is greater than half its width, .L ≥ 0.5W, Eq. (16.20) can accurately 
predict .〈t (x0)〉 with a relative error of less than 3%. However, it is expected to fail 
for shorter chambers, .L < 0.5W, since the derivation of Eq. (16.20) is based on the 

2 Note that in obtaining Eq. (16.20), we have made use  of  the transformation .x0 → L − x0.
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Table 16.2 The relative error in percentages of our approximate analytical expression for the 
MFPT, .〈t (L)〉, from Brownian dynamics simulations. The Brownian simulations were run with 
.N = 200,000 trajectories with starting points uniformly distributed over the chamber wall 
containing the absorbing strip 

. L/W

0.25 0.50 0.75 1.0 2.0 3.0 

.w/W 0.25 8.7807 1.7507 1.9426 1.5900 1.5520 2.2699 

0.50 8.2737 2.2392 1.5170 1.2268 0.9686 0.5592 

0.75 5.7125 2.2721 2.2029 2.1300 1.9823 1.8323 
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Fig. 16.20 The .w/W -dependencies of the mean particle lifetime given by Eq. (16.20) with 
trajectory starting positions evenly distributed over the cylinder wall at .L = 3 .x0 = L = 3 (solid 
curve) and the times obtained from Brownian dynamics simulations (symbols). The simulations 
were based on 200,000 trajectories and used a time step of .10−6. D was set equal to 1 

Moizhes-Muratov-Shvartsman formula for . κ , Eq. (16.19), which was obtained for a 
semi-infinite system. 

The comparison of the theoretical predictions given by Eq. (16.20), when . L =
x0 = 3, with the simulation results is presented in Fig. 16.20. The chart shows an 
excellent correspondence between the theoretical and computational results. 

16.5 Binding Site Hidden in a Tunnel 

In this section, we solve an extension of the problem outlined in the previous section, 
i.e., the trapping of diffusing particles by a hidden binding site hidden in a tunnel, 
as shown in Fig. 16.21. The system consists of a rectangular chamber, .0 < x < L, 
and a tunnel or sleeve, .L < x < L + l. The boundary at .x = L separating these 
parts is partially absorbing and is characterized by the trapping rate . κ and . κ ' from 
the chamber and sleeve sides, respectively. The boundary at .x = 0 is reflecting, 
whereas the boundary at .x = L + l is perfectly absorbing.
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Fig. 16.21 Top panel: 
Schematic representation of a 
rectangular chamber 
characterized by a length L 
and a width W , with a sleeve  
of length l and width w, 
which contains an absorbing 
site of length .w ≤ W at the 
end of its right wall. Bottom 
panel: A simplified boundary 
homogenization 
one-dimensional model is 
used to describe the particle 
dynamics in the system with a 
proper . κ and .κ '
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In this case, a particle first has to find an entrance to the tunnel leading to the site. 
After entering the tunnel, the particle either diffuses to the binding site, where it is 
trapped, or escapes from the tunnel back to the bulk. 

The first step is to establish . κ ', the trapping rate of the flux from the sleeve to 
the rectangular chamber. To such end, consider the case where the sleeve boundary 
at .x = L + l is reflecting rather than absorbing, which would be like having two 
chambers connected by a bottleneck. At equilibrium, the number of particles going 
into the rectangular chamber is .Nr = N(Ar/AT ), where .Ar = WL and . AT =
(WL + wl). In contrast, the number of particles going into the sleeve is . Ns =
N(As/AT ), where .As = wl and N is the total number of particles diffusing in the 
system. Then, concentrations at equilibrium per unit length are . creq = Nr/L =
NW/(WL + wl) and .cseq = Ns/l = Nw/(WL + wl)), respectively. The identity 
of the two fluxes at .x = L allows us to establish a relation between the trapping 
rates, .jreq = creqκ = NWκ/(WL + wl) and . jseq = cseqκ ' = Nwκ '/(WL + wl))

and consequently 

.Wκ = wκ '. (16.22) 

Therefore, substituting Eq. (16.19) into this last expression, we arrive at 

.κ ' = πD

w ln
[

1/ sin
(

πw
2W

)] . (16.23) 

Now, we will proceed to obtain the MFPT at the steady state for the complete 
system, specifically, the rectangular chamber and the sleeve with the perfectly 
absorbing strip. The one-dimensional model used in our derivation depends on the 
steady-state picture, which is maintained by a constant flux j injected at the particle 
starting point . x0, managing to compensate the flux of particles trapped by the hidden 
site. The one-dimensional system is shown in Fig. 16.22.
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Fig. 16.22 The MFPT, or mean particle lifetime, is derived using a one-dimensional model that 
uses the steady-state picture. The steady state is maintained by applying a constant flux j at the 
particle’s initial position . x0

The starting point is the relation between the MFPT, the steady-state one-
dimensional concentration .c(x), and flux j , given by 

.〈t (x0)〉 = N

j
=

∫ L+l

0
c(x) dx

j
. (16.24) 

This equation can be deduced by remembering that the flux is the number of 
particles crossing the border per unit time. As a result, if we have a diffusing 
particle, it will cross the boundary in the average time given by the MFPT. The 
same reasoning follows for N particles. 

From Eq. (16.24), the reader may see that, in order to find .〈t (x0)〉, our main task is 
to find .c(x), the steady-state one-dimensional concentration of the system. For such 
purpose, let us calculate the concentration at each compartment, i.e., concentration 
into the chamber, .cch(x), and the sleeve, .cs(x), so that .c(x) = cch(x)+cs(x). Inside  
the sleeve, .cs(x) satisfies the Fick’s first law, Eq. (2.73), i.e., 

.j(x) = −D
dcs(x, |x0)

dx
êi , (2.73) 

subject to the absorbing BC, .cs(L + l) = 0. The solution at the steady state is given 
by3 

.cs(x) = − j

D
x + A, (16.25) 

where . A is an integration constant. By applying the boundary conditions (BCs), we 
arrive at 

.cs(x) = j

D
(L + l − x) L < x ≤ L + l. (16.26)

3 Note that when solving the ordinary differential equation (ODE), we have assumed that the flow 
of diffusing particles goes from left to right. 
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Now, to calculate the concentration inside the chamber, we apply that fact that, at 
the interface .x = L, the concentration of the system .c(x) jumps from . cch(L−ϵ)

∣
∣
ϵ→0

to .cs(L + ϵ)
∣
∣
ϵ→0 = j l/D. The magnitude of the jump is determined by the need 

for preservation of the flux, 

.j = κcch(L − ϵ)

∣
∣
∣
∣
ϵ→0

− κ 'cs(L + ϵ)

∣
∣
∣
∣
ϵ→0

. (16.27) 

From this last equation, together with Eqs. (16.26) and (16.22), we find 

.cch(L − ϵ)

∣
∣
∣
∣
ϵ→0

= j

κ
+ κ '

κ
cs(L + ϵ)

∣
∣
∣
∣
ϵ→0

= j

D

(
W

w
l + D

κ

)

. (16.28) 

Fick’s first law should also remain valid in the chamber; therefore, by using such 
equation we can find the concentration as a function of x. In such a case, we have 
to find the solution for two intervals of the system, from 0 to . x0 and from . x0 to L. 
In this last interval, we have to impose the joining condition given by Eq. (16.25). 
Equating Eq. (16.25) evaluated at .x = L with Eq. (16.28) results in 

.cch(L) = j

D

(
W

w
l + D

κ

)

= j

D
L + A. (16.29) 

On solving for . A, .cch(x) becomes 

.cch(L) = j

D

(
W

w
l + D

κ
+ L − x

)

x0 ≤ x ≤ L. (16.30) 

Furthermore, the latter equation defines the concentration at . x0, which in fact, at 
steady state, is constant on the interval from 0 to . x0, because the reflecting boundary 
is at the origin. Consequently, 

.cch(x) = j

D

(
W

w
l + D

κ
+ L − x0

)

0 < x ≤ x0. (16.31) 

Additionally, by means of the Heaviside step function, we write a single expression 
for the concentration inside the chamber along the whole interval, yielding 

. cch(x) = j

D

(
W

w
l + D

κ
+ L − xH(x − x0) − x0H(x0 − x)

)

0 < x ≤ L.

(16.32) 

Once we have obtained the concentration in the system, we can calculate the 
MFPT using Eq. (16.24), which simply reduces to calculating the integral of the 
concentration over the interval from 0 to .L+l, which is the total number of particles. 
Therefore
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Fig. 16.23 Comparison of 
mean first-passage times 
predicted by Eq. (16.34) for 
. l = 0.5, 1.0, 1.5, and2.0
(solid lines) to those obtained 
from Brownian dynamics 
simulations (symbols). A 
total of .5 × 104 initially 
uniformly distributed 
particles at .x0 = L were used 
for each configuration, where 
we set .L = W = D = 1 0.0 0.2 0.4 0.6 0.8 1.0 
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.

N =
∫ L+l

0
c(x) dx =

∫ L

0
c(x)ch dx +

∫ L+l

L

c(x)s dx

= j

D

[∫ L

0

(
W

w
l + D

κ
+ L − xH(x − x0) − x0H(x0 − x)

)

dx

+
∫ L+l

L

(
W

w
l + D

κ
+ L − x

)

dx

]

= j

D

{

L2 − x2
0

2
+ LW

π
ln

[
1

sin (πw/2W)

]

+ LlW

w
− l2

2

}

.

(16.33) 

Finally, dividing this expression by j , we arrive to the desired result: 

.〈t (x0)〉 = L2 − x2
0

2D
+ LW

πD
ln

[
1

sin (πw/2W)

]

+ Ll

D

W

w
+ l2

2D
. (16.34) 

If we set .l = 0, in this last equation, it reduces to Eq. (16.20). In fact, Eq. (16.34) 
has a transparent physical interpretation: The first two terms give the mean time it 
takes for the particle to enter the sleeve from the chamber, while the last two terms 
give the average lifespan of a particle entering the chamber, that is, from the sleeve 
entrance. 

A comparison between theoretical predictions, Eq. (16.34), and simulation 
results is given in Fig. 16.23 as function of w, where the curves correspond to 
four values of l. The particles’ initial positions are uniformly distributed at .x0 = L. 
The symbols are the values obtained from Brownian dynamics simulations. One 
can observe an excellent agreement between the theoretical predictions and the 
simulation results, with a relative error of less than 2% when .l ≥ 0.5. 

Finally, averaging over . x0, assuming that all initial particles positions within the 
chamber are equally likely, we arrive at Eq. (16.21) plus a couple of terms related to 
the sleeve, namely, 

.〈tu〉 = L2

3D
+ LW

πD
ln

[
1

sin (πw/2W)

]

+ Ll

D

W

w
+ l2

2D
. (16.35)
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16.6 Table of Useful Trapping Rates 

In this section, we sumarize in Table 16.3 the trapping rates obtained in this chapter. 

Table 16.3 Useful trapping rate formulas 

Trapping rate System description 

.kS = 4πRD Absorbing sphere 

.kHS = 2πRD Absorbing hemisphere on a flat wall 

.kHBP = 4Ds Absorbing disk on a cylinder wall 

.kDBW =
(
25AP
π2

)1/3
D Arbitrary absorbing spot on a flat wall 

.kMMS = πD

L ln
[

1/ sin
(

πl
2L

)] Absorbing strips on a flat wall & absorbing stripes on a 
cylinder surface & absorbing arcs over a reflecting circle 

.κcap = 2D
πR

√
σ

1+2.61
√

σ−3.22σ 2

(1−σ)3/2
Absorbing cap 

.kMMS = πD

W log
[

1/ sin( πw
2W )

] Absorbing strip on a reflecting wall 

.kCK = 4πR2Dκ
D+Rκ

Partially absorbing sphere 

.kBP = 4πDRaN
πR+aN

Absorbing disks over a spherical reflecting sphere 

.kZS = 4πa2Dκ
4D+aπκ

Partially absorbing disk on a reflecting flat surface 

16.7 Concluding Remarks 

Boundary homogenization is an approximate approach to replace heterogeneous 
boundary conditions on the surface with homogeneous BCs using a properly chosen 
effective trapping rate. This is possible because, at sufficiently large distances, 
the steady-state particle fluxes and concentrations are indistinguishable from their 
original problem, in the case of a uniform partially absorbing boundary with a 
properly chosen surface trapping rate. This trapping rate is the key value that one 
needs in order to be able to study trapping by a heterogeneous boundary in the 
framework of this approach. Boundary homogenization can also be used to find 
higher moments of the particle’s lifetime, the lifetime probability density, and the 
particle survival probability. 

There are a lot of other physical effects involved in Brownian particle binding 
by absorbing patches that have not been taken into account. These include, for 
example, rotational diffusion of Brownian particles, enhancement of trapping rate 
due to particle surface diffusion, buried patchy sites, and patch clustering. 

It is worth noting that there is a relation between the capacitance . C4 and the 
trapping rate diffusion . κ , which can be used to go from a diffusive system to an 
electrical system, and vice versa, namely, .κ = 4πDC.

4 Capacitance is the capability of a material object or device to store electric charge. 
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Part VII 
Quasi-one-dimensional Diffusion: 

Channel/Tube 

On the diffusion coefficient and the projection techniques in 
confined space. 

“Make things as simple as possible, but not simpler.” 

—Albert Einstein



Chapter 17 
Fick-Jacobs 1D Reduction 

17.1 Introduction 

The Brownian motion of particles, molecules, or even living microorganisms in 
confined geometries, such as pores and channels, plays a key role on various scales, 
in both nature and technology. Diffusion in such systems has been studied in-depth 
theoretically and experimentally given its ubiquitousness and due to the fact that 
they control the dynamics of many physical, chemical, and biochemical processes. 
Transport in confined geometries within quasi-one-dimensional systems exhibits a 
very rich and striking phenomenology. Examples include diffusion in artificially 
produced pores in thin solid films, proteins through a phase space funnel-like region, 
membrane channel, transport in zeolites, solid-state nanopores as single-molecule 
biosensors for the detection and structural analysis of individual molecules, and as a 
model of a chemical reaction where the kinetics are dominated by crossing through 
a bottleneck rather than passage over a potential barrier. 

In this and the following chapters, we will present the theory developed to study 
diffusion under spatial confinement by means of one-dimensional reduction for 
quasi-one-dimensional systems. In this case, diffusion is controlled by both the 
fluctuation statistics of the jittering particles and the phase space available to their 
dynamics, by means of an entropic barrier. Earlier studies by Merkel H. Jacobs and 
Robert Zwanzig triggered renewed research on this subject. Their work focus on 
systems consisting of wide channels or tubes, where one can map the particle motion 
into an effective one-dimensional description. Assuming that the distribution of the 
solute in the cross section of the system is uniform at equilibrium, variations in the 
structural shape of a channel or tube along the direction of motion imply changes in 
the number of accessible particle states or, equivalently, lead to spatial variations of 
entropy. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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17.2 The Fick-Jacobs Equation 

The so-called Fick-Jacobs approach consists of reducing spatial coordinates, which 
means that even if diffusion takes place into a tube or channel, the concentration 
can be approximated as a function of the longitudinal spatial coordinate and time. 
This theoretical framework leads to a modification of Fick’s equation, also known 
as Fick-Jacobs equation. This equation appeared for the first time in the original 
article published by Adolf Fick in 1855. In fact, it is the very first equation written 
in the manuscript. For this one-dimensional reduction to be applied, two conditions 
must be satisfied: a) The system boundaries, or walls, must be described by a 
well-behaved function, and b) the channel must be narrow, in such a way that the 
concentration equilibrates much faster in the direction perpendicular to the channel. 
Thus, the problem is reduced to studying the concentration along the channel. The 
latter condition is satisfied by assuming that the diffusion constant along the channel 
is very small compared to the diffusion constant corresponding to the transversal 
direction of the channel, i.e., .D⊥ >> D||, or if the channel is very narrow. 

In order to derive the Fick-Jacobs equation (FJ), we will write the master equation 
for a random walker for whom the probability of moving from one site to another 
is now a function of position, and such functionality depends on the fraction of 
the channel’s area or tube’s volume that the particle will have to face in its next 
step (see Fig. 17.1). We will restrict the derivation to a symmetric channel in two 
dimensions, but its generalization to a three-dimensional tube is straightforward. 
To such end, we define the effective one-dimensional concentration, or  projected 
one-dimensional density, as follows: 

.ρ(x, t) ≡
f h(x)

0
p(x, y, t) dy. (17.1) 

Fig. 17.1 Schematic diagram of the upper half of a symmetric channel confining the motion of 
Brownian particles. Because this has been restricted to symmetric channels, we only have to focus 
on the half-width of the channel. The channel’s wall is represented by the channel half width .h(x)
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This reduction is applicable for a wide channel after long times, assuming fast 
equilibration in the y direction. Under this approximation, there is no change in the 
particle’s concentration in the transversal direction, therefore, .p(x, y, t) ≈ p(x, t), 
and from Eq. (17.1) we have that .p(x, t) = ρ/h(x). With these considerations, the 
master equation is given by 

.ρ(x, t +At) = a(x +Ax, t) ρ(x +Ax, t)+b(x −Ax, t) ρ(x −Ax, t), (17.2) 

where time t .∈ [0,∞) and spatial position .x ∈ R. Expanding both sides of 
Eq. (17.2) in a Taylor series around . Ax and . At yields 

.

ρ(x, t) + At
∂ρ(x, t)

∂t
+ · · ·

=
[
a(x)ρ(x, t) + Ax

∂a(x)ρ(x, t)

∂x
+ (Ax)2

2

∂2a(x)ρ(x, t)

∂x2 + · · ·
]

+
[
b(x)ρ(x, t) − Ax

∂b(x)ρ(x, t)

∂x
+ (Ax)2

2

∂2b(x)ρ(x, t)

∂x2 + · · ·
]

.

(17.3) 

Keeping terms up to the first order on t and second order on x, and dividing both 
sides of the equation by . At , we have1 

.
∂ρ(x, t)

∂t
=

[
(Ax)2

2At

∂2ρ(x, t)

∂x2
+ Ax

At

∂[a(x) − b(x)]ρ(x, t)

∂x

]
. (17.4) 

The product rule applied to the second term on the right-hand side yields 

. 

∂ρ(x, t)

∂t

=
[
(Ax)2

2At

∂2ρ(x, t)

∂x2
+Ax

At
ρ(x, t)

∂[a(x) − b(x)]
∂x

+Ax

At
[a(x) − b(x)]∂ρ(x, t)

∂x

]
.

(17.5) 

The last relation is completely general; thus .a(x) and .b(x) should be set depending 
on the problem. In this approximation, they are given by a fraction of area. From 
Fig. 17.1, we see that the areas enclosed from x to .x + Ax and .x − Ax can be 
approximated in terms of .h(x) by 

.AR = Ax

2
[h(x) + A(x + Ax)] , (17.6) 

and

1 Where we have used the conservation of probability, i.e., .a(x) + b(x) = 1. 
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.AL = Ax

2
[h(x) + A(x − Ax)] , (17.7) 

respectively. Performing a Taylor expansion, 

.AR = Ax

2

[
2h(x) + Ax

∂h(x)

∂x
+ (Ax)2

2

∂2h(x, t)

∂x2 + · · ·
]

, (17.8) 

.AL = Ax

2

[
2h(x) − Ax

∂h(x)

∂x
+ (Ax)2

2

∂2h(x, t)

∂x2 + · · ·
]

, (17.9) 

and keeping up to second order in x, we have  

.AR = Ax

2

[
2h(x, t) + Ax

∂h(x)

∂x

]
, (17.10) 

and 

.AL = Ax

2

[
2h(x, t) − Ax

∂h(x)

∂x

]
, (17.11) 

hence, the total area is given by 

.AT = AR + AL = 2h(x)Ax. (17.12) 

With these relations for the areas, for the probabilities, we now have 

.a(x) = AR

AT

= 1

2h(x)

[
h(x) − 1

2
Axh'(x)

]
, (17.13) 

and 

.b(x) = AR

AT

= 1

2h(x)

[
h(x) + 1

2
Axh'(x)

]
, (17.14) 

where .h'(x) indicates derivation with respect to x. Introducing the last two equations 
into Eq. (17.5) leads to 

.
∂ρ(x, t)

∂t
= Dx

∂2ρ(x, t)

∂x2
− ∂

∂x
Dx

h'(x)

h(x)
ρ(x, t), (17.15) 

where we define the diffusion coefficient 

.Dx ≡ lim
Ax→0
At→0

(Ax)2

2At
. (17.16)
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The relation between .Dx and the bulk diffusivity, from now on . D0, can be 
obtained from Eq. (2.18), setting .Az = 0, namely, 

.
Ar2

2At
= Ax2

2At
+ Ay2

2At
. (2.18) 

The Fick-Jacobs approximation is obtained precisely for very narrow channels when 
setting .Dx = Dy , so .

<
Ar2

> = 4Dx At , and accordingly, 

.Dx = D0 ≡ lim
Ar→0
At→0

(Ar)2

4At
. (17.17) 

Finally, by substituting this last relation into Eq. (17.15), and after some algebraic 
manipulation, the Fick-Jacobs equation can be written in the following compact 
form: 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
h(x)

∂

∂x

ρ(x, t)

h(x)

]
. (17.18) 

In the literature, it is more common to find the FJ equation in terms of the width 
of the channel instead of its half width. For a symmetric channel, its width is . w(x) =
2h(x), and therefore, the FJ equation can be written as 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
w(x)

∂

∂x

ρ(x, t)

w(x)

]
. (17.19) 

An important feature of Eq. (17.19) is observed when diffusion takes place into a 
channel with parallel walls. In such a case, the channel width .w(x) is constant and 
Fick’s equation is recovered, as expected. 

One of the most important results under the Fick-Jacobs approach is that 
Eq. (17.19) is formally equivalent to the Smoluchowski equation, Eq. (6.11), 
namely, 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

{
e−βU(x) ∂

∂x

[
eβU(x)ρ(x, t)

]}
, (17.20) 

where the entropic potential is given by 

. − βU(x) = ln [w(x)/w(xm)], (17.21) 

.β = 1/(kBT ), . kB is the Boltzmann constant, T is the absolute temperature, and 

.U(x) at .x = xm is taken to be zero. Then we can say that the FJ equation describes 
diffusion past an entropy barrier, where this barrier is associated solely with changes 
in entropy. This analogy shows that confinement in higher dimensions gives rise to
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an effective entropic potential in reduced dimensions. It is reasonable to associate 
this potential with entropy since it is given only by area or width. 

From the equation for flux in the presence of a potential, Eq. (6.10), and the 
definition of entropic potential, we have that the flux from a diffusive particle under 
geometrical constraint is given by 

. J (x, t) = −D0 w(x)
∂ρ(x, t)

∂x
. (17.22) 

The Fick-Jacobs equation in a symmetric three-dimensional tube is given by 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
r2(x)

∂

∂x

ρ(x, t)

r2(x)

]
, (17.23) 

where .r(x) is the tube radius and .A = πr2(x) is the tube cross-sectional area at a 
given value of x. Hence, the entropic potential is given by .−βU(x) = ln [A/Am]. 
From the conservation equation, we have that 

. J (x, t) = −D0A(x)
∂

∂x

ρ(x, t)

A(x)
. (17.24) 

Again, from this last relation, we can define the boundary conditions. 
Finally, it is important to comment that another system of great relevance where 

the Fick-Jacobs approach can be applied, and for which there seems to be no 
connection, is to study the slowdown of unconstrained diffusion in the presence 
of obstacles. For such purpose, we need to visualize the spacing between obstacles 
as channels. 

In the next section, we will solve a problem of diffusion into a vessel of variable 
cross section using the Fick-Jacobs approach. 

17.3 Fick’s Funnel 

To illustrate the applicability of the Fick-Jacobs approach, this section discusses 
how the FJ equation can be applied to predict the concentration and the flux of a 
channel formed by a funnel, vessel of variable cross section in steady state, as shown 
in Fig. 17.2. This problem arose in the original paper by Fick. The experimental 
arrangement was used to assess the validity of his theoretical predictions. To 
reproduce the theoretical results obtained in Fick’s paper, we have to define the 
problem in the following way: A constant concentration . ρ0 is maintained at the 
small end of the funnel, at distance h from the tip of the funnel, while a perfectly 
absorbing wall is placed at the other end. Once a steady state has been established, 
we want to find the concentration as a function of position, as well as the flux at the
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Fig. 17.2 Schematical 
representation of a funnel 
channel formed by a funnel of 
variable crossed section. The 
boundaries are given by 
function .A(x) = mx while 
the smaller and larger radii 
are . r1 and . r2, respectively 

end of the funnel. Let us call the smaller and larger radii of the funnel . r1 and . r2, 
respectively, and its length H (see Fig. 17.2). 
To such end, let us write out the FJ equation in a third form, namely, 

.
∂ρ(x, t)

∂t
= D0

[
∂2ρ(x, t)

∂x2
+ A'(x)

A(x)
ρ(x, t)

]
. (17.25) 

The funnel radius is given by .r(x) = mx, where m is the tangent of one half. Then, 
we have that the tube cross-sectional area is given by .A(x) = πr2(x) = πm2x2, 
and its derivative is .A'(x) = πr2(x) = 2πm2x. Hence, at steady state, we have 

.
∂2ρ(x)

∂x2
+ 2

x
ρ(x) = 0. (17.26) 

The solution of Eq. (17.26) is given by 

. ρ(x) = C2 − C1

x
. (17.27) 

Evaluating the constants in this equation from the boundary conditions, namely, 
.ρ(x = h, t) = ρ0 and .ρ(x = h + H, t) = 0, the solution becomes 

. ρ(x) = h

H

[
h + H

x
− 1

]
ρ0. (17.28) 

These results show that density is proportional to . ρ0 and inversely proportional to 
the length of the funnel H and does not depend on diffusivity because of the steady 
state. 

Next, we will calculate the flow at .x = H . To such end, we introduce . A(x) =
πm2x2 and Eq. (17.28) into Eq. (17.24), leading to 

. J = D0 π m2 h (h + H)

H
ρ0. (17.29)
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Recalling that .r1 = mh and .r2 = m(H + h), we can finally write the flux in a more 
useful form, as follows: 

. J = D0 π r1 r2

H
ρ0. (17.30) 

It is worth mentioning that these equations predict that the flux is also proportional to 
. ρ0 and inversely proportional to H ; it reaches its maximum when .r1 = r2 and would 
be exactly the same if the large and small ends of the funnel were interchanged. This 
proportionality only depends on the geometrical parameters of the funnel. 

It has been shown that the FJ approximation better reproduces the observed 
results when the diffusion coefficient has a spatial dependence. We will look at this 
in more detail in the following chapter. 

17.4 Concluding Remarks 

In this chapter, we show how Fick’s equation is modified when diffusion takes 
place into a two-dimensional channel or a three-dimensional tube, to become the 
so-called Fick-Jacobs equation. The most important equations that were obtained in 
this chapter are listed below: 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
w(x)

∂

∂x

ρ(x, t)

w(x)

]
(Fick-Jacobs equation for a channel) 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
h(x)

∂

∂x

ρ(x, t)

h(x)

]
(Fick-Jacobs equation for a tube) 
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Chapter 18 
Zwanzig 1D Reduction 

A formal derivation of the Fick-Jacobs (FJ) equation was introduced in 1992 by 
Robert Zwanzig (Zw) taking into account small deviations from local equilibrium. 
The key point of his derivation is the assumption of equilibration in the transverse 
direction, or y-coordinate. Zwanzig demonstrated that the introduction of this 
approximation, which eventually falls into the category of a position-dependent 
diffusion coefficient .D(x), considerably improves the accuracy of the FJ equation 
extending its range of validity to more winding geometries. Moreover, Zw proposed 
the first expression for the position-dependent diffusion coefficient for channels 
of smoothly varying geometry in two and three dimensions. These coefficients 
depend on the position by means of the rate of change of the channel width, .w'(x). 
Zwanzig also showed that his modified Fick-Jacobs equation corresponds to the 
Smoluchowski equation, if the entropic potential is identified as .w(x)/w(0). This  
chapter is dedicated to reviewing Zwanzig’s work. 

18.1 Zwanzig’s Derivation of the FJ Equation in 2D 

In this section, we will describe the steps proposed by Zwanzig to give a more 
general and rigorous derivation of the Fick-Jacobs (FJ) equation. The method 
consists of performing a reduction of the two- or three-dimensional Smoluchowski 
equation to a one-dimensional description. For the sake of simplicity, let us focus 
on the reduction of the two-dimensional system, making the starting point a two-
dimensional (2D) Smoluchowski equation for a diffusing concentration .c(x, y, t), 
taking place in the presence of a potential .U(x, y), i.e., 
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.

∂c(x, y, t)

∂t
= Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]}

+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y) c(x, y, t)

]}
,

(18.1) 

where . Dx and . Dy are the longitudinal and transversal diffusion constants, respec-
tively. .β = 1/(kBT ), with . kB and T denoting the Boltzmann constant and absolute 
temperature. Then, in order to perform the reduction, this last equation is integrated 
over the variable y, leading to 

. 

f
∂c(x, y, t)

∂t
dy =

f
Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]}
dy

+
f

Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y) c(x, y, t)

]}
dy.

(18.2) 

Now, let us consider that the concentration is bounded by a symmetric system 
with upper and lower boundaries given by .h(x) and .−h(x), respectively. Integrating 
Eq. (18.2) term by term over .[−h(x), h(x)] and using the Leibniz integral rule, 
Eq. (A.9), the left-hand side yields 

. 

f h(x)

−h(x)

∂c(x, y, t)

∂t
dy = ∂

∂t

f h(x)

−h(x)

c(x, y, t) dy − c(x, y, t)

||||
y=h(x)

· d

dy
h(x)

+ c(x, y, t)

||||
y=−h(x)

· d

dy
[−h(x)]

= ∂ρ(x, t)

∂t
,

(18.3) 

where 

.ρ(x, t) ≡
f h(x)

−h(x)

c(x, y, t) dy (18.4) 

is the reduced or marginal concentration. 
Now, using the fundamental theorem of calculus on the first term on the right-

hand side of Eq. (18.2), we have  

.

f h(x)

−h(x)

Dy

∂

∂y
e−βU(x,y) ∂

∂y

[
eβU(x,y) c(x, y, t)

]
dy

= Dy

∂

∂y

f h(x)

−h(x)

e−βU(x,y) ∂

∂y

[
eβU(x,y) c(x, y, t)

]
dy = 0.

(18.5)
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This last integral is null because the antiderivative of the integral’s argument will 
depend on x and t , so its derivative with respect to y vanishes. 

Finally, if the Leibniz rule is applied to the second term on the right-hand side of 
Eq. (18.2), we arrive at 

.

f h(x)

−h(x)

Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]}
dy

= Dx

∂

∂x

f h(x)

−h(x)

e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]
dy.

(18.6) 

Substitution of Eqs. (18.3), (18.5), and (18.6) into Eq. (18.2) results in 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]
dy, (18.7) 

where we set .D0 = Dx = Dy . 
Now, we have to make an assumption about .c(x, y, t) to express it in terms 

of .ρ(x, t). The key point is to assume equilibration in the transverse direction. 
In other words, equilibrium in the y-axis is almost instantly restored. Under this 
approximation, one can define an averaged x-dependent free energy .f(x) as follows: 

.e−βf(x) ≡ k

f
e−βU(x,y) dy, (18.8) 

where constant . k is a result of the indefinite integration. From this equation, we can 
define a normalized conditional probability distribution: the local distribution of y, 
conditional on a given x, namely, 

.ϑ(y|x) = e−βU(x,y)f
e−βU(x,y) dy

= e−βU(x,y)

ke−βf(x)
. (18.9) 

By definition, this probability distribution is normalized to unity in y: 

.ϑ(y|x) eβU(x,y) = 1

k
eβf(x). (18.10) 

Then, under the local equilibrium approximation, we can assume proportionality 
between the original concentration and the reduced density, that is, . c(x, y, t) ∝
ρ(x, t), where proportionality is provided by the conditional probability distribu-
tion, and consequently, 

.c(x, y, t) ∼= ρ(x, t) ϑ(y|x). (18.11) 

Naively, Eq. (18.11) can be seen as a separation of variables. Direct substitution of 
Eq. (18.11) into Eq. (18.7) gives
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.
∂ρ(x, t)

∂t
= D0

∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y) ρ(x, t) ϑ(y|x)

]
dy. (18.12) 

Now, to rewrite this equation in terms of .ρ(x, t), we calculate the derivative of 
Eq. (18.8) with respect to the transverse coordinate: 

.
∂

∂y
e−βf(x) = ∂

∂y

f
e−βU(x,y) dy = e−βU(x,y). (18.13) 

If we now use Eqs. (18.10) and (18.13) in Eq. (18.12), this results in 

.

∂ρ(x, t)

∂t
= D0

∂

∂x

f
∂

∂y

[
ke−βf(x)

] ∂

∂x

[
1

k
eβf(x) ρ(x, t)

]
dy

= D0
∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
.

(18.14) 

The simplification of constant . k can be done by knowing that it provides the appro-
priate dimensions to the exponential of free energy. Therefore, this dimensionality 
should be carried out implicitly in further calculations. Then, Eq. (18.14) can be 
rewritten as 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
. (18.15) 

This last expression is a generalization of the Fick-Jacobs equation with a constant 
diffusion coefficient . D0. The extension to three dimensions is obtained by replacing 
the integration over y for double integration over y and z. 

Now, comparing Eq. (18.15) and the FJ equation, Eq. (17.19), 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
w(x)

∂

∂x

ρ(x, t)

w(x)

]
; (17.19) 

we see that 

.e−βf(x) = w(x). (18.16) 

This last expression states that the system’s confinement by its boundaries, .±h(x), 
can be described by means of a potential, which is shown to be entropic, that is, 
temperature-independent. Now, Eq. (17.20) is formally proved. 

As a relevant note, the equality in expression (18.16) is guaranteed by means of 
the dimensions provided by constant . k, as previously noted.
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18.2 Effective Diffusion Coefficient 

Zwanzig also proposed an improvement to the Fick-Jacobs equation. This enhance-
ment is made by assuming that the diffusivity is not constant anymore, but rather, a 
longitudinal coordinate-dependent function, making the Fick-Jacobs equation take 
the following form: 

.
∂ρ(x, t)

∂t
= ∂

∂x

{
D(x) e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
. (18.17) 

This new function, .D(x), is the so-called effective diffusion coefficient or effective 
diffusivity. Its calculation is a difficult task, but we will show you how to find it 
for systems where the boundaries interact with the diffusing particles by means of 
a harmonic potential and a box-like potential. The derivation presented here will be 
exposed for two- and three-dimensional (3D) diffusive systems. 

The computation of the effective diffusion coefficient starts by integrating the 
2D Smoluchowski equation calculated in the previous section, in the transversal (y) 
direction, namely, 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]
dy. (18.7) 

Now, we consider the difference between concentration .c(x, y, t) and its approxi-
mation, Eq. (18.11), that is, 

.δc(x, y, t) = c(x, y, t) − ρ(x, t) ϑ(y|x). (18.18) 

This equation can be substituted into (18.7), yielding 

. 

∂ρ(x, t)

∂t
= Dx

∂

∂x

f
e−βU(x,y) ∂

∂x

{
eβU(x,y) [δc(x, y, t) + ρ(x, t) ϑ(y|x)]

}
dy

= Dx

∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y)δc(x, y, t)

]
dy

+ Dx

∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y)ρ(x, t) ϑ(y|x)

]
dy.

(18.19) 

The second term on the right-hand side of the previous equation can be written as 

. 
∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y) ρ(x, t) ϑ(y|x)

]
dy

= ∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
, (18.20)
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where Eq. (18.14) was used. Substituting the local equilibrium definition, Eq. (18.9), 
into the first term of Eq. (18.19), we arrive at 

. 
∂

∂x

f
e−βU(x,y) ∂

∂x

[
eβU(x,y) δc(x, y, t)

]
dy

= ∂

∂x

f
ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy. (18.21) 

By inserting Eqs. (18.20) and (18.21) into Eq. (18.19), this yields 

. 

∂ρ(x, t)

∂t
= Dx

∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

+ Dx

∂

∂x

f
ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy.

(18.22) 

Now, operating over the second right-hand side term of Eq. (18.19), one finds that 

. 
∂

∂x

f
ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy

= ∂

∂x

{
e−βf(x)

f
ϑ(y|x)

∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]}
dy. (18.23) 

The expression inside the integral of this last equation can be modified using the 
chain rule for derivatives, that is, 

. 

∂

∂x

[
ϑ(y|x)

1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
= ϑ(y|x)

∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]

+ ∂

∂x
[ϑ(y|x)]

1

ϑ(y|x)
eβf(x) δc(x, y, t),

(18.24) 
then 

.

f
ϑ(y|x)

∂

∂x

[
1

ϑ(y|x)
eβf(x) δp(x, y, t)

]
dy

= ∂

∂x

f
ϑ(y|x)

1

ϑ(y|x)
eβf(x) δc(x, y, t) dy

−
f

∂

∂x
[ϑ(y|x)]

1

ϑ(y|x)
eβf(x) δc(x, y, t) dy,

(18.25) 

where the integral in the second term of the right-hand side will be calculated later 
(see Eq. (18.111)). Meanwhile, the first term on the right-hand side is
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. 
∂

∂x

f
ϑ(y|x)

1

ϑ(y|x)
eβf(x) δc(x, y, t) dy = ∂

∂x

{
eβf(x)

f
δc(x, y, t) dy

}
= 0,

(18.26) 

consequently, 

. 
∂

∂x

f
ϑ(y|x) e−βf(x) ∂

∂x

{
1

ϑ(y|x)
eβf(x) δc(x, y, t)

}
dy

= − ∂

∂x

{
e−βf(x)

f [
∂

∂x
ϑ(y|x)

]
eβf(x)

ϑ(y|x)
δc(x, y, t) dy

}
, (18.27) 

which can be substituted into Eq. (18.22) to obtain 

. 

∂ρ(x, t)

∂t
= Dx

∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

− Dx

∂

∂x

{
e−βf(x)

f [
∂

∂x
ϑ(y|x)

]
eβf(x)

ϑ(y|x)
δc(x, y, t) dy

}
.

(18.28) 

Now we need to obtain a closed form for .δc(x, y, t). The procedure is shown in 
Appendix 18.A.1, and it yields 

. δc(x, y, t) = Dx

f t

0
et 'P

[
∂

∂x
ρ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t − t ')

]
dt '.
(18.29) 

Now, Eq. (18.29) is substituted into (18.28) 

. 

∂ρ(x, t)

∂t
= Dx

∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

− Dx

∂

∂x

{
e−βf(x)

f [
∂

∂x
ϑ(y|x)

]
eβf(x)

ϑ(y|x)

f t

0
et 'P

[
∂

∂x
ρ(y|x)

]

× e−βf(x) ∂

∂x
eβf(x)ρ(x, t − t ') dt ' dy

}

= Dx

∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

− Dx

∂

∂x

f [
∂

∂x
ϑ(y|x)

]
1

ϑ(y|x)

f t

0
et 'P

[
∂

∂x
ρ(y|x)

]

× e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t − t ')

]
dt ' dy.

(18.30)
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An additional important assumption is imposed: .ρ(x, t) smoothly changes with 
respect to x. As a consequence, in Eq. (18.102), the only term that is conserved 
is the one proportional to . ∂y , that is, 

. P' = Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y)

]}
= Dy

∂

∂y

{
ϑ(y|x)

∂

∂y

[
1

ϑ(y|x)

]}
,

(18.31) 

where Eq. (18.9) was used again. To simplify our results even more, we impose a 
Markovian approximation into Eq. (18.30). To such end, a new quantity is defined 

.κ(x) = Dx

f f ∞

0

[
∂

∂x
ϑ(y|x)

]
1

ϑ(y|x)
etP'

[
∂

∂x
ϑ(y|x)

]
dt dy, (18.32) 

consequently, 

.

∂ρ(x, t)

∂t
= Dx

∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

− Dx

∂

∂x

{
e−βf(x) κ(x)

∂

∂x

[
eβf(x) ρ(x, t)

]}
,

(18.33) 

from where we can finally arrive at 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

{
e−βf(x) [1 − κ(x)]

∂

∂x

[
eβf(x) ρ(x, t)

]}
. (18.34) 

Setting .Dx = D0, we have that 

.D(x) = D0 [1 − κ(x)] . (18.35) 

It is worth noting that this approximation is very poor, as will be shown in Sect. 18.4. 
Instead, it is much better to approximate .D(x) by 

.D(x) ≈ D0

1 + κ(x)
. (18.36) 

Substituting this last relation into Eq. (18.34), we arrive at the FJ equation with 
a position-dependent diffusivity, known as the modified Fick-Jacobs equation, or  
Fick-Jacobs-Zwanzig equation, namely, 

.
∂ρ(x, t)

∂t
= ∂

∂x

{
e−βf(x) D(x)

∂

∂x

[
eβf(x) ρ(x, t)

]}
, (18.37) 

or
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.
∂ρ(x, t)

∂t
= ∂

∂x

{
w(x) D(x)

∂

∂x

ρ(x, t)

w(x)

}
, (18.38) 

which is the most important result of this chapter and a cornerstone in the study of 
diffusion under geometrical confinement. 

At this point, let’s propose that the term inside the square brackets in the last 
equation is actually an infinite series, which is why the last equality can be written. 
Now, the value of .κ(x) must be obtained in terms of the interaction potential 
between the boundaries and the diffusing particles. The procedure is presented in 
Appendix 18.A.2 and results in 

.κ(x) = [
A'(x)

]2 f
z2 e−βV (z) dz

/ f
e−βV (z) dz. (18.39) 

Substituting this equation into the effective diffusivity, Eq. (18.35), it takes the 
following form: 

.D(x) = D0

1 + κ(x)
= D0

1 + [A'(x)]2
f

z2 e−βV (z) dz
/ f

e−βV (z) dz
. (18.40) 

Up to now, we have not taken account of the fact that there is no normal flux at 
the channel walls. This physical property can be taken into account in the potential. 
In the next two sections, we will use Eq. (18.40) to obtain .D(x) for two different 
potentials. 

18.2.1 Harmonic Potential 

Let’s start by modeling the interactions between the diffusing particles and the 
boundaries by a harmonic potential, which is given by 

.V (z) = z2

2
, 0 ≤ z < ∞. (18.41) 

To obtain the effective diffusion coefficient for this potential, we need to calculate 
the integrals in the denominator of Eq. (18.40). We can solve the first integral using 
Eq. (A.15), then 

.

f ∞

0
z2 e−βz2/2dz =

f ∞

0
z2 e−αz2dz = 1

4

/
π

α3 = 1

4

/
8π

β3 . (18.42) 

On the other hand, the solution for the second integral is given in Eq. (A.14), 
yielding
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.

f ∞

0
e−βz2/2dz =

f ∞

0
e−αz2dz = 1

2

/
π

α
= 1

2

/
2π

β
. (18.43) 

Then, the ratio of the last two integrals is 

.

f ∞

0
z2e−βz2/2dz

/f ∞

0
e−βz2/2dz = 1

2

/
8πβ

2πβ3
= 1

β
, (18.44) 

and consequently 

.κ(x) = [
A'(x)

]2 1

β
= [

A'(x)
]2

kBT . (18.45) 

Finally, the effective diffusivity for a harmonic potential is 

.D(x) = D

1 + κ(x)
= D

1 + [A'(x)]2 kBT
. (18.46) 

18.2.2 Box-Like Potential 

In this section, we will obtain the most used position-dependent effective diffusivity, 
by means of the box-like potential, which can be described as 

.V (z) = 0, −1 ≤ z ≤ 1. (18.47) 

The calculation of the integrals in Eq. (18.40) is carried out as follows: 

.

f 1

−1
z2 e−β·0dz =

f 1

−1
z2dz = 1

3
z3
||||
1

−1
= 2

3
, (18.48) 

and 

.

f 1

−1
e−β·0dz = 2. (18.49) 

Taking their ratio yields 

.

f 1

−1
z2 e−β·0 dz

/ f 1

−1
e−β·0 dz = 1

3
, (18.50) 

and consequently, .κ(x) is
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.κ(x) = 1

3

[
A'(x)

]2
. (18.51) 

Finally, for a box-like potential, the effective diffusivity is 

.D(x) = D0

1 + κ(x)
= D0

1 + 1
3 [A

'(x)]2
, (18.52) 

which, written in terms of the channel’s width derivative .w'(x) = 2A'(x), is  

.D(x) = D0

1 + κ(x)
= D0

1 + 1
12w

'2(x)
. (18.53) 

This is a remarkable result. When the system is confined, the resulting .D(x) is 
independent of the temperature. Its dependence is by means of the confinement’s 
geometrical parameters, so the interactions are ruled by an entropic potential. 
In other words, the boundaries can be effectively described by a temperature-
independent potential. 

18.3 Zwanzig’s Derivation of the FJ Equation in 3D 

The derivation for the one-dimensional reduction for a three-dimensional (3D) tube 
and a two-dimensional (2D) channel follow essentially the same steps. In the 3D 
derivation, the tube is assumed to have cylindrical symmetry. As in the 2D case, 
the potential is assumed to have the form .V (r/w(z)). The differential equation for 
the evolution of the marginal concentration has the same structure as the modified 
FJ equation in 2D, Eq. (18.37). The main differences are that, in 3D, to obtain the 
marginal equation, the integration in the transverse coordinates involves y and z and 
is given by 

.ρ(x, t) ≡
f R(x)

0
c(x, y, z, t) dydz, (18.54) 

where .R(x) is the radius of the tube and its area is .A(x) = 2πR(x)2 and 

.e−βf(x) = A(x), (18.55) 

so consequently, 

.
∂ρ(x, t)

∂t
= ∂

∂x

{
A(x) D(x)

∂

∂x

ρ(x, t)

A(x)

}
. (18.56)



534 18 Zwanzig 1D Reduction

Using cylindrical coordinates (see Appendix B.2), the center line corresponds 
to the z axis, and the radial coordinate is r . The position-dependent diffusion 
coefficient has the same form as in Eq. (18.39), except that now we have to integrate 
over the cross-sectional area, namely, 

.κ(x) = [
R'(x)

]2 f
z2 e−βV (z) dz

/ f
e−βV (z) dz, (18.57) 

where .r(x) is the variable tube radius. Performing the integrals, we have 

.

f 1

0

f 2π

0
r2 e−β·0rdrdφ = 2π

f 1

0
r3dr = 2π

4
r4
||||
1

0
= π

2
, (18.58) 

and 

.

f 1

0

f 2π

0
e−β·0rdrdφ = 2π

2
r2
||||
1

0
= π, (18.59) 

so consequently, 

.

f 1

0

f 2π

0
r2rdrdφ

/ f 1

0

f 2π

0
rdrdφ = 1

2
. (18.60) 

Substituting this last result into Eq. (18.57), .κ(x) becomes 

.κ(x) = 1

2

[
R'(x)

]2
. (18.61) 

Finally, for a box-like potential, the effective diffusivity in 3D is 

.D(x) ≈ D0

1 + κ(x)
= D0

1 + 1
2R

'2(x)
. (18.62) 

Summarizing, in a 3D tube with cylindrical symmetry .w(x) is the radius of the 
tube at x, .R(x), and .e−βf(x) = πR(x)2. Since in a 2D channel .w(x) is the half 
width, .w(x) = 2h(x), and .e−βf(x) = h(x). For a box-like potential, both dependent-
position effective diffusion constants are 

.D(x) ≈ D0

1 + γw'(x)2
, (18.63) 

where . γ is 1/3 for a 2D channel and 1/2 for a 3D tube.
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18.4 3D Hyperboloidal Cone 

In this section we will compare Zwanzig’s theoretical approach to a specific 
example. Unfortunately, there are very few exactly solved problems that can be used 
for this test. One of them is the steady-state diffusion through a three-dimensional 
hyperboloidal cone, shown in Fig. 18.1, using the following boundary conditions: an 
absorbing boundary is placed on the small exit hole or bottleneck, and at the opposite 
end of the infinite cone, a constant concentration . c0 is imposed. It is convenient to 
describe the shape of the tube using oblate spheroidal coordinates . (ξ, η, φ)1 (see 
Fig. 18.2), which are related to cylindrical coordinates .(r, z, φ) by 

.r2 = a2(ξ2 + 1)(1 − η2), z = aξη. (18.65) 

In this coordinate system, . η is the angular coordinate, ranging from .[−1, 1], . ξ is 
the radial coordinate that goes from .(−∞,∞), . φ is the azimuth coordinate ranging 
from .[0, 2π ], and a is the focal distance. The surface .η = 1 corresponds to the 
positive z axis, whereas when .η = 0, the surface becomes the .x, y plane except 
for the part that is inside the circle of radius a. The surfaces’ . ξ constant . >0 are  
flattened spheroids of thickness .2ξa and of radius, at the equator, of .a

√
ξ2 + 1 (see 

Fig. 18.3a). The surfaces’ . η constant are hyperboloids of one sheet, asymptotic to 
the cone of angle .arccos(η) with respect to the z axis (see Fig. 18.3b). Semi-planes 
can be constructed for constant . φ and varying . ξ and . η. 

The surface of a semi-infinite hyperboloidal cone is made by fixing .η = η0, 
where . η goes from . η0 to 1, varying . φ from 0 to . 2π , and . ξ from 0 to . ∞. Then, the 

1 Oblate spheroidal coordinates can be defined by the following transformation: 

. 

x = a

/
1 + ξ2

/
1 − η2 cos (φ),

y = a

/
1 + ξ2

/
1 − η2 sin (φ)

z = aξη,

where .(x, y, z) correspond to the Cartesian components. The oblate spheroidal coordinate system 
is related to the spherical system at the limit .a → 0. The scale factors for .(r, z, φ) are 

.

hξ = a

/
ξ2 + η2

1 + ξ2
,

hη = a

/
ξ2 + η2

1 − η2
,

hφ = a

/
(1 + ξ2)(1 − η2).

(18.64) 

The infinitesimal volume element is .dV = a3(ξ2 + η2)dξdηdφ. At constant . ξ the infinitesimal 
area element is .dA = a2

√
(ξ2 + η2)(1 − ξ2)dηdφ.
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Fig. 18.1 Three-dimensional 
hyperboloidal cone with 
cylindrical symmetry. The 
tubes are obtained when 
setting .0 < ξ < 5 and . a = 1
for three different values of 
. η0. (a) .η0 = 0.9. (b) 
.η0 = 0.6. (c) . η0 = 0.2

Fig. 18.2 Oblate spheroidal coordinates .(ξ, η, φ). (a) The curves of constant . ξ and . η are the blue 
ellipses and the green half-hyperbolae, respectively. (b) The lines of constant . φ are in orange, 
which lie over the .x − y plane 

bottleneck is at .ξ = 0 and the far end of the tube at .ξ → ∞. Then, diffusion takes 
place into the following region: 

.0 < ξ < ∞, η0 < η < 1, 0 < φ < 2π. (18.66) 

Because of the symmetry, concentration is not dependent on the angle . φ. 
Therefore, the steady-state diffusion equation in these coordinates is 

. ∇2c(ξ, η) = 1

a(ξ2 + η2)

{
∂

∂ξ

(
1 + ξ2

)∂c(ξ, η)

∂ξ
+ ∂

∂η

(
1 − η2

)∂c(ξ, η)

∂η

}
= 0.

(18.67)
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Fig. 18.3 The level surface is an oblate spheroid for . ξ constant and varying . η and . φ and a one-
sheet hyperboloid for a constant . η and varying . ξ and . φ. The red circle shows the focal circle a. (a) 
Oblate spheroid. (b) Hyperboloid of one sheet 

A solution for this differential equation can be proposed from the observation that 
the derivative of .arctan (ξ) is equal to .(1+ξ2)−1, which reduces with the scale factor 
. hξ , nullifying the second derivative with respect to . ξ in Eq. (18.67). Therefore, a 
solution is given by 

.c(ξ) = A arctan (ξ) + P, (18.68) 

where . A and . Pare constants, which we will be setting by means of the boundaries 
conditions. The same result is obtained by integrating Eq. (18.67) if we assume 
that the concentration only depends on . ξ . The differential equation (18.67) was 
solved previously using the separation of variables method (for further details see 
Sect. 14.6). Imposing the boundary conditions, .c(ξ = 0, η) = 0 and . c(ξ, η) = c0
for .ξ → ∞, Eq. (18.68) becomes 

.c(ξ) = 2

π
c0 arctan (ξ). (18.69) 

This solution also fulfills the no-flux condition on the surface: 

.
∂c(ξ)

∂η

||||
η=η0

= 0. (18.70) 

Once we have the steady-state concentration, we can obtain the flux, which in 
these coordinates is given by
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. J(ξ, η) = −D0∇c(ξ) = −D0

a

/
1+ξ2

ξ2+η2

∂c(ξ)

∂ξ
êξ = 2D0

πa

/
1 + ξ2

ξ2 + η2

1

1 + ξ2
c0 êξ ,

(18.71) 

where . D0 is the bulk diffusivity. Then, the normal flux through the bottleneck is 

.J (ξ = 0, η) = J(ξ, η)

||||
ξ=0

· (−êξ ) = D0
2

πaη
c0. (18.72) 

Using this last equation, we can calculate the current flow, . Iss , and using this 
result, we can also calculate the association rate constant. We also need to calculate 
the surface integral of the flux over the bottleneck, namely, 

.Iss =
f 1

η0

f 2π

0
D0

2

πaη
c0 a2ηdηdφ = 4D0a(1 − η0)c0. (18.73) 

From this last equation, we can see that the association rate constant is 

.khc = 4D0a(1 − η0). (18.74) 

When .η0 = 0, the association rate constant for a disk-like absorber on a flat wall, 
given by Eq. (4.22), is recovered as expected. 

Now, by means of Eq. (18.73), which is a simple and exact result, we can test the 
theoretical approximations obtained by Zwanzig’s approach. 

To such end, let’s calculate the predictions for current flux for the three-
dimensional hyperboloidal cone obtained through Zwanzig’s 1D reduction. The 
starting point is the modified Fick-Jacobs equation for a 3D tube, substituting the 
entropic potential, Eq. (18.16), and the cross-sectional area .A(z) leads to 

.
∂c(z, t)

∂t
= ∂

∂z

{
A(z) D(z)

∂

∂z

[
ρ(z, t)

A(z)

]}
. (18.75) 

Then, the steady-state flux, . Jss , is given by 

.Jss = A(z) D(z)
∂

∂z

[
ρ(z)

A(z)

]
. (18.76) 

Let’s rewrite this equation in the following form: 

.
ρ(z)

A(z)
= Jss

f z

0

∂
∂z'

D(z'A(z'))
. (18.77) 

The benefits will be clearly seen below. To be consistent with our 1D reduction, 
we can approximate .ρ(z) from the definition of the marginal concentration,
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Eq. (18.4). Because the concentration now only depends on . ξ , or  z, the integral 
becomes 

.ρ(z) = c(z)

f 1

η0

f 2π

0
a2ηdηdφ = A(z)c(z). (18.78) 

Using the boundary condition when z goes to infinity, we have that . ρ(z) =
A(z)c0, and substituting this relation into Eq. (18.77), and taking the limit when 
z goes to infinity, leads to 

.Iss = Jss = c0

f ∞

0

dz'

D(z')A(z')
. (18.79) 

The equality .Iss = Jss is because the current flux coincides with the flux in 1D. 
Finally, we can test the theoretical approximations by comparing Eq. (18.79) with 

the exact result given by Eq. (18.74). It is worth noting that even when we calculate 
the flux for a very distant z, it is the same as that for the absorbing bottleneck, 
given that, in 1D, the steady-state flux does not depend on the space coordinates, 
but rather, it is constant, and consequently, the concentration is a linear function. 
These results come from the continuity equation, Eq. (2.71). 

To perform the integral in Eq. (18.79), we first have to find the formula for the 
cross-sectional area of a hyperboloidal cone, .A(z), as well as the derivative of the 
radius at z to be used in Eq. (18.62). On the surface of the tube, .z = aξη0 or . ξ =
z/aη0. Then, from Eq. (18.65), we have that 

.r(z)2 =
(

1

η0
− 1

)(
z2 + a2η20

)
, (18.80) 

where .A(z) = πR(z)2. Taking the derivative of .R(z) with respect to z, we arrive at  
the following relation: 

.R'(z) =
(

1
η2

− 1
)

z/(
1
η2

− 1
) (

a2η2 + z2
) . (18.81) 

The effective diffusivity for the FJ approximation is obtained when approximat-
ing .D(z) ≈ D0. Direct substitution of this approximation and the cross-sectional 
area .A(z) into the integral (18.79) leads to 

.IFJss = 2

/
1

η2

(
1 − η2

)
. (18.82) 

On the other hand, substituting Eq. (18.81) into the effective diffusivity predicted 
by Zwanzig, Eq. (18.62), becomes
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.D(x) ≈ DZw(x) = D0

1 + 1
2 r

'(z)2
= D0

⎡
⎣1 +

(
1
η2

− 1
)

z2

2
(
a2η2 + z2

)
⎤
⎦

−1

. (18.83) 

Substituting .A(z) and Eq. (18.83) into Eq. (18.79), we find that the predicted 
current flux is 

.IZwss = 8η
(
1 − η2

)
1 + 3η2

. (18.84) 

Now we will calculate the current flux using the approximation for .D(x) given 

by Eq. (18.35), namely, .D0

[
1 − 1

2R
'(x)2

]
. Our main intention is to show that 

under this approximation predictions are very poor, this being the main reason why 
Zwanzig proposed Eq. (18.62) instead. Under this approximation, we arrive at the 
following equation: 

.IZw-2ss = 8η
(
1 − η2

)
3η2 + 1

. (18.85) 

Figure 18.4 shows a comparison of the exact value of the current flux at the 
bottleneck of the hyperboloidal cone, Eq. (18.73), with the FJ and the modified FJ 
approach using the two possible approximations for .D(x), in the latter case. As we 
can see, the modified FJ considerably extends the application of the FJ reduction 
when using Eq. (18.84). On the contrary, very poor results are obtained when using 
Eqs. (18.82) and (18.85). All of them fail as . η0 decreases, when the tube becomes 
a flat wall. We can conclude that the modified FJ is effective for treating diffusion 
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Fig. 18.4 The current flux through the bottleneck of the hyperboloidal cone normalized by 
.4aD0c0 is plotted against . η0, setting  .a = D0 = 1 and .0 < ξ < 5. Comparison of the 
exact expression for the steady-state current flux given by Eq. (18.73) (solid red line) against the 
approximation values by FJ, Eq. (18.82), and the modified FJ equation, Eq. (18.84), depicted by 
the blue and green solid lines, respectively. The result obtained with Eq. (18.85) is represented by 
the dashed green line
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in a tube of varying cross sections when its shape does not change to quickly, i.e., 
when .| R'(x) |<< 1 by means of Eq. (18.83). These criteria are also applicable for 
the two-dimensional case. 

18.5 The Effective Diffusion Coefficient 

18.5.1 Exact Formula for the Hyperboloidal Cone 

Fortunately, we can go further into the analysis and compare the 1D reduction to 
an exact value for the position-dependent effective diffusion coefficient, because an 
exact formula can be obtained for the hyperboloidal cone. To such end, we have to 
compare the flux obtained by the marginal concentration with a dependent-position 
effective diffusivity, Eq. (17.24), 

. J (z) = −D(z)A(z)
∂

∂z

ρ(z)

A(z)
, (18.86) 

with the exact expression for the flux given by Eq. (18.74), .Jss = 4D0a(1 − η0)c0. 
From Eq. (18.86), we see that there are many steps involved in calculating .J (z). 
First we have to calculate .ρ(z), divide it over .A(z), and take the derivative with 
respect to (z). Consequently, the first step is to calculate the flux from the marginal 
concentration, .ρ(z). As we know that the concentration is given by Eq. (18.69), 
.c(ξ) = (2/π)c0 arctan (ξ), we can calculate this marginal concentration using 
Eq. (18.4), which in oblate coordinates becomes 

.ρ(ξ) =
f 2π

0

f 1

η0

c(ξ) a2
/

(ξ2 + η2)(1 − ξ2)dηdφ. (18.87) 

The result of this integral is less complicated to manipulate algebraically if we 
rewrite it in cylindrical coordinates, namely, 

.ρ(z) =
f 2π

0

f R(z)

0
c(z) rdrdφ, (18.88) 

where .R(z) is the radius at a given z. Performing the integral over . φ, we have . 2π . To  
perform the integral over r , we go from 0 to .R(z). In such a case, . 2r dr = 2y dy =
dr2, then 

.ρ(z) = π

f R(z)

0
c(z) dr2 dφ. (18.89)
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To find a relation between .dr2 and . dξ at constant z, we have to use the relation 
between oblate spherical and cylindrical coordinates, Eq. (18.65), and the formula 
for the radius given by Eq. (18.80), then 

.
dr2

dξ
= 2a2ξ + 2z2

ξ3
dξ. (18.90) 

Consequently, Eq. (18.89) can be rewritten as 

.ρ(ξ) = 2c0

f z/aη0

z/a

2

(
a2ξ + z2

ξ3

)
arctan (ξ) dξ. (18.91) 

This integral can be solved by parts, leading to 

. ρ(ξ) = 2c0

{[(
a2ξ2 − z2

ξ2

)
arctan (ξ)

]z/aη0

z/a

−
f z/aη0

z/a

(
a2ξ2 − z2

ξ2

)
dξ

ξ2 + 1

}
.

(18.92) 

After performing the integral on the right-hand side and evaluating the whole 
expression, we arrive at 

.ρ(z) = 2c0

⎡
⎣ (1 − η20)

(
a2η20 + z2

)
arctan

(
zx
aη0

)
η20

− az(1 − η0)
2

η0

⎤
⎦ . (18.93) 

Dividing this last expression by .A(z) = πR(z)2 leads to 

.
ρ(z)

A(z)
= 2c0

π
arctan

(
z

aη0

)
− 2ac0(1 − η0)η0 z

π(1 + η0)
(
a2η20 + z2

) . (18.94) 

Substituting this last expression into Eq. (18.86) and equating it with Eq. (18.74), 
we find that 

.4aD(z)
(η − 1)

(
a2η30 + x2

)
η0
(
a2η20 + x2

) c0 = 4aD0(1 − η0)c0. (18.95) 

Finally, solving for .D(x), the exact formula for the position-dependent effective 
diffusivity for the hyperboloid cone is 

.D(z) = η0(z
2 + η20a

2)

z2 + η30a
2

D0. (18.96)
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Fig. 18.5 Effective diffusion 
coefficient .D(z), dependent 
on the longitudinal coordinate 
z, for the 3D hyperboloidal 
cone, setting .a = 1 and 
.η0 = 0.9 and .η0 = 0.6. The  
solid lines depict the exact 
function, Eq. (18.96); dashed  
lines represent the 
approximation given by 
Eq. (18.83) 

This formula was derived by P. Kalinay and J. Percus, and its limits are when z 
goes to zero .D(x) = D0 and when .z → ∞, .D(x) = η0D0. 

The effective diffusivities predicted by Eq. (18.96), that is dependent on the 
longitudinal z-coordinate, are shown in Fig. 18.5 for .η0 = 0.6 and .η0 = 0.5 by solid 
lines, where .a = D0 = 1. As we can see, close to the bottleneck, around .z = 0, 
the value of the effective diffusivity is . D0, where .Dz = D0. This is because the 
shape of the bottleneck is like a cylindrical tube. Because of its angular symmetry, 
the diffusion process into a tube is described by one-dimensional. As the bottleneck 
begins to become a straight cone, a drastic decrease in the coefficient is observed 
due to the large space that the particles now have to diffuse, which makes their 
diffusion in the longitudinal axis slower. As .η0 → 0 the decay is more abrupt. 
Finally, the particles that are far away from the bottleneck explore the straight cone 
and experience a constant diffusion coefficient. The values of this constant is .η0D0. 
Then, for a cylindrical tube, when .η0 → 1, we recover . D0. On the other hand, when 
.η0 → 0, the effective diffusivity goes to 0. 

The comparison of Eq. (18.96) formula with the approximation equation 
obtained by Zwanzig, Eq. (18.83), is shown in Fig. 18.4 for two values of . η0. 
As we can see, Eq. (18.83) is only accurate for . η0’s no smaller than 0.6, as we 
expected from Fig. 18.5. 

It is worth noting that when .ξ → ∞, the shape of the hyperboloidal cone 
becomes a conical tube. In such a case, Eq. (18.96) predicts that the effective 
diffusion coefficient is constant and given by .D(z) = η0D0. On the other hand, 
this cone has an angle .θ = arccos (η0) with respect to the z axis. If the radius of 
these cones is given by .r(z) = λx + b, then the slope . λ is given by .λ = tan (θ). 
Consequently, 

.D(z) = cos (arctan (λ))D0 = D0√
1 + λ2

. (18.97) 

The relation on the right-hand side is obtained by using the definitions of 
the cosine and tangent functions. Applying the same limit to the concentration, 
Eq. (18.69), the prediction is that, in a conical tube, the concentration is constant 
and given by . c0 at the steady-state.
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18.5.2 Mean Square and Transient Behavior 

To help readers gain further insight on the physical meaning of effective diffusion 
coefficient or effective diffusivity, in this section we will study the mean square 
displacement of a Brownian point-like particles under confinement. 

Free diffusion of unbiased motion is a coarse-grained description that is appli-
cable at sufficiently long times: When the typical displacement of the diffusing 
particle exceeds a characteristic length scale associated with the heterogeneity 
of the medium. For example, the description of the motion of water in terms 
of self-diffusion is applicable at times greater than 100 ps when the average 
displacement exceeds the average distance between water molecules. In crystalline 
solids, the description of diffusion works for times when the displacement exceeds 
the lattice period. On the other hand, diffusion in biological systems frequently 
occurs in microheterogeneous media where the description in terms of effective 
free diffusion may become applicable only for times that are comparable to or 
even longer than the duration of the experiment. The effective diffusion coefficient 
associated with this coarse-grained description is commonly calculated from the 
data obtained from mean-square displacements, .<Ar2(t)>, which are frequently 
described by the dependency .<Ar2(t)> ∝ tα . For free diffusion, the exponent . α
is unity and reached before a transient behavior, when .α < 1 is a fingerprint of 
anomalous subdiffusion. The fundamental difference between the transient behavior 
and anomalous subdiffusion is that the exponent . α is a function of time in the former 
case, but a constant in the case of anomalous subdiffusion. 

To illustrate the transient behavior until the effective diffusivity is reached, let’s 
consider the hyperboloidal cone with cylindrical symmetry, shown in Fig. 18.1a, 
which has an absorbing bottleneck, assuming that the particle’s initial position is 
uniformly distributed. 

The time dependence of the mean-square displacement obtained by simulations 
is shown in Fig. 18.6. As we can see from this figure, . α goes form unity, for a 
free particle diffusing, following for a transient behavior, where . α depends on time 
and goes from values less than unity, reaches a minimum, and then goes to unity 
again (see inset in Fig. 18.6), where the diffusion coefficient can be described by an 

Fig. 18.6 The main square 
displacement of a Brownian 
particle along the z axis of a 
hyperboloidal cone with and 
absorbing end (blue continues 
line). The system parameters 
in dimensionless units: 
.0 < ξ < 5, .η0 = 0.8, .a = 1, 
and .D0 = 1. The dependence 
on time of . α is shown in the 
inset
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Fig. 18.7 Typical trajectories 
of a Brownian particle in a 
hyperboloidal cone setting 
.η0 = 0.8. (a) Shortly after 
starting its path the Brownian 
particle follows free diffusion. 
(b) The Brownian particle 
begins to realize the presence 
of dead ends. (c) Once the 
Brownian particles have had 
enough time to explore the 
system, the process can be 
described by means of an 
effective diffusion coefficient 

effective diffusivity coefficient. This description is a fingerprint of diffusion under 
confinement. 

To gain deeper insight, let’s take a look at the typical trajectories of a Brownian 
particle diffusing into our system, shown in Fig. 18.7. Let’s assume that our 
Brownian particle starts its trajectory at the cylinder tube. As we can see from 
Fig. 18.7a, at first it is not aware of the presence of dead ends. Consequently, its 
mean square displacement is proportional to t and its diffusivity equals to . D0. As  
times goes by, the particle begins to realize the presence of the dead ends, but while 
the particle continues to explore, the mean square displacement is proportional to 
.tα(t) (see Fig. 18.7b). Finally, once the particle has had enough time to equilibrate 
into the system, as shown in Fig. 18.7c, . α is unity again, and the diffusion coefficient 
value reaches a plateau and can then be represented as an effective diffusion 
coefficient. 

It is worth mentioning that theoretically finding the effective coefficients as 
function of the position and geometric parameters of the constraints is one of the 
main tasks when studying diffusion under confinement. An in-depth study of this is 
included in the following chapters.
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18.6 Concluding Remarks 

In this chapter, we reviewed the main ideas of Robert Zwanzig to arrive at a more 
general and rigorous derivation of the Fick-Jacobs equation. The method consists 
of performing a reduction in the number of coordinates from the two- or three-
dimensional Smoluchowski equation to a one-dimensional description. The key 
point of this derivation is the assumption of equilibration in the transverse direction. 

Finally, Zwanzig showed that the range of applicability of the Fick-Jacobs 
equation can be extended by introducing a position-dependent effective diffusion 
coefficient, also known as the modified Fick-Jacobs equation. He derived explicit 
formulas for effective diffusivity by treating the channel width variation rate, .w'(x), 
as a small parameter. It is also worth noting that Zwanzig showed that the modified 
Fick-Jacobs equation is equivalent to Smoluchowski’s equation, if one defines an 
entropic potential that is proportional to .w(x)/w(0). 

We also discussed the main properties of the diffusion coefficient’s transient 
behavior as function of time. We find that as t goes from zero to infinity, this 
time dependence monotonically decreases from .D0 to .Deff, where .D0 is the 
bulk diffusivity and .Deff is the effective diffusion coefficient in the presence of 
confinement. This transient behavior ultimately reaches an effective diffusivity, 
which is a fingerprint of diffusion under confinement. This effective diffusivity is 
dependent on geometrical parameters and position. 

The most important equations that were obtained in this chapter are listed below: 

. 
∂ρ(x, t)

∂t
= ∂

∂x

[
D(x)w(x)

∂

∂x

ρ(x, t)

w(x)

]

(Modified Fick-Jacobs equation in 2D) 

. 
∂ρ(x, t)

∂t
= ∂

∂x

[
D(x)A(x)

∂

∂x

ρ(x, t)

A(x)

]

(Modified Fick-Jacobs equation in 3D) 

.D(x)Zw ≈ D0

1 + 1
12w

'2(x)
. (2D Zwanzig effective diffusivity) 

.D(x)Zw ≈ D0

1 + 1
2R

'2(x)
. (3D Zwanzig effective diffusivity) 

.D(z) = η0(z
2 + η20a

2)

z2 + η30a
2

D0. (Effective diffusivity for a hyperboloidal cone)
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18.A Mathematical Computations 

18.A.1 Derivation of Eq. (18.29) 

The first step to arrive at Eq. (18.29) is to take the derivative of .δc(x, y, t) with 
respect to time 

.

∂δc(x, y, t)

∂t
= ∂c(x, y, t)

∂t
− ∂

∂t
[ρ(x, t) ϑ(y|x)]

= ∂c(x, y, t)

∂t
− ϑ(y|x)

∂ρ(x, t)

∂t
.

(18.98) 

Substituting Eqs. (18.1) and (18.22) into this last expression yields 

. 

∂δc(x, y, t)

∂t
= Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]}

+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y) c(x, y, t)

]}

− Dx ϑ(y|x)
∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

− Dx ϑ(y|x)
∂

∂x

f
ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy.

(18.99) 

Recalling that .c(x, y, t) = δc(x, y, t) + ρ(x, t)ϑ(y|x), we find 

. 

∂δc(x, y, t)

∂t
= Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) δc(x, y, t)

]}

+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y) δc(x, y, t)

]}

+ Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y)ϑ(y|x) ρ(x, t)

]}

+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

{
eβU(x,y)ϑ(y|x) ρ(x, t)

]}

− Dx ϑ(y|x)
∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x)ρ(x, t)

]}

− Dx ϑ(y|x)
∂

∂x

f
ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy.

(18.100)
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The first term on the right-hand side can be rewritten as 

.

Pδc(x, y, t) = Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) δc(x, y, t)

]}

+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y) δc(x, y, t)

]}
.

(18.101) 

In this last expression, we used the so-called Smoluchowski operator, defined by 

. P≡ Dx

∂

∂x

{
e−βU(x,y) ∂

∂x
eβU(x,y)

}
+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y
eβU(x,y)

}
.

(18.102) 

The substitution of Eq. (18.4) into the second right-hand side term of Eq. (18.100) 
leads to 

.

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y)ϑ(y|x) ρ(x, t)

]}

+ ∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y)ϑ(y|x) ρ(x, t)

]}

= ∂

∂x

{
ϑ(y|x) e−βf(x) ∂

∂x

[
ϑ(y|x)

1

ϑ(y|x)
eβf(x) ρ(x, t)

]}

+ ∂

∂y

{
ϑ(y|x) e−βf(x) ∂

∂y

[
ϑ(y|x)

1

ϑ(y|x)
eβf(x)ρ(x, t)

]}

= ∂

∂x

{
ϑ(y|x) e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

+ ∂

∂y

{
ϑ(y|x) e−βf(x) ∂

∂y

[
eβf(x) ρ(x, t)

]}
.

(18.103) 

Noting the functional dependency of the exponentials and the function .ρ(x, t), one 
can obtain 

.
∂

∂y

{
ϑ(y|x) e−βf(x) ∂

∂y

[
eβf(x) ρ(x, t)

]}
= 0. (18.104) 

Consequently, Eq. (18.103) results in
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.

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) ϑ(y|x) ρ(x, t)

] }

+ ∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y)ϑ(y|x) ρ(x, t)

]}

= ∂

∂x

{
ϑ(y|x) e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
.

(18.105) 

Using this last equation, the last right-hand side term of Eq. (18.100), and applying 
the chain rule for derivatives, one can write 

.

∂

∂x

{
ϑ(y|x) e−βf(x) ∂

∂x

[
eβf(x) c(x, t)

] }

= ϑ(y|x)
∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

+
[

∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]
,

(18.106) 

or 

.

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]

= ∂

∂x

{
ϑ(y|x) e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}

− ϑ(y|x)
∂

∂x

{
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
.

(18.107) 

Using this last equation, Eq. (18.100) can be rewritten as 

. 

∂δc(x, y, t)

∂t
= Pδc(x, y, t)

+ Dx

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]

− Dx ϑ(y|x)
∂

∂x

{
e−βf(x)

f
ϑ(y|x)

∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy

}
.

(18.108) 

Using the chain rule for derivatives one more time, now applied to the expression 
inside the integral of the last equation, we arrive at
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.

∂

∂x

[
ϑ(y|x)

eβf(x)

ϑ(y|x)
δp(x, y, t)

]

=
[

∂

∂x
ϑ(y|x)

]
eβf(x)

ϑ(y|x)
δc(x, y, t)

+ ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
,

(18.109) 

which substituted into Eq. (18.108) can be seen as 

.

f
ϑ(y|x) e−βf(x) ∂

∂x

[
1

ϑ(y|x)
eβf(x) δc(x, y, t)

]
dy

= ∂

∂x

f
ϑ(y|x)

eβf(x)

ϑ(y|x)
δc(x, y, t) dy

−
f [

∂

∂x
ϑ(y|x)

]
eβf(x)

ϑ(y|x)
δc(x, y, t) dy.

(18.110) 

Using the first term on the right-hand side leads to 

.

∂

∂x

f
ϑ(y|x)

eβf(x)

ϑ(y|x)
δc(x, y, t) dy

= ∂

∂x

{
eβf(x)

f
δc(x, y, t) dy

}

= ∂

∂x

{
eβf(x)

f
[c(x, y, t) − ρ(x, t) ϑ(y|x)] dy

}

= ∂

∂x

{
eβf(x)

[f
c(x, y, t)dy − ρ(x, t)

f
ϑ(y|x) dy

]}

= ∂

∂x

{
eβf(x)

[
ρ(x, t) − ρ(x, t)

f
e−βU(x,y)

e−βf(x)
dy

]}

= ∂

∂x

{
eβf(x)

[
ρ(x, t) − ρ(x, t)

e−βf(x)

f
e−βU(x,y) dy

]}

= ∂

∂x

{
eβf(x)

[
ρ(x, t) − ρ(x, t)

e−βf(x)
e−βf(x)

]}

= ∂

∂x

{
eβf(x) [ρ(x, t) − ρ(x, t)]

}

= 0,

(18.111)
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where the result was obtained by means of Eq. (18.4) and Eq. (18.8). Now, if  
Eqs. (18.111) and (18.110) are substituted into Eq. (18.108), we have that 

. 

∂δc(x, y, t)

∂t
= Pδc(x, y, t)

+ Dx

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]

+ Dx ϑ(y|x)
∂

∂x

{
e−βf(x)

f [
∂

∂x
ϑ(y|x)

]
eβf(x)

ϑ(y|x)
δc(x, y, t) dy

}
,

(18.112) 

which reduces to 

. 

∂δc(x, y, t)

∂t
= Pδc(x, y, t) + Dx

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]

+ Dx ϑ(y|x)
∂

∂x

f [
∂

∂x
ϑ(y|x)

]
1

ϑ(y|x)
δc(x, y, t) dy.

(18.113) 

Now, we approximate this last result keeping only the first-order terms of . ∂xρ, 
resulting in 

. 
∂δc(x, y, t)

∂t
= Pδc(x, y, t) + Dx

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]
,

(18.114) 

which needs to be operated using the Laplace transform 

. 

L
{

∂δc(x, y, t)

∂t

}
= L {Pδc(x, y, t)}

+ Dx L
{[

∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t)

]}
,

(18.115) 
yielding 

. s L
{

∂δc(x, y, t)

∂t

}
− δC(x, y, 0)

= PL {δc(x, y, t)} + Dx

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) L {ρ(x, t)}

]
,

(18.116) 

from where we can obtain
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. (s − P) L {δc(x, y, t)} = Dx

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) L {ρ(x, t)}

]
.

(18.117) 

Leaving the explicit Laplace transform on the left side, the equation becomes 

. L {δc(x, y, t)} = Dx

(s − P)

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) L {ρ(x, t)}

]
.

(18.118) 

Applying the inverse Laplace transform gives 

. δc(x, y, t) = L−1
{

Dx

(s − P)

[
∂

∂x
ϑ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) L {ρ(x, t)}

]}
.

(18.119) 

Using the inverse transform given by Eq. (A.65), and the convolution theorem given 
by Eq. (A.74), we finally arrive at Eq. (18.29), namely, 

. δc(x, y, t) = Dx

f t

0
et 'P

[
∂

∂x
ρ(y|x)

]
e−βf(x) ∂

∂x

[
eβf(x) ρ(x, t − t ')

]
dt '.
(18.29) 

18.A.2 Derivation of Eq. (18.39) 

To lead into Eq. (18.39), the operator . P' should be rewritten in terms of another 
operator . Q, namely, 

.P'ϑ(y|x)f = ϑ(y|x) Qf, (18.120) 

so then 

.κ(x) =
f [

∂

∂x
ϑ(y|x)

] f ∞

0

1

ϑ(y|x)
etP'

[
∂

∂x
ϑ(y|x)

]
dt dy. (18.121) 

For practicality purposes, we define 

.ψ(y|x) ≡
f ∞

0

1

ϑ(y|x)
etP'

[
∂

∂x
ϑ(y|x)

]
dt. (18.122) 

As such, we can see that the operator given by Eq. (18.120) must obey 

.Qψ(y|x) = − ∂

∂x
ln [ϑ(y|x)] . (18.123) 

Moreover,
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.

Qψ(y|x) = − ∂

∂x
ln [ϑ(y|x)]

= − 1

ϑ(y|x)

∂

∂x
ϑ(y|x) = 1

ϑ(y|x)
P' [ϑ(y|x) ψ(y|x)] .

(18.124) 

This last equation can be rewritten as follows: 

. − ∂

∂x
ϑ(y|x) = P' [ϑ(y|x) ψ(y|x)] = ∂

∂y

{
ϑ(y|x)

∂

∂y

[
ϑ(y|x)

ϑ(y|x)
ψ(y|x)

]}
,

(18.125) 
then 

. − ∂

∂x
ϑ(y|x) = ∂

∂y

{
ϑ(y|x)

∂

∂y
ψ(y|x)

}
. (18.126) 

Now, Eq. (18.121) is given by 

.κ(x) =
f [

∂

∂x
ϑ(y|x)

]
ψ(y|x) dy. (18.127) 

By choosing the potential wisely, .κ(x) can be modified to a more practical form, so 
we propose that 

.U(x, y) = V

(
y

h(x)

)
= V (z), (18.128) 

where the system boundary .h(x) is used as a scale factor for the y-coordinate, 
namely, 

.z ≡ y

h(x)
. (18.129) 

By defining 

.q ≡
f

e−βV (z) dz, (18.130) 

and using Eq. (18.9) one more time, we obtain 

.ρ(y|x) = e−βV (z)

qh(x)
, (18.131) 

where 

.e−βf(x) = qh(x). (18.132)
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Seeing that 

.
∂z

∂y
= ∂

∂y

[
y

h(x)

]
= 1

h(x)
, (18.133) 

.
∂z

∂x
= ∂

∂x

[
y

h(x)

]
= y

A'(x)

A2(x)
, (18.134) 

these can be used to write 

.

∂

∂y
ϑ(y|x) = ∂

∂y

[
e−βV (z)

qh(x)

]
= 1

qh(x)

∂

∂y
e−βV (z)

= 1

qh(x)

[
−βV '(z) ∂z

∂y
e−βV (z)

]

= −βV '(z)
qh(x)

e−βV (z) 1

h(x)
= −β

V '(z)
h(x)

ϑ(y|x),

(18.135) 

and multiplying by y yields 

.y
∂

∂y
ρ(y|x) = −β

y

h(x)
V '(z) ϑ(y|x). (18.136) 

A similar procedure can be followed for the x-coordinate, namely, 

.

∂

∂x
ρ(y|x) = ∂

∂x

[
e−βV (z)

qh(x)

]

= 1

q

{
e−βV (z) ∂

∂x

(
1

h(x)

)
+ 1

h(x)

∂

∂x

(
e−βV (z)

)}

= 1

q

{
−e−βV (z) A'(x)

A2(x)
+ 1

h(x)

[
−βV '(z) ∂z

∂x
e−βV (z)

]}

= − 1

qh(x)
e−βV (z)

[
A'(x)

h(x)
+ βV '(z)y A'(x)

A2(x)

]

= −A'(x)

h(x)
ϑ(y|x)

[
1 + βV '(z)y 1

h(x)

]

= −A'(x)

h(x)

[
ϑ(y|x) + y

∂

∂y
ϑ(y|x)

]
,

(18.137) 

and consequently,
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.
∂

∂x
ϑ(y|x) = −A'(x)

h(x)

∂

∂y
[y ϑ(y|x)] . (18.138) 

Now, Eq. (18.126) can be substituted in this last equation to obtain 

.
∂

∂y

{
ϑ(y|x)

∂

∂y
ψ(y|x)

}
= A'(x)

h(x)

∂

∂y
[y ϑ(y|x)] , (18.139) 

which can be integrated in the y-coordinate, leading to 

.
∂

∂y
ψ(y|x) = A'(x)

h(x)
y + c1, (18.140) 

where . c1 is an integration constant. Substituting Eq. (18.138) into .κ(x), given by 
Eq. (18.127), we obtain 

.

κ(x) =
f {

−A'(x)

h(x)

∂

∂y
[y ϑ(y|x)]

}
ψ(y|x) dy

= −A'(x)

h(x)

f
ψ(y|x)

∂

∂y
[yϑ(y|x)] dy.

(18.141) 

Integrating by parts leads to 

. κ(x) = −A'(x)

h(x)

{
[ψ(y|x) y ϑ(y|x)]

||||
b

a

−
f

y ϑ(y|x)
∂

∂y
[ψ(y|x)] dy

}
.

(18.142) 

The first right-hand side term is a constant that is discarded; then Eq. (18.140) is 
used, yielding 

. κ(x) = A'(x)

h(x)

f
yϑ(y|x)

A'(x)

h(x)
y dy = [

A'(x)
]2 f y2

A2(x)
ϑ(y|x) dy.

(18.143) 
Now, using Eqs. (18.131) and (18.129), we arrive at  

.κ(x) = [
A'(x)

]2 1

q

f
z2

e−βV (z)

h(x)
w dz, (18.144) 

Finally, using Eq. (18.130) allows us to obtain a useful expression for .κ(x), 
Eq. (18.39), namely, 

.κ(x) = [
A'(x)

]2 f
z2 e−βV (z) dz

/ f
e−βV (z) dz. (18.39)
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Chapter 19 
Reguera and Rubi Kinetic Equation 

19.1 Introduction 

Using the mesoscopic non-equilibrium thermodynamics theory, David Reguera and 
Miguel Rubi derived a general kinetic equation in the presence of potential barriers. 
Using this theoretical framework, they studied diffusion under confinement where 
the presence of boundaries induces an entropy barrier when approaching the exact 
dynamics by a coarse-grained description. Under this approximation, they derived 
the modified Fick-Jacobs equation, previously found by Zwanzig, as discussed in the 
previous chapter. They also proved that this equation can be generalized formulating 
a scaling law for the position-dependent diffusion coefficient, which depends on the 
shape of the boundaries. It is worth noting that in their theoretical description, they 
also included an external energetic term. 

This theoretical framework is applicable to a wide variety of systems of 
different nature, such as protein folding, glassy systems, transport of ions and 
macromolecules through membranes or channels, motion of polymers subjected 
to rigid constraints, protein binding kinetics, drug release, nucleation, or polymer 
crystallization, to mention just a few examples, where the presence of entropic 
barriers becomes relevant. 

This chapter is devoted to the in-depth study of the mesoscopic non-equilibrium 
thermodynamics theory in the presence of entropic barriers, as well as its application 
to diffusion under geometrical constraints. 

19.2 Entropy Production 

We start the derivation of the modified Fick-Jacobs equation using mesoscopic 
non-equilibrium thermodynamics by considering Gibbs’ entropy postulate, which 
describes deviations of entropy from its equilibrium value, namely, 
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.S = −kB

f
p(r, t) ln

p(r, t)
peq(r)

dr + Seq, (19.1) 

where . kB is the Boltzmann constant and .p(r, t) is the probability density. .peq and 
. Seq are the system’s equilibrium probability and entropy, respectively. . r represents 
a phase space point, a set of mesoscopic quantities, such as the position and velocity 
of a particle, the orientation of a spin, the number of particles of a cluster, or a 
reaction coordinate. This system obeys the continuity equation, found in Sect. 2.7.1, 

.
∂p(r, t)

∂t
+ ∇ · J(r, t) = 0, (2.72) 

where the flux over the boundaries is null because the system is confined. Then, 

.J (r, t)

||||
h1

= J(r, t)

||||
h2

= 0, (19.2) 

with . h1 and . h2 being the lower and upper boundaries of the system, respectively. 
Calculating the time derivative of entropy, Eq. (19.1), and considering the boundary 
conditions, this yields 

.
∂S

∂t
= kB

f {
ln

[
p(r, t)
peq(r)

]
∇ · J(r, t)

}
dr, (19.3) 

and after integrating by parts, this leads us to 

.σ ≡ ∂S

∂t
= −kB

f
J(r, t)∇

[
ln

p(r, t)
peq(r)

]
dr, (19.4) 

that is, the system’s entropy production. 

19.2.1 Continuity Equations 

From thermodynamics, we learn that the internal energy density u is given by 

.du = T ds +
Σ
j

μj dNj + φ dρ, (19.5) 

where we have j different kinds (species) of particles, . μj are their respective 
chemical potentials, and . φ is the electric potential. This can be rewritten in terms of 
the entropy density as
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.ds = 1

T
du − 1

T

Σ
j

μj dNj − φ

T
dρ. (19.6) 

The coefficients along the differential terms are intensive quantities and can be seen 
as potential energies. The extensive variables, which are expressed as differential 
quantities, must be conserved. With this in mind, let us think of a relation between 
generalized densities . ρk and their respective generalized potentials, namely, 

.φk = ∂s

∂ρk

, (19.7) 

where the relation takes the form 

.ds =
Σ

k

φk dρk, (19.8) 

and every extensive quantity (generalized density) obeys a continuity equation of 
the form 

.
∂ρk

∂t
+ ∇ · Jk = 0, (19.9) 

with . Jk being a generalized current density. The entropy is not conserved but follows 
its own special continuity-like equation, namely, 

.
∂s

∂t
+ ∇ · Js = ∂si

∂t
, (19.10) 

where the right-hand side is due to the irreversible part of the processes. 

19.2.2 Kinetic Coefficients 

If we restrict ourselves to the linear regime, the response of a system to an applied 
force is given by a stationary current, then 

.Ji =
Σ
j

Lij ∇φj , (19.11) 

where .Lij are the so-called kinetic coefficients. The Nobel Prize winner, Lars 
Onsager, showed in 1931 that those coefficients are symmetrical, namely, 

.Lij = Lji, (19.12) 

which are known as the Onsager reciprocal relations.
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19.2.3 Kinetic Equation 

Given the production of entropy, Eq. (19.4), together with the relation of the 
stationary current . J, expression (19.11), which is related to its conjugate kinetic 
coefficient .L(r), allows us to write 

.J(r, t) = −kB L(r)∇
[
ln

p(r, t)
peq(r)

]
, (19.13) 

which, following a continuity equation, gives 

.
∂p(r, t)

∂t
= ∇ ·

{
D(r) p(r, t)∇

[
ln

p(r, t)
peq(r)

]}
, (19.14) 

where the next definition was used 

.D(r) ≡ kB

L(r)
p(r, t)

. (19.15) 

If .AW(r) is the required amount of reversible work needed to change the system’s 
state, then the expression of the Boltzmann factor is 

.peq(r) ∼ exp [−βAW(r)] , (19.16) 

which needs to be replaced in Eq. (19.14) to become 

.
∂p(r, t)

∂t
= ∇ · [D(r)∇p(r, t) + βD(r) c(r, t)∇AW(r)] . (19.17) 

The work in this last equality can be substituted using the Helmholtz free energy, 
namely, 

.W = F = U − T S, (19.18) 

then, 

. 
∂p(r, t)

∂t
= ∇ · {D(r)∇p(r, t) + βD(r) p(r, t)∇ [AU(r) − T AS(r)]} .

(19.19) 

This last equation is a generalization of Eq. (6.16) for entropic and energetic 
potentials, with a non-constant diffusion coefficient. Moreover, it is a generalized 
Smoluchowski equation.
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19.3 Reduction of the Kinetic Equation 

In the last section, we deduced an extension of the diffusion equation that includes 
not only the contribution of an external energetic potential but also the effects of an 
entropic potential. Following the spirit of Zwanzig’s works, we will take the kinetic 
expression of Reguera and Rubi (RR) in the practical form of Eq. (19.14) and then 
apply a dimensional reduction. 

This is developed for a two-dimensional confined system, with boundaries that 
are defined by the function .y = hi(x), with .i = 1, 2 for the lower and upper 
walls, respectively. Obeying the described configuration, the spatial coordinates 
are .r = (x, y), and the probability density is .p(r, t) → p(x, y, t). Also, the del 
operators will be expanded along the bracketed terms as coordinate-separated partial 
derivatives, as a result of the dot product (divergence). Then, this particular form of 
Eq. (19.14) looks like 

.

∂p(x, y, t)

∂t
= ∂

∂x

{
Dx p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

]}

+ ∂

∂y

{
Dy p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]}
,

(19.20) 

where the diffusion coefficient was separated into two parts, one for each compo-
nent, but also, the diffusion coefficients are now considered as constants. The next 
step is to define a reduced density in the transversal coordinate y, namely, 

.ρ(x, t) ≡
f h2(x)

h1(x)

p(x, y, t) dy, (19.21) 

By integrating Eq. (19.20) and using this last equation, we obtain 

.

∂ρ(x, t)

∂t
= Dx

f h2(x)

h1(x)

∂

∂x

{
p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

]}
dy

+ Dy

f h2(x)

h1(x)

∂

∂y

{
p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]}
dy,

(19.22) 

where the second integral of the right-hand side is readily solved, this being 

.

Dy

f h2(x)

h1(x)

∂

∂y

{
p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]}
dy

= Dy

{
p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]} ||||
y=h2(x)

− Dy

{
p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]} ||||
y=h1(x)

.

(19.23)
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The system is confined, which means that there are no-flux conditions on the 
boundaries, and these can be written by knowing that the derivative of the function 
describing the wall must be parallel to the flux of the particles, yielding 

.J × h'
i (x) = 0, (19.24) 

from where we can see that 

.h'
i (x) = (1, h'

i (x)), (19.25) 

and 

.J = (Jx, Jy, 0). (19.26) 

Now, Eq. (19.24) can be written as 

. J × ±h'
i (x) =

||||||
ı̂ ĵ k̂

Jx Jy 0
1 h'

i (x) 0

|||||| = k̂
[±h'

i (x) Jx − Jy

] = 0, (19.27) 

obtaining 

. ± h'
i (x) Jx = Jy. (19.28) 

The last set of equations are the BCs, but we must explicitly specify the components 
of the flux. These should be obtained from the kinetic equation (19.20) by 
comparing it with a continuity equation such as Eq. (19.9) or (2.72). Then, we can 
state that 

. Jx = Dx p(x, y, t)
∂

∂x

[
ln

p(x, y, t)

peq(x, y)

]
, Jy = Dy p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]
,

(19.29) 

which can be substituted into Eq. (19.28) to obtain 

. h'
i (x)Dx p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

] ||||
y=hi

= Dy p(x, y, t)
∂

∂y

[
ln

p(x, y, t)

peq(x, y)

] ||||
y=hi

, (19.30) 

where we must note that the fluxes have to be evaluated over the boundaries. 
Recalling the calculations made for the right-hand side of Eq. (19.22), which are 
portrayed in Eq. (19.23), together with the BCs, yields
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.

Dy

f h2(x)

h1(x)

∂

∂y

{
p(x, y, t)

∂

∂y

[
ln

p(x, y, t)

peq(x, y)

]}
dy

= h'
2(x)Dx p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

] ||||
y=h2

− h'
1(x)Dx p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

] ||||
y=h1

.

(19.31) 

Determining the first integral on the right-hand side of Eq. (19.22) requires the use 
of the Leibniz rule for integrals, Eq. (A.9), which is written in Appendix A.3. By  
these means, we have that 

.

Dx

∂

∂x

f h2(x)

h1(x)

∂

∂x

{
p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

]}
dy

= Dx

f h2(x)

h1(x)

∂

∂x

{
p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

]}
dy

+ Dx h'
2(x) p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

] ||||
y=h2

− Dx h'
1(x) p(x, y, t)

∂

∂x

[
ln

p(x, y, t)

peq(x, y)

] ||||
y=h1

.

(19.32) 

This last equation can be substituted together with Eq. (19.31) back into Eq. (19.22), 
and after reducing terms, we obtain 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

f h2(x)

h1(x)

p(x, y, t)
∂

∂x

[
ln

p(x, y, t)

peq(x, y)

]
dy, (19.33) 

where the internal derivative can be manipulated, leading us to obtain 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

f h2(x)

h1(x)

peq(x, y)
∂

∂x

[
p(x, y, t)

peq(x, y)

]
dy. (19.34) 

This is the reduced kinetic equation for a 2D confined system. 
A key component in the construction of the kinetic equation is the Boltzmann 

factor, which is written as a probability distribution. This is the main reason why 
we wrote down the calculations in this section in terms of probabilities instead 
of concentration, as done in previous chapters. Nevertheless, all the results can be 
written in terms of concentration by using the relation .c(r, t) = Np(r, t), where N 
is the number of particles, as stated in Sect. 4.2. Further steps to get usable results 
will depend on the precise form of the equilibrium probability.
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19.3.1 Reduced Equation for a Gravitational-Like Field 

As a specific case, we are studying a confined two-dimensional system under the 
influence of a gravitational-like field to obtain its reduced kinetic equation. For this 
system, the Boltzmann factor (19.16) is 

.peq(x, y) ∼ e−β Gy, (19.35) 

where G is a gravitational-like force pointing downward. Now, a practical definition 
is made, which is 

.g ≡ β G, (19.36) 

and then, Eq. (19.35) becomes 

.peq(x, y) ∼ e−g y. (19.37) 

Under all these considerations, the equilibrium probability density depends only on 
the y-coordinate. Also, a proportionality constant . k is needed to achieve equality, 
and its dimensions are .L−2, so then 

.peq(y) = ke−g y. (19.38) 

Moreover, the substitution of the last equation into the reduced kinetic Eq. (19.34) 
yields 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

f h2(x)

h1(x)

∂p(x, y, t)

∂x
dy. (19.39) 

The same equation will be found later in Chap. 20 starting from the 2D Smolu-
chowski equation, from which an effective diffusivity coefficient is found using the 
Kalinay & Percus method. 

19.3.1.1 Equilibrium Solution 

Only the equilibrium solution is discussed in this chapter. To such end, we consider 
a relative equilibrium, that is, the diffusivity of the transversal direction, that is 
infinitely fast enough, allowing us to separate the two parts of the probability as 
independent functions and propose that 

.p0(x, y, t) = 1

F(x)
Y (y) ρ0(x, t), (19.40)
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where .Y (y) and .F(x) are functions to be determined to make .p0(x, t) a solution of 
Eq. (19.39). Plugging the equilibrium solution into Eq. (19.39) gives 

.
∂ρ0(x, t)

∂t
= Dx

∂

∂x

f h2(x)

h1(x)

∂

∂x

[
1

F(x)
Y (y) ρ0(x, t)

]
dy, (19.41) 

where the dependencies are accounted for to obtain 

.
∂ρ0(x, t)

∂t
= Dx

∂

∂x

f h2(x)

h1(x)

Y (y) dy
∂

∂x

[
ρ0(x, t)

F(x)

]
. (19.42) 

We also know that the equilibrium solution in Eq. (19.40) must obey the reduced 
density equation (19.21), so then 

.ρ0(x, t) =
f h2(x)

h1(x)

1

F(x)
Y (y) ρ0(x, t) dy =

f h2(x)

h1(x)

Y (y) dy
ρ0(x, t)

F(x)
(19.43) 

leading us to 

.F(x) =
f h2(x)

h1(x)

Y (y) dy, (19.44) 

which allows us to write 

.
∂ρ0(x, t)

∂t
= Dx

∂

∂x
F(x)

∂

∂x

[
ρ0(x, t)

F(x)

]
, (19.45) 

which can be recognized as a Fick-Jacobs equation. In Zwanzig’s approach, the 
quantity appearing along the concentration is an exponential of a free-energy term; 
this is why the proposal for using the Boltzmann factor as the function .Y (y) is 
plausible in this case, namely, 

.Y (y) = e−g y. (19.46) 

Then, function .F(x) reads 

.F(x) ≡
f h2(x)

h1(x)

e−g y dy = 1

g

[
e−g h1(x) − e−g h2(x)

]
, (19.47) 

which, for a symmetric channel where .h(x) ≡ h2(x) = −h1(x), yields 

.F(x) = 2

g
sinh [g h(x)] . (19.48)
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This precise form of .Y (y) needs to be consistent with previous results, i.e. .g → 0. 
Subsequently, 

.F(x) =
f h2(x)

h1(x)

dy = h2(x) − h1(x) = w(x). (19.49) 

Then, Eq. (17.19) can be immediately recovered. Also, for symmetric channels, we 
have 

.F(x) =
f h(x)

−h(x)

dy = 2h(x). (19.50) 

The last couple of equations are analogous to Eq. (18.16) in Zwanzig’s frame. 
It is important to note that the proposal of the .Y (y) function is not a coincidence. 

The functional form of the Boltzmann factor made us think of the exponential 
term in Eq. (18.8) where the free-energy function .f(x) was introduced. Also, the 
comparison of Eq. (19.45) to the FJ equation obtained using the Zw method suggests 
that function .Y (y) should have the form shown in Eq. (19.46). 

The non-equilibrium solution or general solution will be worked out using the so-
called projection method developed by Pavol Kalinay and Jerome Percus, which is 
based on a perturbative series, a technique that is similar to the one used in quantum 
mechanics approximate methods. 

19.3.2 Diffusion Coefficient 

The two-dimensional bulk diffusion coefficient is related to the mean squared 
displacement as 

.D0 ∼ (Ar)2

At
= (Ax)2

At

[
1 +

(
Ay

Ax

)2
]

, (19.51) 

which also can be seen in Eq. (2.19). If the effective diffusivity contains only 
information about dispersion along coordinate x, then 

.D(x) ∼ (Ax)2

At
, (19.52) 

where using Eq. (19.51) gives 

.D0 ∼ D(x)

[
1 +

(
Ay

Ax

)2
]

, (19.53)
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or written for the effective diffusivity 

.D(x) ∼ D0
1[

1 +
(

Ay
Ax

)2] . (19.54) 

Decreasing the ratio of the increments in both directions so as to allow it to remain 
finite, this could be interpreted as the derivative of y, namely, 

. lim
Ax→0
Ay→0

Ax

Ay
= dy

dx
= h'(x), (19.55) 

which also can be referred to as the derivative of the system’s boundary. With this 
information and a heuristic derivation, Reguera and Rubi proposed what they called 
a scaling law for the effective diffusivity, which features an exponent . α to generalize 
the behavior, that is, 

.DRR = D0[
1 + h'(x)2

]α , (19.56) 

where .α = 1/3 for two-dimensional systems and .α = 1/2 for three-dimensional 
ones. 

In recent works, the width of the channel .w(x) takes the place of the boundary 
function .h(x) inside the effective diffusion coefficient. As a result, their relation in 
terms of its derivatives is 

.h'(x) = 1

2
w'(x), (19.57) 

and Eq. (19.56) becomes 

.DRR = D0[
1 + 1

4w
'(x)2

]α , (19.58) 

where if .α = 1/3 for a two-dimensional system, the formula can be expanded as 
follows: 

. 
DRR = D0[

1 + 1
4w

'2(x)
]1/3 = 1 − 1

12
w'(x)2 + 1

18
w'(x)4 − 7

162
w'(x)6 + . . . ,

(19.59) 

where Newton’s binomial generalized theorem, Eq. (A.42), was used in the form of 
Eq. (A.45). Also, Zwanzig’s formula can be expanded as
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. DZw = D0

1 + 1
4w

'2(x)
= 1 − 1

4
w'(x)2 + 1

16
w'(x)4 − 1

64
w'(x)6 + . . . .

(19.60) 
Using Eq. (19.60) in Eq. (19.59), we can write 

. DRR = DZw + 1

6
w'(x)2 − 7

144
w'(x)4 + 67

5184
w'(x)6 + . . . . (19.61) 

Then, Zwanzig’s result for effective diffusivity is included into the RR proposal. 

19.4 Concluding Remarks 

Starting with well-established concepts of non-equilibrium thermodynamics, the so-
called kinetic equation proposed by Reguera and Rubi was found as in Eq. (6.16). 
As it turns out, this expression is a generalization of the Smoluchowski equation 
for when we have not only an entropic but also an energetic potential, and it even 
includes a non-constant diffusion coefficient. 

Then, following the Zwanzig method of dimensional reduction, we calculated 
Eq. (19.34), and as a first approach to obtain useful information from it, we proposed 
equilibrium solution for systems that are under the influence of an energetic 
gravitational-like force field. Moreover, this procedure led us to find a corresponding 
Fick-Jacobs-like equation, which will be the basis for the development of a general 
solution in further chapters. 

Last but not least, a heuristical 2D and 3D proposal for a new diffusion coefficient 
was made. It is remarkable that this can not only be reduced to but also even improve 
the one calculated by Zwanzig. 
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Chapter 20 
Kalinay and Percus Projection Method 

Kalinay and Percus (KP) presented the first systematical treatment of diffusion in 
quasi-one-dimensional (two-dimensional (2D) and three-dimensional (3D)) narrow 
channels, with varying cross-section along the longitudinal coordinate. Conse-
quently, only the one-dimensional (1D) probability density or corresponding 1D 
flux is of interest. In other words, changes along the unconfined direction of 
the particle’s motion last longer in comparison to the transversal direction, for 
which local equilibration is reached faster. KP proposed a mapping procedure of 
the diffusion equation onto 1D, eliminating transients (i.e., the quick relaxation 
processes) in transverse direction, which allows us to derive an expansion of the 
position-dependent effective diffusion coefficient, .D(x). This procedure represents 
systematical corrections to the Fick-Jacobs (FJ) equation in terms of an expansion 
parameter .ϵ = Dx/Dy . This scaling parameter expresses anisotropy of space with 
respect to diffusion coefficients in longitudinal (. Dx) and transverse (. Dy) directions. 
Using this scaling, the fast transverse modes (transients) are separated from the slow 
longitudinal ones, and the n-dimensional diffusion equation can be projected out 
into a Fick-Jacobs-like equation by integrating over the transverse direction. This 
one-dimensional equation contains an effective longitudinal diffusion coefficient, 
which depends on the x-coordinate. In this chapter, we will show how to apply the 
projection method introduced by KP to the case of an asymmetric 2D channel and 
a symmetric 3D tube. From the results obtained for the 2D asymmetric channel, the 
reduction to a symmetric channel is calculated. 
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20.1 2D Asymmetric Channel: Projection Method 

20.1.1 The Projection Method 

The problem under consideration is the study of the time evolution of the con-
centration of noninteracting point-like Brownian particles without external fields, 
diffusing into a narrow 2D channel, i.e., where the typical width of the channel 
is smaller than its length. The channel lies in the XY -plane and is bounded by 
hard walls described by the two boundary functions: .y = h1(x) and .y = h2(x). 
We assume that .h1(x) and .h2(x) are arbitrary smooth single-valued functions of x, 
which are defined in the domain: .Ω = (−∞,∞), being .h2(x) > h1(x) . ∀ x ∈ Ω

(see Fig. 20.1). 
The KP projection method is based on introducing an artificial anisotropy of 

the diffusion coefficient into the diffusion equation. It assumes that the transversal 
diffusion constant . Dy is much faster than the one for the longitudinal direction, . Dx , 
i.e., .Dy ⪢ Dx . The ratio between these two bulk constants allows us to introduce the 
anisotropy and define a small parameter .ϵ = Dx/Dy . This results in a recurrence 
scheme that provides systematical corrections to the FJ equation, encoded in the 
position-dependent diffusion coefficient. 

Following the techniques outlined in Sect. 18.1, we are interested in projecting 
the 2D diffusion equation: 

.
∂c(x, y, t)

∂t
= Dx

∂2c(x, y, t)

∂x2
+ Dy

∂2c(x, y, t)

∂y2
, (20.1) 

onto the longitudinal dimension as an expansion in . ϵ. To such end, we have to define 
the projected or marginal one-dimensional (1D) density .ρ(x, t) as 

Fig. 20.1 Schematic representation of a 2D narrow asymmetric channel with varying width. The 
hard walls of the channel are described by the two boundary functions .y = h1(x) and .y = h2(x), 
where .h2(x) > y > h1(x) ∀ x ∈ Ω. On the boundaries, the normal vector of flux density is parallel 
to the walls. The centerline of the channel is given by .y0(x) = [h2(x) + h1(x)]/2, and the channel 
width by .w(x) = h2(x) − h1(x)
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.ρ(x, t) ≡
∫ h2(x)

h1(x)

c(x, y, t) dy, (20.2) 

where the boundaries of the channel are defined within the interval . h1(x) < y <

h2(x). Using  Eq. (20.2) and integrating the first term on the right-hand side of 
Eq. (20.1) by means of the Leibniz integral rule (see Appendix A.3), we have 

. 

∫ h2(x)

h1(x)

Dx

∂

∂x

[
∂c(x, y, t)

∂x

]
dy

= Dx

{
∂

∂x

[
∂

∂x

∫ h2(x)

h1(x)

c(x, y, t)dy + h'
1(x) c(x, h1(x), t) − h'

2(x) c(x, h2(x), t)

]

+ h'
1(x)

∂c(x, y, t)

∂x

∣∣∣∣
y=h1(x)

− h'
2(x)

∂c(x, y, t)

∂x

∣∣∣∣
y=h2(x)

}

= Dx

{
∂2ρ(x, t)

∂x2
+ ∂

∂x

[
h'
1(x) c(x, h1(x), t) − h'

2(x) c(x, h2(x), t)
]

+ h'
1(x)

∂c(x, y, t)

∂x

∣∣∣∣
y=h1(x)

− h'
2(x)

∂c(x, y, t)

∂x

∣∣∣∣
y=h2(x)

}
.

(20.3) 

Then, we use the fundamental theorem of calculus to integrate the second term, 
namely, 

.

∫ h2(x)

h1(x)

Dy

∂2c(x, y, t)

∂y2 dy = Dy

∂c(x, y, t)

∂y

∣∣∣∣
y=h2(x)

y=h1(x)

, (20.4) 

leading to 

. 

∂ρ(x, t)

∂t
= Dx

{
∂2ρ(x, y, t)

∂x2 + ∂

∂x

[
h'
1(x) c(x, h1(x), t) − h'

2(x) c(x, h2(x), t)
]

+ h'
1(x)

∂c(x, y, t)

∂x

∣∣∣∣
y=h1(x)

− h'
2(x)

∂c(x, y, t)

∂x

∣∣∣∣
y=h2(x)

}

+ Dy

∂c(x, y, t)

∂y

∣∣∣∣
y=h2(x)

y=h1(x)

,

(20.5) 

where primed quantities denote differentiation with respect to x. Imposing the 
boundary conditions (BCs) that establish that the flow
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.J(x, y, t) = −Dx

∂c(x, y, t)

∂x
êx − Dy

∂c(x, y, t)

∂y
êy, (20.6) 

along the channel walls must be parallel to these walls, the Newmann BCs have to 
be satisfied, i.e., 

.h'
i × J(x, y, t) = 0, (20.7) 

where . h'
i is a tangent vector to the upper (.i = 2) and lower (.i = 1) boundaries at x, 

namely, 

.h'
i = êx h'

i (x) + êy. (20.8) 

Substituting the vectors in Eqs. (20.6) and (20.8) into Eq. (20.7), we arrive at  

.h'
i × J(x, y, t) =

∣∣∣∣∣∣∣
1 h'

i (x)

−Dx

∂c(x, y, t)

∂x
−Dy

∂c(x, y, t)

∂y

∣∣∣∣∣∣∣
êz = 0, (20.9) 

and consequently, 

.Dy

∂c(x, y, t)

∂y

∣∣∣∣
y=hi(x)

= Dx h'
i (x)

∂c(x, y, t)

∂x

∣∣∣∣
y=hi(x)

, i = 1, 2. (20.10) 

Applying these BCs to Eq. (20.5), we obtain the projected 1D diffusion equation: 

. 
∂ρ(x, t)

∂t
= Dx

{
∂2ρ(x, t)

∂x2
− ∂

∂x

[
h'
2(x) c(x, h2(x), t) − h'

1(x) c(x, h1(x), t)
]}

.

(20.11) 

Now, we must express the value of the 2D concentration at the upper and lower 
boundaries, .c(x, hi(x), t), .i = 1, 2, in terms of the 1D density .ρ(x, t). The first 
approximation is obtained when an infinite transverse diffusion rate is imposed, 
.Dy ⪢ Dx . In other words, when we assume that the system relaxes infinitely fast 
along the y-axis. This is sometimes called the equilibrium solution. Then, from 
Eq. (20.2) we have 

.c0(x, y, t) = ρ(x, t)

h2(x) − h1(x)
, (20.12) 

where we must recall that the varying width is given by .w(x) = h2(x) − h1(x). 
Then, 

.c0(x, y, t) = ρ(x, t)

w(x)
. (20.13)
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By substituting this last expression into Eq. (20.11), we obtain 

.
∂ρ(x, t)

∂t
= Dx

{
∂2ρ(x, t)

∂x2 − ∂

∂x

[
w'(x)

w(x)
ρ(x, t)

]}
, (20.14) 

where we set .Dx = D0 to recover the FJ equation. Now, we can rewrite this equation 
as 

.
∂ρ(x, t)

∂t
= D0

∂

∂x
w(x)

∂

∂x

ρ(x, t)

w(x)
. (20.15) 

Under the KP theoretical frame, the FJ equation is the zeroth-order approxima-
tion of the projected 1D diffusion equation in the parameter . ϵ. In the following 
section, we will outline the procedure to obtain higher-order corrections of the 
operator. 

20.1.2 Recurrence Formula for the Operators σ̂ j (x, y, ∂x) 

In order to find a general solution to the 2D FJ equation, Eq. (20.1), we can formally 
write .c(x, y, t) as a perturbation series, where the first term, that is, the zeroth-order, 
must be the previously found approximation, Eq. (20.15). 

Furthermore, we propose that the perturbation series in terms of parameter . ϵ be 

.c(x, y, t) =
∞∑

j=0

ϵj σ̂ j (x, y, t)
ρ(x, t)

w(x)
. (20.16) 

It is worth noting that when comparing Eq. (20.16) to Eq. (20.13), we see that 
.σ̂ 0(x, y, ∂x) = 1. Next, we outline the steps to obtain a recurrence formula for the 
operators .σ̂ j (x, y, ∂x), once we know the zero order. With this procedure, we will be 
able to obtain high orders on the FJ description, by means of the position-dependent 
effective coefficient. 

To incorporate the operators .σ̂ j (x, y, t) into the diffusion equation, Eq. (20.1), 
the first step is to rewrite it as follows: 

.
1

Dy

∂c(x, y, t)

∂t
− Dx

Dy

∂2c(x, y, t)

∂x2 = ∂2c(x, y, t)

∂y2 . (20.17) 

As Eq. (20.16) is the solution of Eq. (20.17) by construction, we substitute the 
former into the latter, yielding 

.

(
1

Dx

∂

∂t
− ∂2

∂x2

) ∞∑
j=0

ϵj+1 σ̂ j (x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)
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= 
∞∑

j=0

ϵj ∂2 

∂y2 
σ̂ j (x, y, ∂x) 

∂ 
∂x 

ρ(x, t) 
w(x) 

. (20.18) 

Then, we also substitute Eq. (20.16) into Eq. (20.11), to obtain 

. 
∂ρ(x, t)

∂t
= Dx

∂2ρ(x, t)

∂x2 − Dx

∂

∂x

{ ∞∑
j=0

ϵj
[
h'
2(x) σ̂ j (x, h2(x), ∂x)

− h'
1(x) σ̂ j (x, h1(x), ∂x)

]} ∂

∂x

ρ(x, t)

w(x)
, (20.19) 

which by explicitly expressing the .j = 0 term, after a small mathematical 
reorganization, gives 

.

∂ρ(x, t)

∂t
= Dx

∂

∂x

{
w(x) −

∞∑
j=1

ϵj
[
h'
2(x) σ̂ j (x, h2(x), ∂x)

− h'
1(x) σ̂ j (x, h1(x), ∂x)

]} ∂

∂x

ρ(x, t)

w(x)
.

(20.20) 

Now, let us rewrite Eq. (20.17) as 

. 

∞∑
j=0

ϵj ∂2

∂y2 σ̂ j (x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)
=

∞∑
j=0

ϵj+1
[
σ̂ j (x, y, ∂x)

Dx

∂

∂x

1

w(x)

∂ρ(x, t)

∂t

− ∂2

∂x2 σ̂ j (x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)

]
.

(20.21) 

By replacing .∂tρ(x, t) in Eqs. (20.21) and (20.20), we arrive at 

. 

∞∑
j=0

ϵj ∂2

∂y2 σ̂ j (x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)
=

∞∑
j=0

ϵj+1
{
σ̂ j (x, y, ∂x)

∂

∂x

1

w(x)

∂

∂x

{
w(x)

−
∞∑

k=1

ϵk
[
h'
2(x) σ̂ k(x, h2(x), ∂x) − h'

1(x) σ̂ k(x, h1(x), ∂x)
]}

− ∂2σ̂ k(x, y, ∂x)

∂x2

}
∂

∂x

ρ(x, t)

w(x)
.

(20.22) 

Expanding the left-hand side and collecting terms proportional to . ϵj , we have
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. 

{
ϵj ∂2

∂y2
σ̂ j (x, y, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
=

{
ϵj σ̂ j−1(x, y, ∂x)

∂

∂x

1

w(x)

∂

∂x
w(x)

+ ϵj−1 σ̂ j−2(x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x

×
[

− ϵ1
(

h'
2(x)σ̂ 1(x, h2(x), ∂x) − h'

1(x) σ̂ 1(x, h1(x), ∂x)

)]

+ ϵj−2 σ̂ j−3(x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x

×
[

− ϵ2
(

h'
2(x) σ̂ 2(x, h2(x), ∂x) − h'

1(x) σ̂ 2(x, h1(x), ∂x)

)]

+ · · ·

+ ϵ2 σ̂ 1(x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x[
− ϵj−2

(
h'
2(x) σ̂ j−2(x, h2(x), ∂x) − h'

1(x) σ̂ j−2(x, h1(x), ∂x)

)]

+ ϵ1 σ̂ 0(x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x

×
[

− ϵj−1
(

h'
2(x) σ̂ j−1(x, h2(x), ∂x) − h'

1(x) σ̂ j−1(x, h1(x), ∂x)

)]

+ · · · − ϵj ∂2

∂x2 σ̂ j−1(x, y, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
.

(20.23) 

Comparing the coefficients at the same order in . ϵ, we obtain the recurrence 
formula for operators .σ̂ j (x, y, ∂x): 

. 

∂2

∂y2 σ̂ j+1(x, y, ∂x) =

−
j∑

k=1

σ̂ j−k(x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x

[
h'
2(x) σ̂ k(x, h2(x), ∂x)−h'

1(x) σ̂ k(x, h1(x), ∂x)
]

+ σ̂ j (x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x
w(x) − ∂2

∂x2
σ̂ j (x, y, ∂x).

(20.24) 

Finally, to calculate .σ̂ j+1(x, y, ∂x) at any order, one has to perform a double 
integration over y. The integration constants are set to fulfill the BCs, and following 
the same steps that led us to Eq. (20.10) applied to Eq. (20.19), we obtain
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. 

h'
2(x)

∂

∂x
σ̂ j (x, y, ∂x)

∂

∂x

ρ(x, t)

w(x)

∣∣∣∣
y=h2(x)

+ h'
1(x)

∂

∂x
σ̂ j (x, y, ∂x)

∂

∂x

ρ(x, t)

w(x)

∣∣∣∣
y=h1(x)

= ∂

∂y
σ̂ j+1(x, y, ∂x)

∂

∂x

ρ(x, t)

w(x)

∣∣∣∣
y=h2(x)

+ ∂

∂y
σ̂ j+1(x, y, ∂x)

∂

∂x

ρ(x, t)

w(x)

∣∣∣∣
y=h1(x)

,

(20.25) 
and the normalization condition is 

.

∫ h2(x)

h1(x)

σ̂ j (x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)
dy = 0, j > 0. (20.26) 

The symmetrical case is recovered when .h1(x) = −h2(x). 

20.1.3 First- and Second-Order Corrections 

In this section, we will calculate the first two operators .σ̂ j (x, y, ∂x), namely, for 
.j = 1, 2, by applying the normalization conditions, Eqs. (20.25) and (20.26). For  
this procedure, we need to recall that .σ̂ 0(x, y, ∂x) ∂x = 1. Now, to obtain the first-
order term, we have to set .j = 0 on the left-hand side and .j = 1 on the right-hand 
side of Eq. (20.18), noting that .ρ0(x, t) does not depend on y, leading to 

.

(
1

Dx

∂

∂t
− ∂2

∂x2

)
ϵ1

ρ(x, t)

w(x)
= ϵ1

∂2

∂y2 σ̂ 1(x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)
. (20.27) 

On the left-hand side of this last equation, we substitute the Fick-Jacobs equation 
rewritten in the following form: 

.

(
1

Dx

∂

∂t
− ∂2

∂x2

)
ρ(x, t)

w(x)
= w'(x)

w(x)

∂

∂x

[
ρ(x, t)

w(x)

]
, (20.28) 

which allows us to obtain 

.σ̂ 1(x, y, ∂x)
∂

∂x

[
ρ(x, y)

w(x)

]
= w'(x)

w(x)

∂

∂x

[
ρ(x, t)

w(x)

] ∫ ∫
dy dy. (20.29) 

Performing a double integration over y, we arrive at  

.σ̂ 1(x, y, ∂x)
∂

∂x

ρ(x, t)

w(x)
=

{
w'(x)

w(x)

∂

∂x

ρ(x, t)

w(x)

}
y2

2
+ A y + B, (20.30) 

where . A and . B are the integration constants. Imposing the BCs given by Eq. (20.25), 
we find that
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.A =
[
h2(x) h'

1(x) − h1(x) h'
2(x)

w(x)

]
∂

∂x

ρ(x, t)

w(x)
. (20.31) 

When the normalization condition, Eq. (20.26), is fulfilled, we obtain 

. B = − 1

w(x)2

{
w'(x)

6

[
h2(x)3 − h1(x)3

]

− 1

2

[
h2(x)2 − h1(x)2

] [
h1(x) h'

2(x) − h2(x) h'
1(x)

] }
∂

∂x

ρ(x, t)

w(x)
.

(20.32) 

Finally, substituting these last two equations into Eq. (20.30), we have the first-
order correction operator, namely, 

. 

σ̂ 1(x, y, ∂x) = 1

w(x)

{ [
h'
2(x) − h'

1(x)
] y2

2
− [

h1(x) h'
2(x) − h2(x) h'

1(x)
]
y

− 1

6

[
h2(x)2 + h2(x) h1(x) + h1(x)2

] [
h'
2(x) − h'

1(x)
]

+ 1

2
[h2(x) + h1(x)]

[
h1(x) h'

2(x) − h2(x) h'
1(x)

] }
.

(20.33) 

An important relation, which we will use later, is found by noting that the 
expression inside the square brackets in Eq. (20.20) indicates that . σ̂ 1 must be 
evaluated at both the top and bottom boundaries. Therefore, by direct computation, 
we find that 

. h'
2(x) σ̂ 1(x, h2(x), ∂x) − h'

1(x) σ̂ 1(x, h1(x), ∂x)

= 1

3
w(x)

[
h'
2(x)2 + h'

2(x) h'
1(x) + h'

1(x)2
]
. (20.34) 

To obtain the second-order operator, .σ̂ 2(x, y, t), we have to set  .j = 1 on the 
left-hand side and .j = 2 on the right-hand side of Eq. (20.18), and make use of 
Eq. (20.33), leading to 

. 

∂2

∂y2
σ̂ 2(x, y, ∂x)

∂

∂x

ρ(x, t)

w(x)

=
{

− 1

w(x)

∂

∂x

[
1

3
w(x)

(
h'
2(x)2 + h'

2(x) h'
1(x) + h'

1(x)2
)]

+ σ̂ 1(x, y, ∂x)
∂

∂x

1

w(x)

∂

∂x
w(x) − ∂2

∂x2 σ̂ 1(x, y, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
.

(20.35)
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Following the same steps, which allow us to integrate Eq. (20.27), we arrive at  

. h'
2(x) σ̂ 2(x, h2(x), ∂x) − h'

1(x) σ̂ 2(x, h1(x), ∂x)

− 1

5
w(x)

[
h'
2(x)4 + h'

2(x)3 h'
1(x) + h'

2(x)2 h'
1(x)2 + h'

2(x) h'
1(x)3 + h'

1(x)4
]
.

(20.36) 

Finally, substituting Eqs. (20.34) and (20.36) into Eq. (20.11), we arrive at the 
projected 1D diffusion equation up to the first order on the derivatives of the 
boundaries, that is, 

. 

∂ρ(x, t)

∂t
= Dx

∂

∂x

{
w(x) − ϵ

3
w(x)

[
h'
2(x)2 + h'

2(x) h'
1(x) + h'

1(x)2
]

+ ϵ2

5
w(x)

[
h'
2(x)4 + h'

2(x)3 h'
1(x) + h'

2(x)2 h'
1(x)2

+ h'
2(x) h'

1(x)3 + h'
1(x)4

]
+ · · ·

}
∂

∂x

ρ(x, t)

w(x)
.

(20.37) 

In the following section, we will provide the steps that allow us to link Eq. (20.37) 
with the position-dependent effective diffusion coefficient. 

20.1.4 The Position-Dependent Effective Diffusion Coefficient 

By applying KP’s projection method, we can systematically obtain higher-order 
corrections in the evolution of concentration, which are explicitly written in 
Eq. (20.19) by means of parameter . ϵ. Now, our goal is to compare this equation 
with the modified FJ equation, allowing us to obtain higher-order corrections of 
the position-dependent effective diffusion coefficient. This procedure is carried out 
by equating the flows obtained from both equations in the steady state. It is worth 
mentioning that these quantities are only equal in steady state. To such end, let us 
write Eq. (20.19) in a compact form, namely, 

.
∂ρ(x, t)

∂x
= D0

∂

∂x
w(x)

[
1 − ϵ Ẑ(x, ∂x)

] ∂

∂x

ρ(x, t)

w(x)
, (20.38) 

where .Ẑ(x, ∂x) is the operator defined as 

.Ẑ(x, ∂x) =
∞∑

k=0

ϵk σ̂ k+1(x,w(x), ∂x). (20.39)
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The expression on the right-hand side of Eq. (20.38) can be identified as the flux, 
yielding 

.J (x, t) = −w(x)
[
1 − ϵẐ(x, ∂x)

] ∂

∂x

ρ(x, t)

w(x)
. (20.40) 

On the other hand, the flux, Eq. (17.19), is given by 

.J (x, t) = −w(x)D(x)
∂

∂x

ρ(x, t)

w(x)
. (20.41) 

In the steady state, i.e., .∂tρ(x, t) = 0, we can compare these last two equations 
as .J (x, t) → J and identify the relation between .D(x) and .1 − ϵ Ẑ(x, ∂x). 

In order to find .D(x) such that the solution of Eq. (20.41) also satisfies 
Eq. (20.40), we substitute .∂x[ρ(x, t)/w(x)] from the former equation into the latter, 
finding that 

.1 = w(x)
[
1 − ϵ Ẑ(x, ∂x)

] 1

w(x)D(x)
. (20.42) 

This relation enables us to express the series of function .D(x) uniquely within a 
recurrence scheme coming from the mapping procedure. By expanding Eq. (20.42) 
using the binomial theorem in Appendix A.6.5, we have  

.
1

D(x)
= w(x)

[
1 + ϵ Ẑ(x, ∂x) + ϵ2 Ẑ(x, ∂x) + · · ·

] 1

w(x)
. (20.43) 

When simplifying factors and terms, we find that 

.
1

D(x)
=

[
1 − ϵ w(x) Ẑ(x, ∂x)

1

w(x)

]−1

. (20.44) 

Relaxing the rule that operators act on everything to the right in products and 
assuming that .Ẑ(x, ∂x) acts only on the following .w(x)−1, we can perform the final 
inversion, yielding 

.D(x) ≃ 1 − ϵw(x)Ẑ(x, ∂x)
1

w(x)
. (20.45) 

Making an approximation of Eq. (20.37) by discarding the second- and higher-order 
derivatives of . hi , .Ẑ(x, ∂x), this becomes 

. Ẑ(x, ∂x) = 1

3

[
h'
2(x)2 + h'

2(x) h'
1(x) + h'

1(x)2
]

− ϵ

5

[
h'
2(x)4 + h'

2(x)3 h'
1(x) + h'

2(x)2 h'
1(x)2 + h'

2(x) h'
1(x)3 + h'

1(x)4
]
,

(20.46)
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which, by substituting into Eq. (20.45), gives  

. 

D(x) ≈ 1 − ϵ

3

[
h'
2(x)2 + h'

2(x) h'
1(x) + h'

1(x)2
]

+ ϵ2

5

[
h'
2(x)4 + h'

2(x)3 h'
1(x) + h'

2(x)2 h'
1(x)2 + h'

2(x) h'
1(x)3 + h'

1(x)4
]

+ · · · .

(20.47) 

Taking the isotropic case, where .ϵ = 1, using the relation for the channel width, 
.w(x) = h2(x)−h1(x), and the derivative of the midline .y'

0(x) = [h'
2(x)+h'

1(x)]/2, 
this series can be rewritten as follows: 

. D(x) ≈ 1 − y'
0(x)2 − 1

3

[
w'(x)

2

]2
+ y'

0(x)4 + 2y'
0(x)2

[
w'(x)

2

]2

+ 1

5

[
w'(x)

2

]4
− · · · (20.48) 

Neglecting the second and higher derivatives of .w(x) and .y0(x), the remaining terms 
that depend only on .w'(x) and .y0'(x) allow us to express the effective diffusion 
coefficient as follows: 

. D(x) = D0

∞∑
n=0

(−1)n

2n + 1

2n∑
i=0

[
y'
0(x) + w'(x)

2

]i [
y'
0(x) − w'(x)

2

]2n−i

.

(20.49) 

After performing the internal sum on the right-hand side of this equation, we obtain 

. D(x) = D0

∞∑
n=0

(−1)n

2n + 1

1

w'(x)

[
y'
0(x) + w'(x)

2

]2n+1

− D0

∞∑
n=0

(−1)n

2n + 1

1

w'(x)

[
y'
0(x) − w'(x)

2

]2n+1

. (20.50) 

Finally, this last expression can be reduced to 

. D(x) ≈ DDP(x) =
{
arctan

[
y'
0(x) + w'(x)

2

]

− arctan

[
y'
0(x) − w'(x)

2

] }
D0

w'(x)
. (20.51)
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This equation, known as the Dagdug-Pineda formula, is the main result of this 
chapter and gives a general expression for the position-dependent diffusion coef-
ficient along the slow x-coordinate for an asymmetric 2D channel. This equation 
generalizes KP’s result for 2D symmetric channels. For a symmetric channel that 
has a straight centerline, .y'

0(x) = 0, Eq. (20.51) reduces to 

.D(x) ≈ DKP(x) =
arctan

[
1

2
w'(x)

]

1

2
w'(x)

D0. (20.52) 

Additionally, the equation obtained by Bradley is a truncated expansion of 
Eq. (20.51) when its Taylor series is kept up to the first order in .w'(x) and .y0'(x), 
namely, 

.D(x)Br ≈ D0

[
1 − y'

0(x)2 − 1

12
w'(x)2

]
≈ D0

1 + y'
0(x)2 + 1

12w
'(x)2

. (20.53) 

From this last equation, if .y0 = 0, the symmetric case is recovered, i.e., 
Zwanzig’s formula. Moreover, when setting a variable midline and .w'(x) = 0, 
which represents a channel of constant width along x-axis, we can recover the result 
for a serpentine channel previously studied by Yariv, Brenner, and Kim, which reads 

.D(x) ≈ DYBK(x) = D0

1 + y0'(x)2
. (20.54) 

Equation (20.51) is a general and simple expression that recovers all the well-
known approximations for the effective diffusion coefficient for both asymmetric 
and symmetric 2D channels. 

The approximated formulas for position-dependent diffusion coefficients for 
quasi-one-dimensional channels are summarized in Table 20.1 as they appear in 
the literature. 

20.2 Trapezoidal 2D Channel 

In this section, we study the diffusion coefficient of a 2D channel formed by straight 
walls, where the boundaries are .h1(x) = m1 x − b and .h2(x) = m2 x + b (see 
Fig. 20.2). The midline and channel width are .y0(x) = 1

2 (m1 + m2) x and . w(x) =
(m2 − m1) x + 2b, respectively. Substituting these expressions into Eq. (20.51), we  
find that 

.Deff = arctan(m2) − arctan(m1)

m2 − m1
D0. (20.55)
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Table 20.1 Position-dependent diffusion coefficient formulas 

Author 2D channel 3D tube 

Jacobs (1935) .D0 . D0

Zwanzig (1992)
.

D0

1 + 1
12w'(x)2

. 
D0

1 + 1
2R'(x)2

Reguera and Rubi (2001)
.

D0

3
√
1 + 1

4w'(x)2
. 

D0√
1 + R'(x)2

Yariv et al. (2004)
. 

D0

1 + y0'(x)2

Kalinay and Percus (2006)
.

1

w'(x)
D0 arctan

[
1

2
w'(x)

]
. 

D0√
1 + R'(x)2

Bradley (2009)
. 

D0

1 + 1
12w'(x)2 + y0'(x)2

Berezhkovskii and Szabo (2011) 
.

D0

1 + 1
12w'(x)2 + y0'(x)2

. 
D0

1 + 1
2R'(x)2 + r0'(x)2

Dagdug and Pineda (2012) 

. 
D0

w'(x)

{
arctan

⎡
⎢⎢⎣y'

0(x) + w'(x)

2

⎤
⎥⎥⎦−

arctan

[
y'
0(x) − w'(x)

2

] }

Fig. 20.2 Schematic representation of a 2D conical asymmetric channel with varying width. The 
walls of the channel are described by the two boundary functions .h1(x) = m1x − b and . h2(x) =
m2x + b. The centerline of the channel is given by .y0(x) = 1

2 (m1 + m2)x, and the channel width 
by . w(x) = (m2 − m1)x + 2b

As a first example, we consider a set of constant-width tilted channels. These are 
made by setting .m1 = m2 = y'

0, where the channel width is 2b. Computing the limit 
when .m1 = m2, or equivalently, when .w'(x) → 0, Eq. (20.55) reduces to 

.D(x) ≈ Deff = D0

1 + y'2
0

. (20.56)
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Fig. 20.3 Determination of the effective diffusivity using simulations from the long-time behavior 
of .〈∆x2(t)〉, setting  .D0 = 1 (panel (a)). (a) Effective diffusivity found with Brownian dynamics 
simulations (open circles) and predicted by Eq. (20.56) (solid curve). (b) Constant-width title 
channels with . y'

0 from .−1.5 to 1.5 

The effective diffusion coefficient predicted by Eq. (20.56) depends only on the 
channel slope, as expected. In Fig. 20.3, the circles show the .Deff/D0 ratio values 
from Brownian dynamics simulations, while the continuous line is the prediction 
made by Eq. (20.56), which is in good agreement with the numerical result over the 
entire domain. This theoretical description works very well for .w'(x) = 0. 

As a second example, a set of conical channels is constructed by fixing the slope 
of the lower wall to .m1 = −1 and setting the width of the channel to .2b = 1 at the 
origin while allowing the slope of the upper wall, . m2, to vary within the range of 0 to 
2. In Fig. 20.4, we compare the effective diffusivity predicted by Brownian dynamics 
simulations and Bradley’s formula, Eq. (20.53), and Eq. (20.55). It is worth noting 
that Eq. (20.55) provides an excellent approximation for the effective diffusivity for 
.m2 > 1, as Eq. (20.53) underestimates the expected values over the full tested range. 

In the next section, we will conduct an exhaustive study of the range of 
applicability of the one-dimensional description in terms of the modified Fick-
Jacobs equation. 

20.3 First-Passage Time in Conical Channels 

As we know, axial diffusion in a two-dimensional (2D) narrow channel of smoothly 
varying geometry can be approximately described as one-dimensional (1D) dif-
fusion with position-dependent effective diffusivity by means of the modified 
Fick-Jacobs equation. In addition to the problem of deriving the modified FJ 
equation, there are questions around the range of applicability of this approximate 
1D description and the accuracy of the expressions for effective position-dependent 
diffusivity. In this section, Brownian dynamics simulations are used to answer these 
questions, which will help us to clarify the practical utility of the expressions for



584 20 Kalinay and Percus Projection Method

Fig. 20.4 Comparison of different dependencies of the effective diffusivity. The values from 
simulations were found from the long-time behavior of .〈∆x2(t)〉, setting  .D0 = 1. (a) Effective 
diffusion found by Brownian dynamics simulations (open circles), and predicted by Eqs. (20.55) 
(solid curve) and (20.53) (dashed line). (b) Schematic illustration of a 2D channel formed by fixing 
the slope of the lower wall to .m1 = −1 while allowing the slope of the upper wall, . m2, to vary  
from 0 to 2 

Fig. 20.5 Schematic illustration of the expanding (a) and narrowing (b) two-dimensional channels 
of length L and variable width .w(x) = 2(b + λx) for the expanding channel, and . w(x) =
2 [b + λ(L − x)] for the narrowing channel, where .0 ≤ x ≤ L. In both cases, .w'(x) = 2λ. 
The particle starts from the reflecting boundary located at .x = 0 and is trapped by the absorbing 
boundary at .x = L (red dashed lines)  

the effective diffusivity for 2D channels proposed by different authors, which are 
summarized in Table 20.1. 

We will study diffusion into narrowing and expanding 2D channels, which are 
schematically shown in Fig. 20.5. Specifically, we take advantage of the fact that 
effective diffusivity is a function of the channel’s width variation rate, meaning that 
when this quantity is constant, the effective diffusivity is also a constant. In order 
to obtain the values for the effective diffusivity from simulations and compare such 
results with the theoretical formulas, we will focus on the wide-to-narrow (.w → n) 
and narrow-to-wide (.n → w) transitions between the two ends of a 2D channel with 
linear varying width .w'(x), straight walls, and length L (see Fig. 20.5). Otherwise
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stated, we want to calculate the mean first-passage time (MFPT) when particles start 
from a reflecting wall at the origin, .x0 = 0, and are trapped at the perfectly absorbing 
end at .x = L. For the expanding channel, the upper and lower boundaries are given 
by .h2(x) = λx+b and .h1(x) = −λx−b = −h2(x), respectively, and consequently 
.w(x) = 2(b + λx) and .w'(x) = 2λ. For the narrowing channel, these are given by 
.h2(x) = λ(L − x) + b and .h1(x) = −λ(L − x) − b = −h2(x), respectively, so 
then, .w(x) = 2[b + λ(L − x)] and .w'(x) = 2λ. The reason why we are interested 
in these transitions will be clear shortly. 

Previously, in Chap. 17, we saw that the FJ equation, Eq. (17.19), is equivalent 
to the Smoluchowski equation when the entropic potential is carefully chosen 
(see Sect. 17.2). Therefore, .e−βU(x) = w(x)/w0, where .w0 = w(x = 0), . β =
1/(kBT ), with . kB and T denoting the Boltzmann constant and absolute temperature, 
respectively. Then, for the expanding channel .−βU(x) = ln(1 + λx/b) and, for the 
narrowing channel, .−βU(x) = ln[1−λx/(b+λL)], which shows that in these two 
transitions, the particles face different entropic barriers. 

The theoretical formulas for the effective diffusivity associated with these 
channels, which follow from the different expressions for .D(x), are  

.D(x) ≈ DFJ(x) = D0 (Fick-Jacobs), (20.57) 

.D(x) ≈ DZw(x) = 1

1 + 1
12w

'(x)2
D0 = 1

1 + 1
3λ

2
D0 (Zwanzig), (20.58) 

. D(x) ≈ DRR(x) = 1[
1 + 1

4w
'(x)2

]1/3 D0 = 1[
1 + λ2

]1/3 D0 (Reguera-Rubi),

(20.59) 

. D(x) ≈ DKP(x) =
arctan

[
1
2w

'(x)
]

1
2w

'(x)
D0 = arctan λ

λ
D0 (Kalinay-Percus).

(20.60) 
Due to the fact that these formulas depend only on . λ, which is a constant, we 

denote all of them by . Dλ. 
We can conclude, from our theoretical results in this simple system, that particles 

face different entropic potential yet diffuse with the same effective diffusivity, for 
either of these two channels. But how accurate is this statement? The answer to this 
question will allow us to establish the range of applicability and the accuracy of our 
description by means of the modified Fick-Jacobs equation. 

The calculation of the effective diffusivity from simulations can be carried out by 
means of the MFPT, .〈t (x0)〉, for transitions .w → n and .n → w. Our starting point 
to calculate the MFPT is Eq. (6.38): 

.
∂

∂x0

[
D(x0) e

−βU(x0)
∂

∂x0
〈t (x0)〉

]
= −e−βU(x0). (6.38)
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As previously mentioned, in our case, .e−βU(x0) = w(x0)/w0 and .D(x0) = Dλ. 
Consequently, 

.
Dλ

w(x0)

d

dx0

[
w(x0)

d

dx0
〈t (x0)〉

]
= −1. (20.61) 

This equation must be solved together with the following BCs: 

.
d〈t (x0)〉
dx0

∣∣∣∣
x0=0

= 0, (20.62) 

which describes a reflecting wall at .x = 0, and 

. 〈t (x0 = L)〉 = 0, (20.63) 

which describes a perfectly absorbing end at .x = L. 
Integrating Eq. (20.61) with respect to . x0 gives 

.w(x0)
d

dx0
〈t (x0)〉 = − 1

Dλ

∫
w(x0) dx0 + B1, (20.64) 

where . B1 is an integration constant. Imposing the boundary condition at the starting 
point, Eq. (20.62), we find that .B1 = 0. 

Now, we have to substitute the channel width depending on the transition. If 
.w(x) = 2(b + λx), we have the  .n → w transition. Therefore, by using Eq. (20.64) 
and integrating again, we arrive at 

. 〈t (x0)〉n→w = − 1

4Dλ

x2
0 − b

2λDλ

x0 + b2

2λ2Dλ

ln (b + λx0) + B2, (20.65) 

where . B2 is a constant, which can be found by means of Eq. (20.63), i.e., 

.B2 = 1

4Dλ

L2 + b

2λDλ

L − b2

2λ2Dλ

ln (b + λL), (20.66) 

which by substituting into Eq. (20.65), we obtain 

. 〈t (x0)〉n→w = 1

4λ2Dλ

{
λ2(L2 − x2

0) + 2λb − 2b2 ln

[
b + λL

b + λx0

]}
. (20.67) 

Now, setting .x0 = 0, 

. 〈t (x0)〉n→w = 1

4λ2Dλ

[
λL(2b + λL) − 2b2 ln

(
1 + λL

b

)]
. (20.68)
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From this last equation, we can see that if the MFPT for the .n → w transition can be 
obtained either from Brownian dynamics simulations or experimentally. Moreover, 
we can obtain the effective diffusivity as 

.Dn→w
λ = 1

4λ2 〈t (x0)〉n→w

{
λL(2b + λL) − 2b2 ln

(
1 + λL

b

)}
. (20.69) 

To obtain .Dλ for the .w → n transition, we follow the same steps that led 
us to Eq. (20.69). Using the fact that in this case . w(x) = h2(x) − h1(x) =
2 [b + λ(L − x)], we arrive at 

. 〈t (x0)〉w→n = 1

4λ2Dλ

{
−λ2(L2 − x2

0)

−2λb(L − x0) − 2(b + λL)2 ln

[
b

(b + λL) − λx0

]}
. (20.70) 

Setting .x0 = 0, 

. 〈t (x0)〉w→n = − 1

4λ2Dλ

{
2(b + λL)2 ln

(
b

b + λL

)
+ λL(2b + λL)

}
.

(20.71) 

Finally, from this equation, we can obtain 

. Dw→n
λ = − 1

4λ2 〈t (x0)〉w→n

{
2(b + λL)2 ln

(
b

b + λL

)
+ λL(2b + λL)

}
.

(20.72) 

Figure 20.6 shows a comparison of the effective diffusivity values obtained by 
2D Brownian dynamics simulations and the theoretical predictions. 

Fig. 20.6 Comparison of 
different . Dλ drawn using 
Eqs. (20.57)–(20.60) (curves) 
to the values of .Dn→w

λ , and  
.Dw→n

λ , obtained from 
Brownian dynamics 
simulations (symbols) using 
Eqs. (20.72) and (20.69). The  
symbols indicate the 
simulation results with 
settings .D0 = 1, .L = 20, and  
. b = 1
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Fig. 20.7 Typical trajectories obtained through Brownian dynamics simulations for Brownian 
particles diffusing into expanding (a) and narrowing (b) two-dimensional trapezoidal channels 
of length .L = 3 and variable width .w(x) = 2(0.2 + λx) for the expanding channel, and 
.w(x) = 2 [0.2 + λ(3 − x)] for the narrowing channel, where .0 ≤ x ≤ 3. The particle starts 
from the reflecting boundary located at .x = 0 and is trapped by the absorbing boundary at . x = L

(red dashed lines). The effect of the entropic potential shows that in the expanding channel, the 
interaction with the walls is weaker than in the narrowing channel 

The approximated 1D description in terms of the modified FJ equation is 
applicable when the effective diffusivities .Dn→w

λ and .Dw→n
λ are equal to one 

another and independent of the channel length. From Fig. 20.6, we can conclude 
that the first assumption is fulfilled when .w'(x) ≤ 1, and from simulations, we 
found that the second assumption, when .L ≥ 2, is within 8%. In the domain where 
the 1D description is applicable, the best approximations for the position-dependent 
effective diffusivity, entering into the modified FJ equation, are given by the 
Reguera-Rubi (RR) and Kalinay-Percus (KP) formulas, Eqs. (20.59) and (20.60), 
respectively. 

It is worth noting that the RR and KP formulas work well when particles are 
going in the .w → n direction and fail when they are going in the opposite, .n → w, 
direction. The physical reason for this is that in the .w → n direction, after many 
unsuccessful attempts to reach the absorbing end, the particles experience many 
collisions with the channel walls. Due to these collisions, the particle learns about 
the entropy potential. The situation is completely different when the particles are 
going in the .n → w direction in the channel when .λ > 1. In such case, particles do 
not experience enough collisions with the walls before they reach the absorbing end, 
which results in an underestimated entropic potential effect, as shown in Fig. 20.7b. 

When running simulations to generate the trajectories, we consider an over-
damped point-like Brownian particle freely diffusing in a 2D trapezoidal channel. 
The particle starts from the reflecting boundary located at .x = 0 and is trapped 
by the absorbing end at .x = L. The overdamped dynamics of the particle, in the 
absence of an external force, is modeled by the overdamped Langevin equation, 
Eq. (10.83):
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.
dr
dt

= √
2D0∆t η(t), (10.94) 

where . D0 is the bulk diffusivity, .r = (x, y), .ξ(t) = (ξx(t), ξy(t)) are zero-mean 
white Gaussian noise with autocorrelation function . 

〈
ξi(t), ξj (t

')
〉 = δi,j δ(t − t ')

where .i, j = x, y, given by Eqs. (10.19) and (10.20), respectively. When running 
simulations, we take .D0 = 1 and the time step .∆t = 10−6, so that .

√
2D0∆t ⪡ 1. 

The actual particle position . rn is given by .rn = r0 + rran, where . r0 is the former 
position and .rran is a vector of pseudorandom numbers generated with a Gaussian 
distribution .(μ = 0, σ = √

2D0 ∆t). For more details on Brownian dynamics 
simulations, see Chap. 10. 

20.4 3D Tube: Projection Method 

20.4.1 The Projection Method 

In this section, we extend the Kalinay-Percus one-dimensional (1D) projection 
method to a quasi-one-dimensional three-dimensional symmetrical tube with a 
varying cross-section along the longitudinal coordinate (see Fig. 20.8). To such end, 
we must follow the steps outlined in Sect. 20.1. 

The diffusion equation for a symmetrical 3D tube in cylindrical coordinates, 
where it is assumed that the concentration does not depend on the angle . φ, is  

.
∂c(x, r, t)

∂t
= Dx

∂2c(x, r, t)

∂x2 + Dr

1

r

∂

∂r

[
r
∂c(x, r, t)

∂r

]
, (20.73) 

where .c(x, r, t) is the concentration of the diffusing particles, the x-coordinate 
is measured along the tube axis (centerline), and .Dx and . Dr are the diffusivity 
constants in the x and radial (r) coordinates in free space. The cross-section of the 
channel is given by .w(x) = πR(x)2. Now, we define the projected 1D density . ρ as 

Fig. 20.8 Schematic representation of a 3D narrow symmetric tube with varying width . w(x) =
πR(x)2. Each boundary has a unit normal vector of the flux, which is perpendicular to the surface
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.ρ(x, t) ≡
∫ 2π

0

∫ R(x)

0
c(x, r, t) r dr dφ = 2π

∫ R(x)

0
c(x, r, t) r dr. (20.74) 

Using the latter equation, multiplying it by r, and integrating Eq. (20.73) over r 
yields 

. 2π
∫ R(x)

0

∂c(x, r, t)

∂t
r dr=2π

∫ R(x)

0

{
Dx

∂2c(x, r, t)

∂x2

+Dr

1

r

∂

∂r

[
r
∂c(x, r, t)

∂r

] }
r dr. (20.75) 

Using the Leibniz rule (see Eq. (A.9)) in the first term of the right-hand side of 
the resulting equation yields 

.

∫ R(x)

0
Dx

∂

∂x

[
∂c(x, r, t)

∂x

]
r dr

= Dx

{
∂

∂x

∫ R(x)

0

∂c(x, r, t)

∂x
r dr − R'(x)

[
r

∂c(x, r, t)

∂x

] ∣∣∣∣
r=R(x)

}

= Dx

{
∂

∂x

[
∂

∂x

∫ R(x)

0
c(x, r, t) r dr − R(x)R'(x) c(x, R(x), t)

]

− R'(x) R(x)
∂c(x, r, t)

∂x

∣∣∣∣
r=R(x)

}
,

(20.76) 

and using the fundamental theorem of calculus on the second right-hand side term 
leads to 

. 2π
∫ R(x)

0
Dr

1

r

∂

∂r

[
r

∂c(x, r, t)

∂r

]
r dr = 2πDr

[
r
∂c(x, r, t)

∂r

] ∣∣∣∣
r=R(x)

r=0
,

(20.77) 
we arrive at 

. 
∂p(x, t)

∂x
= Dx

{
∂2ρ(x, t)

∂x2 − 2π
∂

∂x

[
R(x)R'(x) c(x, R(x), t)

]

− 2πR(x)R'(x)
∂c(x, r, t)

∂x

∣∣∣∣
r=R(x)

}
+ 2πDr

[
r
∂c(x, r, t)

∂r

] ∣∣∣∣
r=R(x)

r=0
. (20.78) 

Taking advantage of the symmetry of the problem, the equation for the flux can be 
written as 

.J(x, r, t) = −Dx

∂c(x, r, t)

∂x
êx − Dr

∂c(x, r, t)

∂r
êr . (20.79)
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The unit vector normal to the circular wall at .r = R(x) is . ̂n =[
R'(x)êx − êr

]
/
√
1 + R'(x)2 and the boundary condition for a perfect reflecting 

wall is given by .n̂ · J(x, r, t) = 0. Therefore, after performing the dot product, we 
obtain 

.Dr

∂c(x, r, t)

∂r

∣∣∣∣
r=R(x)

= Dx R'(x)
∂c(x, r, t)

∂x

∣∣∣∣
r=R(x)

. (20.80) 

Imposing (20.80) into (20.78) leads to the projected diffusion equation, which 
reads 

.
∂ρ(x, t)

∂t
= Dx

{
∂2ρ(x, t)

∂x2 − 2π
∂

∂x

[
R(x)R'(x) c(x, R(x), t)

]}
. (20.81) 

Recalling that the first approximation comes from imposing an infinite transverse 
diffusion rate, by assuming that .Dr ⪢ Dx , we have  

.c(x, r, t) = ρ(x, t)

πR(x)2
= ρ(x, t)

w(x)
. (20.82) 

Be aware that now .w(x) is the cross-section area of the tube. By substituting this 
last equation into Eq. (20.81) and setting .Dx = D0, we are led to the FJ equation: 

.
∂ρ(x, t)

∂t
= D0

∂

∂x

[
w(x)

∂

∂x

ρ(x, t)

w(x)

]
. (20.83) 

In the next section, we will find the effective diffusivity using higher-order 
corrections. The process is very similar to that used in the previous sections. 

20.5 Recurrence Formula for Operators σ̂ j (x, r, ∂x) 

We start by writing the concentration .c(x, y, t) as a perturbation series, namely, 

.c(x, r, t) =
∞∑

j=0

ϵj σ̂ j (x, r, ∂x)
∂

∂x

ρ(x, t)

w(x)
, (20.84) 

where . σ̂ j are operators acting on their right side and .ϵ = Dx/Dr . Setting .j = 0, 
the FJ approximation is recovered as expected. Consequently, 

.σ̂ 0(x, r, t)
∂

∂x
= 1. (20.85)



592 20 Kalinay and Percus Projection Method

On the one hand, using Eq. (20.84), the diffusion equation (20.73) becomes 

. 

(
1

Dx

∂

∂t
− ∂2

∂x2

) ∞∑
j=0

ϵj+1 σ̂ j (x, r, ∂x)
∂

∂x

ρ(x, t)

w(x)

=
∞∑

j=0

ϵj 1

r

∂

∂r

[
r

∂

∂r
σ̂ j (x, r, ∂x)

∂

∂x

ρ(x, t)

w(x)

]
, (20.86) 

and on the other hand, the projected diffusion equation, Eq. (20.81), reads 

. 
∂ρ(x, t)

∂t
= Dx

{
∂2ρ(x, t)

∂x2

− 2π
∂

∂x

[
R(x)R'(x)

∞∑
j=0

ϵj σ̂ j (x, R(x), ∂x)
∂

∂x

ρ(x, t)

w(x)

]}
. (20.87) 

Because .w'(x) = 2πR(x)R'(x), we can rewrite this equation as 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

[
w(x) − w'(x)

∞∑
j=1

ϵj σ̂ j (x, R(x), ∂x)

]
∂

∂x

ρ(x, t)

w(x)
. (20.88) 

Substituting Eq. (20.88) into Eq. (20.86), we arrive at 

. 

∞∑
j=0

ϵj+1
{
σ̂ j (x, r, ∂x)

∂

∂x

1

w(x)

∂

∂x

[
w(x) − w'(x)

∞∑
k=1

ϵk σ̂ k(x, R(x), ∂x)

]

− ∂2

∂x2 σ̂ j (x, r, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
=

∞∑
j=0

ϵj 1

r

∂

∂r

[
r

∂

∂r
σ̂ j (x, r, ∂x)

∂

∂x

ρ(x, t)

w(x)

]
.

(20.89) 

The recurrence formula is obtained by rewriting this last equation using the linear 
independence of all . ϵ powers, namely, 

.

{
1

r

∂

∂r

[
r

∂

∂r
σ̂ j+1(x, r, ∂x)

] }
∂

∂x

ρ(x, t)

w(x)

=
{

−
j∑

k=1

σ̂ j−k(x, r, ∂x)
∂

∂x

1

w(x)

∂

∂x
w'(x) σ̂ k(x, R(x), ∂x)

+ σ̂ j (x, r, ∂x)
∂

∂x

1

w(x)

∂w(x)

∂x
− ∂2

∂x2 σ̂ j (x, r, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
.

(20.90)
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Performing a double integration over r, setting the constants in such a way that 
the boundary conditions .n̂ · J(x, r = R(x), t) = 0, and using the normalization 
condition 

.2π
∫ R(x)

0
σ̂ j (x, r, ∂x)

∂

∂x

ρ(x, t)

w(x)
r dr = 0, j > 0, (20.91) 

we obtain the recurrence formula, that is, 

. 

{
ϵj ∂

∂r
σ̂ j (x, r, ∂x)

∂

∂x

ρ(x, t)

w(x)

}∣∣∣∣
r=R(x)

=
{
ϵj+1 w'(x)

∂

∂r
σ̂ j (x, r, ∂x)

∂

∂x

ρ(x, t)

w(x)

}∣∣∣∣
r=R(x)

. (20.92) 

20.5.1 First- and Second-Order Corrections 

To find the first-order operator .σ̂ 1(x, r, ∂x), we set  .j = 0 on the left-hand side and 
.j = 1 on the right-hand side of Eq. (20.86), yielding 

. σ̂ 1(x, r, t)
∂

∂x

ρ(x, t)

w(x)
=

∫
1

r

∫
r

(
1

Dx

∂

∂t
− ∂2

∂x2

)
σ̂ 0(x, r, ∂x)

∂

∂x

ρ(x, t)

w(x)
dr dr,

(20.93) 

where .σ̂ 0(x, r, ∂x) ∂x = 1. Using the FJ equation, Eq. (20.83), one finds 

.σ̂ 1(x, r, t)
∂

∂x

ρ(x, t)

w(x)
=

∫
1

r

∫
r

w'(x)

w(x)

∂

∂x

ρ(x, t)

w(x)
dr dr. (20.94) 

Integrating this last equation, we have 

.σ̂ 1(x, r, t)
∂

∂x

ρ(x, t)

w(x)
= r2

4

w'(x)

w(x)

∂

∂x

ρ(x, t)

w(x)
+ B1 ln r + B2. (20.95) 

where . B1 and . B2 are constants. The first constant is found imposing that the 
concentration is equal to zero when .r = 0, and consequently .B1 = 0. The second 
constant is found from the normalization condition (20.91). Then, Eq. (20.95) is



594 20 Kalinay and Percus Projection Method

.

2π
∫ R(x)

0
σ̂ 1(x, r, t)

∂

∂x

ρ(x, t)

w(x)
r dr

= 2π
∫ R(x)

0

[
r2

4

w'(x)

w(x)

∂

∂x

ρ(x, t)

w(x)
+ B2

]
r dr

= 2π

{ [
w'(x)

w(x)

∂

∂x

ρ(x, t)

w(x)

]
r4

16
+ B r2

2

}∣∣∣∣
r=R(x)

r=0

= 0,

(20.96) 

where 

.B2 = −R(x)2

8

[
w'(x)

w(x)

∂

∂x

ρ(x, t)

w(x)

]
= −R(x)R'(x)

4

∂

∂x

ρ(x, t)

w(x)
. (20.97) 

From Eq. (20.96), we find that the first-order operator is 

.σ̂ 1(x, r, ∂x) =
[

r2

2R(x)
− R(x)

4

]
R'(x), (20.98) 

which evaluated at the boundary .r = R(x), leads to 

.σ̂ 1(x, R(x), ∂x) = 1

4
R(x)R'(x). (20.99) 

The second-order operator .σ̂ 2(x, r, ∂x) is obtained from the recurrence relation, 
Eq. (20.90), setting .j = 1, once we know the previous order operator, namely, 

.

{
1

r

∂

∂r

[
r

∂

∂r
σ̂ 2(x, r, ∂x)

]}
∂

∂x

ρ(x, t)

w(x)

=
{

− 1

w(x)

∂

∂x
w'(x)

[
1

4
R(x)R'(x)

]

+
[

r2

2R(x)
− R(x)

4

]
R'(x)

∂

∂x

1

w(x)

∂w(x)

∂x

− ∂2

∂x2

[
r2

2R(x)
− R(x)

4

]
R'(x)

}
∂

∂x

ρ(x, t)

w(x)
,

(20.100) 

which can be rewritten as 

.

{
1

r

∂

∂r

[
r

∂

∂r
σ̂ 2(x, r, ∂x)

] }
∂

∂x

ρ(x, t)

w(x)
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=
{
r2 Q̂1(x, ∂x) + Q̂2(x, ∂x)

}
∂ 
∂x 

ρ(x, t) 
w(x) 

, (20.101) 

where 

.Q̂1(x, ∂x) = R'(x)

2R(x)

∂

∂x

1

w(x)

∂

∂x
w(x) − ∂2

∂x2

R'(x)

2R(x)
, (20.102) 

and 

. 

Q̂2(x, ∂x) = − 1

4w(x)

∂

∂x
w'(x) R(x)R'(x) − R(x)R'(x)

4

∂

∂x

1

w(x)

∂

∂x
w(x)

+ ∂2

∂x2

R(x)R'(x)

4
.

(20.103) 
After doing some algebra, these auxiliary operators can be rewritten as 

. Q̂1(x, ∂x) = 1

2R(x)2

{
2
[
2R'(x)2 − R(x)R''(x)

] ∂

∂x

− R(x)R'''(x) + 5R'(x) R''(x) − 4R'(x)3

R(x)

}
, (20.104) 

and 

. Q̂2(x, ∂x) = 1

4

{
− 2

[
R'(x)2 − R(x)R''(x)

] ∂

∂x
+ R(x)R'''(x)

− 3R'(x) R''(x) − 2R'(x)3

R(x)

}
. (20.105) 

Now, by integrating Eq. (20.100) twice over r and using Eqs. (20.104) and (20.105), 
we see that 

. 

{
σ̂ 2(x, r, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
=

{
r4

16
Q̂1(x, ∂x) + r2

4
Q̂2(x, ∂x)

}
∂

∂x

ρ(x, t)

w(x)

+ B1 ln r + B2, (20.106) 

where . B1 is zero, just as in the calculation of the previous operator. The constant . B2
is found again from the normalization condition, yielding 

.B2 =
{

− R(x)4

48
Q̂1(x, ∂x) − R(x)2

8
Q̂2(x, ∂x)

}
∂

∂x

ρ(x, t)

w(x)
. (20.107) 

If we now use Eq. (20.107) in Eq. (20.106),
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. σ̂ 2(x, r, ∂x) = r4

16
Q̂1(x, ∂x) + r2

4
Q̂2(x, ∂x)

− R(x)2

8

[
R(x)2

6
Q̂1(x, ∂x) + Q̂2(x, ∂x)

]
, (20.108) 

and when substituting .Q̂1(x, ∂x) and .Q̂2(x, ∂x), this leads to 

.

σ̂ 2(x, r, ∂x) = r4

32R(x)2

{
2
[
2R'(x)2 − R(x)R''(x)

] ∂

∂x

− R(x)R'''(x) + 5R'(x) R''(x) − 4R'(x)3

R(x)

}

+ r2

16

{
− 2

[
R'(x)2 − R(x)R''(x)

] ∂

∂x

+ R(x)R'''(x) − 3R'(x) R''(x) − 2R'(x)3

R(x)

}

− R(x)2

48

{
−

[
R'(x)2 − 2R(x)R''(x)

] ∂

∂x

+ R(x)R'''(x) − 2R'(x) R''(x) − 5R'(x)3

R(x)

}
,

(20.109) 

which by evaluating at .r = R(x) becomes 

. σ̂ 2(x, R(x), ∂x) = R(x)2

96

{
2
[
R'(x)2 + R(x)R''(x)

] ∂

∂x

+ R(x)R'''(x) + R'(x) R''(x) − 14R'(x)3

R(x)

}
. (20.110) 

The operators for .j > 3 are obtained in the same way. Each operator .σ̂ j (x, r, ∂x) is 
a polynomial in powers of . r2k , .k = 0, 1, . . . , j , and the order of its derivatives with 
respect to x is .j − 1, with the proof being by mathematical induction. Finally, we 
substitute the obtained operators evaluated at .r = R(x), Eqs. (20.99) and (20.110), 
in Eq. (20.88), to find the equation for projected diffusion, namely, 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

{
w(x) − ϵ

4
w'(x) R(x)R'(x)

− ϵ2

96
w'(x) R(x)2

[
2
(
R'(x)2 + R(x)R''(x)

) ∂

∂x
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+ R(x) R'''(x) + R'(x) R''(x) − 
14R'(x)3 

R(x)

]
− · · ·

}

× 
∂ 
∂x 

ρ(x, t) 
w(x) 

. (20.111) 

Now, our next task is to provide the steps that allow us to link Eq. (20.5.1) with 
the position-dependent diffusion coefficient. 

20.5.2 The Position-Dependent Effective Diffusion Coefficient 

In three dimensions, Eq. (20.45) remains the same, but with .w(x) = πR(x)2, so  
then, 

.D(x) ≈ 1 − ϵ R(x)2 Ẑ(x, ∂x)
1

R(x)2
, (20.112) 

where 

. Ẑ(x, ∂x) = 1

2
R'(x)2 + ϵ

48
R(x)R'(x)

[
2
(
R'(x)2 + R(x)R''(x)

) ∂

∂x

+ R(x)R'''(x) + 7R'(x) R''(x) − 18R'(x)3

R(x)

]
+ · · · . (20.113) 

Substituting this last equation into Eq. (20.112), and after some simplifications, 
we arrive at 

. 

D(x) ≈ 1 − ϵ

2
R'(x)2

+ ϵ2

48
R(x)R'(x)

[
18

R'(x)3

R(x)
+ 3R'(x) R''(x) − R(x)2 R'''(x)

]
+ · · · .

(20.114) 
This equation is the effective diffusion coefficient for a three-dimensional 

channel of radial symmetry and radius .R(x). If the radius of the channel does not 
change abruptly, that is, .R'(x) < 1, then Eq. (20.114) can be approximated as 

.D(x) ≈ 1 − ϵ

2
R'(x)2 + 3

8
ϵ2 R'(x)4 − 5

16
ϵ3 R'(x)6 + · · · . (20.115) 

From the recurrence relation between the operators, we find that
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.D(x) =
∞∑

n=0

(2n − 1)!!
(2n)!!

[
−ϵ w'(x)2

]n

, (20.116) 

which is a convergent series given by 

.D(x) = 1√
1 + ϵR'(x)2

. (20.117) 

For the isotropic case, we have that .ϵ = 1. Consequently, 

.D(x) = 1√
1 + R'(x)2

, (20.118) 

which is one of the main results of this chapter. It is worth noting that this equation 
is the one proposed by RR, and the first two terms of Eq. (20.118) are Zwanzig’s 
approximation. In the following chapters, we will study the range of applicability of 
Eq. (20.118). 

The equations for the position-dependent diffusion coefficients for quasi-one-
dimensional channels are summarized in Table 20.1 as they appear in the literature. 

The calculation of the effective diffusivity from simulations can be carried out 
by means of the mean first-passage time (MFPT), .〈t (x0)〉, for  the  .w → n and 
.n → w transitions, as done previously. Our starting point to calculate the MFPT 
is Eq. (6.38). 

20.6 First Passage in Conical Tubes 

In this section, we apply the techniques outlined in Sect. 20.3 to study the range 
of applicability of the one-dimensional (1D) description of a particle diffusing in a 
three-dimensional tube in terms of the modified (FJ) equation. Therefore, we will 
focus on the wide-to-narrow (.w → n) and narrow-to-wide (.n → w) transitions 
between the two ends of a tube of varying linear radius, .R'(x) = λ, as shown  
in Fig. 20.9. For this conical tube, we have that the entropic potential is given by 
.e−βU(x) = w(x)/w0, where .w(x) = πR(x)2, .w0 = w(x = 0), .β = 1/(kBT ), with 
. kB and T denoting the Boltzmann constant and absolute temperature, respectively. 
For the expanding conical tube, we have .R(x) = λx+b, and consequently, . βU(x) =
− ln[(b+λx)/b]2. Additionally, for the narrowing tube, we set .R(x) = λ(L−x)+b, 
yielding to .βU(x) = − ln[(λ(L − x) + b)/(λL + b)]2. 

We start by writing the theoretical formulas for the effective diffusivity for a 
conical tube with constant width . λ, which follow the different expressions for .D(x), 
namely, 

.D(x) ≈ DFJ(x) = D0 (Fick-Jacobs), (20.119)
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Fig. 20.9 Schematic representation of expanding (a) and narrowing (b) tubes of length L with 
constant radius variation rate, i.e., .R'(x) = constant. In both cases, particles starting from the left 
reflecting boundary are trapped by the right perfect absorbing end 

.D(x) ≈ DZw(x) = 1

1 + 1
2 R'(x)2

D0 = 1

1 + 1
2λ

2
D0 (Zwanzig), (20.120) 

. D(x) ≈ DRR(x) = 1[
1 + 1

4 R'(x)2
]1/2 D0 = 1[

1 + λ2
]1/2 D0 (Reguera-Rubi),

(20.121) 

. D(x) ≈ DKP(x) = 1[
1 + 1

4 R'(x)2
]1/2 D0 = 1[

1 + λ2
]1/2 D0 (Kalinay-Percus).

(20.122) 

It is worth remembering that the Kalinay-Percus (KP) and Reguera-Rubi (RR) 
formulas are the same for three dimensions. Because these formulas depend only on 
. λ, we denote all of them by . Dλ, as we did before. 

To calculate . Dλ from simulations, we first have to obtain the mean first-passage 
time (MFPT), as discussed in Sect. 20.3, given by Eq. (20.61), which has to be 
solved together with the BCs given by Eqs. (20.62) and (20.63). Something to keep 
in mind is that the main difference between both dimensions is .w(x), which in 3D 
is the transverse area. 

Recalling Eq. (20.61), 

.
Dλ

w(x0)

d

dx0

[
w(x0)

d

dx0
〈t (x0)〉

]
= −1, (20.61) 

let us solve it by quadratures (see Appendix A.12). Since .〈t (x0)〉 at the origin is 
known, Eq. (20.62), it is best to integrate Eq. (20.61) from 0 to . x0. Before performing 
the integration, and to avoid confusion with the notation, it is also practical to set 
.x0 = x' in Eq. (20.62), namely,
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.

∫ x0

0

d

dx'

[
w(x') d

dx'
〈
t (x')

〉]
dx' = −

∫ x0

0

w(x')
Dλ

dx'. (20.123) 

A first integration gives 

.w(x0)
d〈t (x0)〉
dx0

− w(0)
d〈t (x0)〉
dx0

∣∣∣∣
x0=0

= − 1

Dλ

∫ x0

0
w(x') dx'. (20.124) 

From the BCs, the flux is null at the origin (see Eq. (20.62)) and the second term 
of the left-hand side is zero. Again, before integrating, it is practical to set .x0 = x'', 
i.e., 

.

∫ x0

0

d
〈
t (x'')

〉
dx'' dx'' = − 1

Dλ

∫ x0

0

1

w(x'')

[∫ x''

0
w(x') dx'

]
dx''. (20.125) 

Then, a second integration gives 

. 〈t (x0)〉 − 〈t (x0 = 0)〉 = − 1

Dλ

∫ x0

0

1

w(x'')

[∫ x''

0
w(x') dx'

]
dx''. (20.126) 

The integrations are to be carried out in order, first with respect to . x' and then 
with respect to . x''. By imposing the absorbing boundary at .x0 = L, we find that 

. 〈t (x0 = 0)〉 = 1

Dλ

∫ L

0

1

w(x'')

[∫ x''

0
w(x') dx'

]
dx''. (20.127) 

Introducing .〈t (x0 = 0)〉 into Eq. (20.126) yields 

. 〈t (x0)〉 = 1

Dλ

∫ L

0

1

w(x'')

[∫ x''

0
w(x') dx'

]
dx''

− 1

Dλ

∫ x0

0

1

w(x'')

[∫ x''

0
w(x') dx'

]
dx''. (20.128) 

Recalling definite integral properties and given . x0 lies within the interval .[0, L], 
the limits of the first integral of the right-hand side over . x'' can be split into two 
sums: one integral from 0 to . x0 and another one from . x0 to L. The latter integral 
cancels out with the second integral of Eq. (20.128), and as a result, the general 
solution of Eq. (20.61) is 

. 〈t (x0)〉 = 1

Dλ

∫ L

x0

1

w(x'')

[∫ x''

0
w(x') dx'

]
dx''. (20.129)



20.6 First Passage in Conical Tubes 601

It is worth mentioning that if instead of integrating Eq. (20.124) from 0 to . x0, 
we had done it from . x0 to L, this result would have been obtained directly. Finally, 
setting .x0 = 0 results in 

. 〈t (0 → L)〉 = 1

Dλ

∫ L

0

1

w(x'')

[∫ x''

0
w(x')dx'

]
dx''. (20.130) 

We can use the latter equation to obtain the MFPT for the .n → w and the . w → n

transitions. In the first case, the tube’s cross-sectional area is .w(x) = b + λx. Thus, 
substituting .w(x) into Eq. (20.130) results in 

. 〈t (0 → L)〉 = 1

Dλ

∫ L

0

1

b + λx''

[∫ x''

0
(b + λx')dx'

]
dx''. (20.131) 

Integrating with respect to . x' over .[0, x''] leads to 

. 〈t (0 → L)〉 = 1

Dλ

∫ L

0

1

b + λx''

(
bx'' + λ

2
x''2

)
dx'', (20.132) 

and integrating with respect to . x'' over .[0, L] finally gives 

. 〈t (x0)〉n→w = L2

6Dλ

3b + λL

b + λL
. (20.133) 

Then, we can obtain the effective diffusivity as 

.Dn→w
λ = L2

6 〈t (x0)〉n→w

3b + λL

b + λL
. (20.134) 

Furthermore, for a narrowing tube, .w(x) = b + λ(L − x). Introducing this 
expression into Eq. (20.129) and integrating leads to 

. 〈t (x0)〉w→n = L2

6Dλ

(
3 + 2

λL

b

)
. (20.135) 

Consequently, 

.Dw→n
λ = L2

6 〈t (x0)〉w→n

(
3 + 2

λL

b

)
. (20.136) 

The .λ-dependence of the .Dλ/D0 ratio and the theoretical approximations given 
by Eqs. (20.119)–(20.122) normalized to . D0 are shown in Fig. 20.10. We can see 
that when the radius variation rate falls within the range of the applicability of the
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Fig. 20.10 Comparison of 
different . Dλ drawn using 
Eqs. (20.119)–(20.122) 
(lines) and the values of 
.Dn→w

λ and .Dw→n
λ , obtained 

from 3D Brownian dynamics 
simulations (symbols). The 
symbols give the simulation 
results for a channel of length 
. L = 10
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1D description, .λ ≤ 1, the predictions of the RR formula are reasonably good. The 
relative error increases with . λ, and at .λ = 1, it is around 10%. 

20.7 Position-Dependent Diffusion Coefficient Formulas 

The approximated formulas for position-dependent diffusion coefficients in two 
and three dimensions for quasi-one-dimensional channels are summarized in the 
following table as they appear in the literature. 

20.8 Concluding Remarks 

In this chapter, we introduced the projection method, first presented by P. Kalinay 
and J. K. Percus. We found the enhanced Fick-Jacobs operator in differential 
form for a quasi-one-dimensional asymmetric two-dimensional channel with a 
curved midline .y0(x) and varying width .w(x) along the longitudinal coordinate, as 
well as for a three-dimensional symmetric tube. The position-dependent diffusion 
coefficient is given by Eq. (20.51) for an asymmetric channel and by Eq. (20.118) 
for a symmetric tube. 

The reduction of axial diffusion in two-dimensional channels and three-
dimensional tubes to the effective one-dimensional description in terms of the 
modified Fick-Jacobs equation is applicable when the channel width variation rate, 
or radius variation rate, does not exceed unity, .

∣∣w'(x)
∣∣ ≤ 1. This condition is not 

as restrictive as the one imposed by Zwanzig in deriving the modified Fick-Jacobs 
equation.
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Chapter 21 
External Transverse Field: 2D Narrow 
Channel 

In this chapter, we focus on the derivation of a general position-dependent effective 
diffusion coefficient to describe two-dimensional (2D) diffusion in a narrow and 
smoothly asymmetric channel of varying width under the influence of a transverse 
gravitational external field. In order to do so, we employ the projection method 
by Kalinay and Percus (KP) to project the 2D Smoluchowski equation into an 
effective one-dimensional generalized Fick-Jacobs equation. Additionally, we show 
that diffusivity can be described by the interpolation formula proposed by Kalinay, 
namely, .D0/(1 + (1/4)w'2(x))−η, where spatial confinement, asymmetry, and the 
presence of a constant transverse force can be encoded in parameter . η, which is 
naturally a function of channel width (w), channel centerline, and transverse force. 
The interpolation formula also simplifies to well-known previous results, e.g., those 
obtained by Reguera and Rubi. 

Then, we study the crossing time statistics of diffusing point particles between 
the two ends of an expanding and narrowing two-dimensional conical channel 
subject to a transverse external gravitational field. The theoretical expression for the 
mean first-passage time (MFPT) for such a system is derived under the assumption 
that the axial diffusion in a two-dimensional channel of smoothly varying geom-
etry can be approximately described as one-dimensional diffusion in an entropic 
potential with position-dependent effective diffusivity in terms of the modified 
Fick-Jacobs equation. We analyze the channel crossing dynamics in terms of the 
MFPT, combining our analytical results with extensive two-dimensional Brownian 
dynamics simulations, which allows us to find the range of applicability of the one-
dimensional approximation. Ultimately, we find that effective particle diffusivity 
decreases with increasing amplitude of the external potential. Interestingly, the 
MFPT for crossing the channel is shown to assume a minimum at finite values of 
the potential amplitude. 

To gain some insight into diffusion under confinement in the presence of an 
external perpendicular force g, we present representative trajectories of diffusing 
particles in Fig. 21.1 for both cases: when .g = 0 and when .g /= 0. 
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Fig. 21.1 Comparison between trajectories of Brownian particles confined within a two-
dimensional channel with hard walls determined by the boundary functions .±h(x) = ±0.4x±0.1. 
The blue line corresponds to the trajectory of a particle subject solely to confinement, while the 
green line illustrates the trajectory of a diffusing particle influenced by a gravity-like force with a 
magnitude of .|g| = 30. For both simulations, we set .D0 = 1 and .Δt = 1 × 10−5. The simulation 
ended after .10,000 time steps 

21.1 Projection of the Smoluchowski Equation 

In the case of either a symmetrical or asymmetrical two-dimensional channel, we 
start by invoking the two-dimensional Smoluchowski equation, i.e., 

.

∂c(x, y, t)

∂t
= Dx

∂

∂x

{
e−βU(x,y) ∂

∂x

[
eβU(x,y) c(x, y, t)

]}

+ Dy

∂

∂y

{
e−βU(x,y) ∂

∂y

[
eβU(x,y) c(x, y, t)

]}
.

(18.1) 

Since the particles are subjected to a gravitational potential, then 

.U(x, y) = Gy. (21.1) 

A schematic representation of a two-dimensional asymmetric channel is shown 
in Fig. 21.2. 

For the sake of convenience, we define 

.g ≡ Gβ, (21.2) 

which allows us to write Eq. (18.1) as
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Fig. 21.2 Schematic 
representation of a 
two-dimensional asymmetric 
channel in the presence of a 
constant transverse force G. 
The channel has two 
reflecting walls given by 
.h1(x) and .h2(x), variable  
width .w(x) = h2(x) − h1(x), 
and curved midline 
. y0(x) = [h1(x) + h2(x)]/2

.

∂c(x, y, t)

∂t
= Dx

∂

∂x

{
e−gy ∂

∂x

[
egy c(x, y, t)

]}

+ Dy

∂

∂y

{
e−gy ∂

∂y

[
egy c(x, y, t)

]}
.

(21.3) 

By manipulating the first term on the right-hand side of the latter equation, we obtain 

. 

∂

∂x

{
e−gy ∂

∂x

[
egy c(x, y, t)]

}
= e−gy ∂

∂x

{
egy ∂c(x, y, t)

∂x
+ c(x, y, t)

∂egy

∂x

}

+
(

∂egy

∂x

)
∂

∂x

[
egy c(x, y, t)

]

= e−gy ∂

∂x

{
egy ∂c(x, y, t)

∂x

}

= e−gy

{
egy ∂2c(x, y, t)

∂t2
+
[
∂c(x, y, t)

∂x

](
∂egy

∂x

)}

=∂2c(x, y, t)

∂x2
.

(21.4) 

Applying that 

.
∂

∂x
e±gy = ∂

∂x

(±gy e±gy
) = 0, (21.5) 

we can simplify the Smoluchowski equation to
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.
∂c(x, y, t)

∂t
= Dx

∂2c(x, y, t)

∂x2
+ Dy

∂

∂y

{
e−gy ∂

∂y

[
egy c(x, y, t)

]}
. (21.6) 

Moreover, by using Fick’s first law, Eq. (2.73), and the conservation equation given 
by Eq. (2.71), we identify the flux components for this system, namely, 

.Jx = −Dx

∂c(x, y, t)

∂x
, (21.7) 

and 

.Jy = −Dy e−gy ∂

∂y

[
egy c(x, y, t)

]
, (21.8) 

from which .J = (Jx, Jy, 0) is determined. 
The subsequent examination is centered on a system with a two-dimensional 

symmetric channel, wherein we derive the boundary conditions (BCs) using the 
flux vector . J and the functions that describe the channel walls. In this context, the 
channel walls are defined by 

.y = ±h(x). (21.9) 

It is worth noting that the presence of perfectly reflecting boundaries implies that 
the flux through the walls should be null. This condition can be mathematically 
expressed as follows: 

.J × ±h'(x) = 0, (21.10) 

where 

. ± h(x) = (x,±h(x)), (21.11) 

and consequently, 

. ± h'(x) = (1,±h'(x)), (21.12) 

where the prime notation indicates a derivative with respect to x. By writing 
Eq. (21.10) explicitly, we see that 

. J × ±h'(x) =
∣∣∣∣∣∣
î ĵ k̂

Jx Jy 0
1 h'(x) 0

∣∣∣∣∣∣ = k̂
[±h'(x) Jx − Jy

] = 0, (21.13) 

leading to
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. ± h'(x) Jx = Jy. (21.14) 

Upon substituting Eqs. (21.7) and (21.8) into Eq. (21.14), we obtain 

. ± h'(x) Dx

∂c(x, y, t)

∂x

∣∣∣∣
y=±h(x)

= Dy e−gy ∂

∂y

[
egy c(x, y, t)

]∣∣
y=±h(x)

,

(21.15) 
which constitute the requisite BCs. 

21.1.1 The Projection Method 

Now, we proceed to Eq. (21.6) in order to obtain a Fick-Jacobs-like equation (see 
Eq. (18.15)). To such end, we start by defining the projected or marginal one-
dimensional (1D) density .ρ(x, t) as 

.ρ(x, t) =
∫ h(x)

−h(x)

c(x, y, t) dy. (21.16) 

Then, by integrating Eq. (21.6) with respect to y, we arrive at  

. 
∂ρ(x, t)

∂t
= Dx

∫ h(x)

−h(x)

∂2c(x, y, t)

∂t2
dy + Dy e−gy ∂

∂y

[
egy c(x, y, t)

]∣∣y=h(x)

y=−h(x)
.

(21.17) 

The second term on the right-hand side of the latter equation is rearranged to give 

. 

Dy e−gy ∂

∂y

[
egy c(x, y, t)

]∣∣y=h(x)

y=−h(x)

= Dy

{
e−gy ∂

∂y

[
egy c(x, y, t)

]∣∣y=h(x) − e−gy ∂

∂y

[
egy c(x, y, t)

]∣∣
y=−h(x)

}

= Dx h'(x)

{
∂c(x, y, t)

∂x

∣∣∣∣
y=h(x)

+ ∂c(x, y, t)

∂x

∣∣∣∣
y=−h(x)

}
,

(21.18) 

where we used the BCs in Eq. (21.15) to simplify computations. Subsequently, we 
integrate the first term of Eq. (21.17) using the Leibniz integral rule, Eq. (A.9), 
yielding
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. Dx

∂

∂x

∫ h(x)

−h(x)

∂c(x, y, t)

∂x
dy = Dx

∫ h(x)

−h(x)

∂2c(x, y, t)

∂t2
dy

+ Dx h'(x)
∂c(x, y, t)

∂x

∣∣∣∣
y=h(x)

− Dx

[−h'(x)
] ∂c(x, y, t)

∂x

∣∣∣∣
y=−h(x)

. (21.19) 

Furthermore, 

. Dx

∫ h(x)

−h(x)

∂2c(x, y, t)

∂t2
dy = Dx

∂

∂x

∫ h(x)

−h(x)

∂c(x, y, t)

∂x
dy

− Dx h'(x)
∂c(x, y, t)

∂x

∣∣∣∣
y=h(x)

− Dx h'(x)
∂c(x, y, t)

∂x

∣∣∣∣
y=−h(x)

. (21.20) 

Thereafter, by inserting Eqs. (21.18) and (21.20) into Eq. (21.17), we ultimately 
obtain 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

∫ h(x)

−h(x)

∂c(x, y, t)

∂x
dy. (21.21) 

21.1.1.1 Equilibrium Solution 

As a first approach, we study the limiting case when .Dy → ∞. In such case, 
the concentration in the transverse direction reaches equilibrium almost instantly. 
Accordingly, an equilibrium density is proposed to encompass this condition, 
specifically 

.c0(x, y, t) = 1

F(x)
e−gy ρ(x, t), (21.22) 

where a free energy .F(x) is included as a normalization factor, which is analogous 
to the free energy used in Zwanzig’s approach defined through Eq. (18.8). Further-
more, .F(x) contains information about the system’s boundaries and the external 
energetic potential. More explicitly, we have that 

.F(x) =
∫ h(x)

−h(x)

e−gy dy = − 1

g
e−gy

∣∣∣∣
h(x)

−h(x)

= 2

g

[
e+gh(x) − e−gh(x)

2

]
, (21.23) 

resulting in
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.F(x) = 2

g
sinh [gh(x)] . (21.24) 

Moreover, the substitution of Eqs. (21.22) and (21.24) into Eq. (21.21) yields 

. 
∂ρ(x, t)

∂t
= Dx

∂

∂x

∫ h(x)

−h(x)

∂

∂x

e−gyρ(x, t)

F(x)
dy

= Dx

∂

∂x

∫ h(x)

−h(x)

e−gy dy
∂

∂x

ρ(x, t)

F(x)
, (21.25) 

and by using the definition of .F(x), we obtain 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

{
F(x)

∂

∂x

ρ(x, t)

F(x)

}
. (21.26) 

This equation was previously derived in Sect. 19.3.1.1 using Reguera and Rubi’s 
method. Equation (21.26) has the same structure and functional dependence as the 
Fick-Jacobs equation, i.e., Eq. (17.19). Furthermore, an equivalent equation can be 
written when there is position-dependent diffusivity, namely, 

.
∂ρ(x, t)

∂t
= ∂

∂x

{
D(x)F(x)

∂

∂x

ρ(x, t)

F(x)

}
. (21.27) 

If the gravitational-like external potential is too weak, namely, .g → 0, then . F(x)

takes the form 

.F(x) =
∫ h(x)

−h(x)

e−gy dy =
∫ h(x)

−h(x)

dy = 2h(x), (21.28) 

and the system with a single entropic potential system is recovered. In the absence 
of an external potential, the normalization function .F(x) becomes the width of the 
channel. 

21.1.1.2 General Solution of c(x, y, t) 

The reader may note that Eq. (21.22) is not really a solution of the Smoluchowski 
equation if .Dy /= ∞. Nevertheless, given that we have found a solution at 
equilibrium, we can propose a general solution in terms of a perturbative series, 
namely, 

.c(x, y, t) = e−gy
∞∑

n=0

ϵn σ̂ n(x, y, ∂x)
ρ(x, t)

F(x)
, (21.29)
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where .ϵ ≡ Dx/Dy and . ∂x is used to represent the partial derivative operator .∂/∂x. 
Then, we explicitly write the first term of the series in Eq. (21.29), that is, 

. c(x, y, t) = e−gy σ̂ 0(x, y, ∂x)
ρ(x, t)

F(x)
+ e−gy

∞∑
n=1

ϵn σ̂ n(x, y, ∂x)
ρ(x, t)

F(x)
.

(21.30) 

The first term of the series should be equal to the solution at equilibrium; therefore, 

.σ̂ 0(x, y, ∂x) = 1, (21.31) 

leading to 

.c(x, y, t) = e−gy ρ(x, t)

F(x)
+ e−gy

∞∑
n=1

ϵn σ̂ n(x, y, ∂x)
ρ(x, t)

F(x)
. (21.32) 

Furthermore, the reduced Smoluchowski equation, Eq. (21.21), can be rewritten by 
means of Eqs. (21.23) and (21.32), yielding 

. 
∂ρ(x, t)

∂t
= Dx

∂

∂x

{
F(x)

∂

∂x

ρ(x, t)

F(x)

}

+ Dx

∂

∂x

{
F(x)

∞∑
k=1

ϵk 1

F(x)

∫ h(x)

−h(x)

e−gy ∂

∂x

[
σ̂ k(x, y, ∂x)

ρ(x, t)

F(x)

]
dy

}
.

(21.33) 

The last equation suggests the definition of the following operator: 

.Ẑk(x, ∂x) ∂x · ≡ − 1

F(x)

∫ h(x)

−h(x)

e−gy ∂

∂x

[
σ̂ k(x, y, ∂x) · ] dy, (21.34) 

in which . · is the placeholder for the function over which the operator is applied. 
We simplify the notation by writing 

.Ẑk(x, ∂x) ∂x · ≡ − 1

F(x)

∫ h(x)

−h(x)

dy e−gy ∂

∂x
σ̂ k(x, y, ∂x) · . (21.35) 

Moreover, the notation without explicit grouping symbols also applies for 
.σ̂ k(x, y, ∂x) operators. Additionally, it is practical to define 

.ϵẐ(x, ∂x) · ≡
∞∑

k=1

ϵk Ẑk(x, ∂x) · . (21.36)
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By using the definitions in Eqs. (21.35) and (21.36), Eq.  (21.33) simplifies to 

.
∂ρ(x, t)

∂t
= Dx

∂

∂x

{
F(x)

[
1 − ϵẐ(x, ∂x)

] ∂

∂x

[
ρ(x, t)

F(x)

]}
. (21.37) 

21.1.2 Recurrence Formula for the Operators σ̂ k(x, y, ∂x) 

Moving forward, we must find a recurrence relation for the operator .σ̂ k(x, y, ∂x). 
Initially, we know that the perturbative series in Eq. (21.29) is a solution of the 
Smoluchowski equation, Eq. (18.1). Then, substituting the former equation into the 
latter, we obtain 

. 

(
1

Dx

∂

∂t
− ∂2

∂x2
− 1

ϵ

∂

∂y
e−gy ∂

∂y
egy

)⎡
⎣e−gy

∞∑
j=0

ϵj σ̂ j (x, y, ∂x)
ρ(x, t)

F(x)

⎤
⎦

=
∞∑

j=0

ϵj

[
e−gy

(
1

Dx

∂

∂t
− ∂2

∂x2

)
− 1

ϵ

∂

∂y
e−gy ∂

∂y

]
σ̂ j (x, y, ∂x)

ρ(x, t)

F(x)
= 0,

(21.38) 

where the whole equation was divided by . Dx . Noting that .σ̂ j (x, y, ∂x) does not 
have a time dependency, we obtain 

.

− e−gy
∞∑

j=0

ϵj ∂2

∂x2
σ̂ j (x, y, ∂x)

ρ(x, t)

F(x)
− σ̂ j (x, y, ∂x)

1

Dx

∂

∂t

ρ(x, t)

F(x)

=
∞∑

j=0

ϵj−1 ∂

∂y
e−gy ∂

∂y
σ̂ j (x, y, ∂x)

ρ(x, t)

F(x)

=
∞∑

n=−1

ϵj−1 ∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x)

ρ(x, t)

F(x)

= ϵ−1 ∂

∂y
e−gy ∂

∂y
σ̂ 0(x, y, ∂x)

ρ(x, t)

F(x)

+
∞∑

n=0

ϵj−1 ∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x)

ρ(x, t)

F(x)

=
∞∑

n=0

ϵj−1 ∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x)

ρ(x, t)

F(x)
,

(21.39)
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where we used a subscript change of the form .(j − 1) → n, the fact . σ̂ 0(x, y, ∂x) =
1, and .∂y [ρ(x, t)/F(x)] = 0. This leads to 

. − e−gy
∞∑

j=0

ϵj

{
∂2

∂x2 σ̂ j (x, y, ∂x)
ρ(x, t)

F(x)
− σ̂ j (x, y, ∂x)

1

Dx

∂

∂t

ρ(x, t)

F(x)

}

=
∞∑

n=0

ϵj−1 ∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x)

ρ(x, t)

F(x)
. (21.40) 

The second term on the right-hand side can be computed using Eq. (21.37), 
yielding 

.

∞∑
j=0

ϵj σ̂ j (x, y, ∂x)
1

Dx

∂

∂t

ρ(x, t)

F(x)

= 1

Dx

∞∑
j=0

ϵj σ̂ j (x, y, ∂x)
1

F(x)
Dx

∂

∂x

{
F(x)

∂

∂x

ρ(x, t)

F(x)

− Dx

∂

∂x
F(x)

∞∑
k=1

ϵk Ẑk(x, ∂x)
∂

∂x

ρ(x, t)

F(x)

}

= −
∞∑

j=0

ϵj σ̂ j (x, y, ∂x)
1

F(x)

∂

∂x
F(x)

∞∑
k=0

ϵk Ẑk(x, ∂x)
∂

∂x

ρ(x, t)

F(x)
,

(21.41) 

where we used that  

.
∂

∂x
F(x)

∂

∂x

ρ(x, t)

F(x)
= − ∂

∂x
F(x) ϵ0 Ẑ0(x, ∂x)

∂

∂x

ρ(x, t)

F(x)
, (21.42) 

with .ϵ0 = 1 and .Ẑ0(x, ∂x) = −1. The next step requires the Cauchy product for 
infinite power series, which mathematical details can be found in Appendix A.6.4. 
Particularly, we use Eq. (A.41) in Eq. (21.41) to obtain 

. −
∞∑

j=0

ϵj
∞∑

k=0

σ̂ j−k(x, y, ∂x)
1

F(x)

∂

∂x
F(x) Ẑk(x, ∂x)

∂

∂x

ρ(x, t)

F(x)
. (21.43) 

After changing the dummy index j by n and substituting the latter equation into 
Eq. (21.40), we obtain
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.

∞∑
n=0

ϵn

{
∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x)

ρ(x, t)

F(x)

+ e−gy

[
∂2

∂x2 σ̂ j (x, y, ∂x)
ρ(x, t)

F(x)

+
n∑

k=0

σ̂ n−k(x, y, ∂x)
1

F(x)

∂

∂x
F(x)Ẑk(x, ∂x)

∂

∂x

ρ(x, t)

F(x)

]}
= 0.

(21.44) 

Given that every power of . ϵ is linearly independent of any other and that 
Eq. (21.44) is equal to zero, we have that 

.

∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x)

ρ(x, t)

F(x)

= −e−gy

[
∂2

∂x2 σ̂ n(x, y, ∂x)
ρ(x, t)

F(x)

+
n∑

k=0

σ̂ n−k(x, y, ∂x)
1

F(x)

∂

∂x
F(x)Ẑk(x, ∂x)

∂

∂x

ρ(x, t)

F(x)

]
.

(21.45) 

Each side of the latter equation can be considered as an operator acting over 
.ρ(x, t)/F(x). More accurately, we write such operator as 

. 
∂

∂y
e−gy ∂

∂y
σ̂ n+1(x, y, ∂x) = −e−gy

[
∂2

∂x2
σ̂ n(x, y, ∂x)

+
n∑

k=0

σ̂ n−k(x, y, ∂x)
1

F(x)

∂

∂x
F(x) Ẑk(x, ∂x)

∂

∂x

]
. (21.46) 

By observing the subscripts, we conclude that this last equation represents a 
recurrence relation over .σ̂ i (x, y, ∂x). 

21.1.2.1 Boundary Conditions 

Now, if the perturbative series of Eq. (21.29) is substituted into the BCs in 
Eq. (21.15), we obtain the following equation: 

.
1

ϵ
e−gy ∂

∂y
egy

[
e−gy

∞∑
n=0

ϵnσ̂ n(x, y, ∂x)

]∣∣∣∣∣
y=±h(x)
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= ±h'(x) 
∂ 
∂x

[
e−gy 

∞∑
n=0

ϵnσ̂ n(x, y, ∂x)

]∣∣∣∣∣
y=±h(x) 

, (21.47) 

which has been written using operator notation. After performing a few operations, 
we arrive at 

. 
∂

∂y

∞∑
n=0

ϵn−1σ̂ n(x, y, ∂x)

∣∣∣∣∣
y=±h(x)

= ±h'(x)
∂

∂x

∞∑
n=0

ϵnσ̂ n(x, y, ∂x)

∣∣∣∣∣
y=±h(x)

.

(21.48) 

By switching the indices of the sums, this is .j = n−1, then .n = j +1, we obtain 

. 
∂

∂y

∞∑
j=−1

ϵj σ̂ n(x, y, ∂x)

∣∣∣∣∣∣
y=±h(x)

= ±h'(x)
∂

∂x

∞∑
n=0

ϵnσ̂ n(x, y, ∂x)

∣∣∣∣∣
y=±h(x)

,

(21.49) 

where we again changed the dummy index .j → n. Additionally, the term 
corresponding to .n = 0 is explicitly written to obtain 

. 
∂

∂y
ϵ−1σ̂ 0(x, y, ∂x)

∣∣∣∣
y=±h(x)

+ ∂

∂y

∞∑
n=0

ϵn σ̂ n+1(x, y, ∂x)

∣∣∣∣
y=±h(x)

= ±h'(x)
∂

∂x

∞∑
n=0

ϵn σ̂ n(x, y, ∂x)

∣∣∣∣
y=±h(x)

, (21.50) 

where the first term on the left-hand side of the latter equation is null since we are 
computing the derivative of a constant. By recalling the linear independence of each 
of the . ϵ powers, this yields 

.
∂

∂y
σ̂ n+1(x, y, ∂x)

∣∣∣∣
y=±h(x)

= ±h'(x)
∂

∂x
σ̂ n(x, y, ∂x)

∣∣∣∣
y=±h(x)

. (21.51) 

This last equation represents the BCs applied to the operators . σ̂ n. 

21.1.3 First-Order Correction 

Our next task is to find the first-order correction operator .σ̂ 1(x, y, ∂x). In order to do 
that, we need to use the recurrence relation of Eq. (21.46). Therefore, considering 
that .σ̂ 0(x, y, ∂x) = 1 and .Ẑ0(x, ∂x) = −1, we write
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. 

∂

∂y
e−gy ∂

∂y
σ̂ 1(x, y, ∂x) = −e−gy

[
∂2

∂x2
σ̂ 0(x, y, ∂x)

+
0∑

k=0

σ̂ 0−k(x, y, ∂x)
1

F(x)

∂

∂x
F(x) Ẑk(x, ∂x)

∂

∂x

]

= e−gy 1

F(x)

∂

∂x
F(x)

∂

∂x
.

(21.52) 

The value of .F(x) is given in Eq. (21.24), that is, 

.

∂

∂y
e−gy ∂

∂y
σ̂ 1(x, y, ∂x) = −e−gy 2g h'(x) cosh[gh(x)]

sinh[gh(x)]
∂

∂x

= e−gy g h'(x) coth[gh(x)] ∂

∂x
.

(21.53) 

After integrating both sides of the last equation, we arrive at 

. 

∫ [
∂

∂y
e−gy ∂

∂y
σ̂ 1(x, y, ∂x)

]
dy = 1

Dx

∫
e−gy g h'(x) coth[gh(x)] ∂

∂x
dy

= − 1

Dx

e−gy h'(x) coth[gh(x)] ∂

∂x
+ Ĉ1.

(21.54) 

Furthermore, to find the constant operator . Ĉ1, we use the BCs given in Eq. (21.51), 
replacing .n = 0, yielding 

.
∂

∂y
σ̂ 1(x, y, ∂x)

∣∣∣∣
y=±h(x)

= ±h'(x)
∂

∂x
σ̂ 0(x, y, ∂x)

∣∣∣∣
y=±h(x)

, (21.55) 

which, together with Eq. (21.54), leads to 

. ±h'(x)
∂

∂x
= −h'(x) coth[gh(x)] ∂

∂x
+ egy Ĉ1

∣∣∣
y=±h(x)

. (21.56) 

Furthermore, by evaluating the upper boundary, i.e., .y = h(x), we have  

. Ĉ1 = h'(x) e−gh(x) (1 + coth[gh(x)]) ∂

∂x
. (21.57) 

By substituting this last expression into Eq. (21.54), we obtain
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. 

∂

∂y
σ̂ 1(x, y, ∂x) = −h'(x) coth[gh(x)] ∂

∂x

+ h'(x) e−gh(x) egy {1 + coth[gh(x)]} ∂

∂x

= h'(x)

sinh[gh(x)]
{
− cosh[gh(x)]

+e−gh(x)egy (sinh[gh(x)] + cosh[gh(x)])
} ∂

∂x

= h'(x)

sinh[gh(x)]
{
− cosh[gh(x)] + e−gh(x) egy egh(x)

} ∂

∂x
,

(21.58) 

where we used Eq.  (A.6). Following simplification, we arrive at 

.
∂

∂y
σ̂ 1(x, y, ∂x) = h'(x)

sinh[gh(x)]
{
egy − cosh[gh(x)]} ∂

∂x
. (21.59) 

To find the operator .σ̂ 1(x, y, ∂x), we integrate the latter equation, resulting in 

. σ̂ 1(x, y, ∂x) = h'(x)

sinh[gh(x)]
{
1

g
egy − y cosh[gh(x)]

}
∂

∂x
+ Ĉ0, (21.60) 

where the constant operator is calculated in Appendix 21.A.1, yielding 

.Ĉ0 = h'(x)

g

{
cosh[gh(x)]
sinh[gh(x)] − gh(x)

(
1 + 2

sinh2[gh(x)]
)}

∂

∂x
. (21.61) 

Now, . Ĉ0 is substituted into Eq. (21.60), leading to 

. σ̂ 1(x, y, ∂x)

= h'(x)

g

[
egy + (1 − gy) cosh[gh(x)]

sinh[gh(x)] − gh(x)

(
1 + 2

sinh2[gh(x)]
)]

∂

∂x
.

(21.62) 

Then, we compute the correction operator .Ẑ1(x, ∂x) by means of Eq. (21.35) with 
.k = 1, that is, 

.Ẑ1(x, ∂x) = − 1

F(x)

∫ h(x)

−h(x)

e−gy ∂

∂x
σ̂ 1(x, y, ∂x) dy. (21.63) 

The calculation, which is shown in detail in Appendix 21.A.2, results in
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. Ẑ1(x, ∂x) = h'2(x)

sinh2[gh(x)]
{
1 + cosh2[gh(x)] − 2g h(x) coth[gh(x)]

}
,

(21.64) 
which is the first-order correction operator for the Fick-Jacobs equation. 

21.1.3.1 Limiting Case 

The results we have found must be consistent at the previously described limit cases. 
To verify our results, we take .g → 0 and expand Eq. (21.64) using a Laurent series 
in Appendix A.6.1. For the sake of simplicity, we perform a change in variables, 
i.e., .α ≡ gh(x), and keeping terms up to . h'2, we obtain 

.Ẑ1 = csch2[α]
{
1 + cosh2[α] − 2α coth[α]

}
. (21.65) 

≈ 
2 

α2 − 
1 

3 
+ 

2 

3 
− 

2 

α2 . (21.66) 

= 
1 

3 
, (21.67) 

concluding that 

. lim
g→0

Ẑ1(x, ∂x) = 1

3
h'2(x). (21.68) 

The last equation verifies that Eq. (18.51) is recovered, which is Zwanzig’s result 
for a boxlike potential. Moreover, an analogy between these terms is worth pointing 
out, namely, 

.κ(x) ↔ Ẑ1(x, ∂x). (21.69) 

21.1.4 The Position-Dependent Effective Diffusion Coefficient 

In order to write the corrected effective diffusivity, Eqs. (21.37) and (21.27) must 
be used together with the expressions for continuity and flux, i.e., Eqs. (2.71) 
and (2.73), yielding 

.J (x, t) = −Dx F(x)
[
1 − ϵẐ(x, ∂x)

] ∂

∂x
, (21.70) 

.J (x, t) = −F(x)D(x)
∂

∂x
. (21.71)
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We assume a constant (stationary) flux .J (x, t) = J for a long-time regime, enabling 
us to compare Eqs. (21.70) and (21.71). The combination of these equations leads 
to 

.1 = Dx F(x)
[
1 − ϵẐ(x, ∂x)

] 1

F(x)D(x)
, (21.72) 

a relation from which we want to obtain the diffusion coefficient. Thereafter, 
considering that the term inside the square brackets is an operator, we obtain 

.

[
1 − ϵẐ(x, ∂x)

]−1 1

Dx F(x)
= 1

F(x)D(x)
, (21.73) 

which can be expanded using the binomial theorem presented in Appendix A.6.5, 
yielding 

.
1

D(x)
= F(x)

[
1 + ϵẐ(x, ∂x) + ϵ2Ẑ(x, ∂x)

2 + · · ·
] 1

Dx F(x)
. (21.74) 

Further arrangements lead us to 

.
Dx

D(x)
=
[
1 + ϵẐ(x, ∂x)

1

F(x)
+ ϵ2Ẑ(x, ∂x)

2 1

F(x)
+ · · ·

]
, (21.75) 

or 

.
Dx

D(x)
=
[
1 − ϵ F(x) Ẑ(x, ∂x)

1

F(x)

]−1

. (21.76) 

Moreover, we assume that the operator .Ẑ(x, ∂x) acts solely on .F(x). Therefore, 

.
D(x)

Dx

≃
[
1 − ϵ F(x) Ẑ(x, ∂x)

1

F(x)

]
. (21.77) 

This last expression can be turned into a series-dependent expression by means of 
Eq. (21.36), namely, 

.
D(x)

Dx

= 1 −
∞∑

k=1

ϵk F(x) Ẑk(x, ∂x)
1

F(x)
. (21.78) 

This is the procedure for finding the effective diffusion as an . ϵ power series. If the 
first term is explicitly written, together with the use of Eq. (21.64), we find that for 
an isotropic system (.ϵ = 1),
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. 
D(x)

D0
≈ DKg(x)

D0
=1− h'2(x)

sinh2[gh(x)]
{
1+ cosh2[gh(x)]−2gh(x) coth[gh(x)]

}
,

(21.79) 

where . Dx is renamed as . D0 to avoid ambiguity. This result includes only the first-
order correction operator. In his original work, Kalinay presented an expression that 
contains terms of the second-order correction. It is worth noting that this was the 
first attempt to include a transversal force in a two-dimensional system. 

21.2 2D Asymmetric Channel: Projection Method 

In all computations made in the last section, we considered that the system’s bound-
aries were symmetric, namely, .±h(x). In this section, we present a generalization 
to asymmetric boundaries .hi(x) (.i = 1, 2), where .h1(x) is the lower boundary and 
.h2(x) is the upper boundary. The computations are very similar to the procedure 
used for symmetric channels. 

The reader may notice that from Eqs. (21.9) to (21.23), the corresponding 
equations for the asymmetrical case can be derived simply by making . ±h(x) →
hi(x). In the case of Eq. (21.17), we need the explicit use of BCs. Nevertheless, we 
come to find that all contributions become null. 

When considering asymmetric boundaries, free energy .F(x) is given by 

.F(x) =
∫ h2(x)

h1(x)

e−gy dy = 1

g

[
e−gh1(x) − e−gh2(x)

]
, (21.80) 

which is a function that leads us to the steady-state solution and to a function that 
resembles the Fick-Jacobs equation, namely, 

.
∂

∂t
ρ(x, t) = Dx

∂

∂x

{
F(x)

∂

∂x

[
ρ(x, t)

F(x)

]}
. (21.81) 

For the asymmetric case, we start our analysis from Eq. (21.28), as we will show in 
the next section. 

21.2.1 Recurrence Formula for Operators σ̂ k(x, y, ∂x) 

21.2.1.1 General Solution 

Equation (21.58) is a recurrence relation for operators . σ̂ j . In previous sections, the 
BCs were not used until .F(x) was explicitly computed. As a first step to find . σ̂ 1, we  
must calculate the derivative of .F(x), namely,
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.

∂

∂x
F(x) = ∂

∂x

{
1

g

[
e−gh1(x) − e−gh2(x)

]}

= 1

g

[
−gh'

1(x) e−gh1(x) + gh'
2(x) e−gh2(x)

]

= h'
2(x) e−gh2(x) − h'

1(x) e−gh1(x).

(21.82) 

Substitution into the recurrence relation gives 

. 
∂

∂y
e−gy ∂

∂y
σ̂ 1(x, y, ∂x)

= e−gy g

e−gh1(x) − e−gh2(x)

[
h'
2(x) e−gh2(x) − h'

1(x) e−gh1(x)
] ∂

∂x
. (21.83) 

The complete calculation of operator . σ̂ 1 is shown in Appendix 21.A.3, which results 
in 

. 

σ̂ 1(x, y, ∂x) =
{

y
h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
+ h'

2(x) e−gh2(x) egy 1

g

−h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x) egy 1

g

}
∂

∂x

+ h2(x) − h1(x)

e−gh2(x) − e−gh1(x)

[
h'
2(x) e−gh2(x)

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x)

]
∂

∂x

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

[
e−gh1(x) − e−gh2(x)

]2
{
h'
2(x) e−gh2(x)

− h'
1(x) e−gh1(x) + 1

g

[
e−gh2(x) − e−gh1(x)

]} ∂

∂x
.

(21.84) 

21.2.2 First-Order Correction 

First, let us define certain pragmatic quantities; all of the following definitions will 
be a function of x unless otherwise specified. The first one is channel width, namely, 

.w(x) ≡ h2(x) − h1(x). (21.85)
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The next one is the midline, that is, 

.y0(x) ≡ 1

2
[h1(x) + h2(x)] . (21.86) 

Additionally, the boundaries are determined by 

.y±(x) ≡ y0(x) ± 1

2
w(x), (21.87) 

which are equivalent to 

.y+(x) = h2(x), y−(x) = h1(x). (21.88) 

Finally, we define 

.ξ(x) ≡ 1

2
gw(x). (21.89) 

As previously established, the derivatives with respect to x will be denoted with a 
prime. Moreover, we will use some hyperbolic functions to simplify certain terms 
involving real exponential functions. Considering this, Eq. (21.84) transforms to 

. 

σ̂ 1(x, y, ∂x) =
{
y

[
y'
0 − 1

2
w' coth ξ

]
+ 1

2g
e+gy e−gy+w' [1 + coth ξ ]

− 1

4
ww' [2 coth2 ξ − 1

]
+ 1

2
w'y0 coth ξ + 1

2
wy'

0 coth ξ

− y0 y'
0 − 1

g
y'
0 + 1

2g
w' coth ξ

}
∂

∂x
.

(21.90) 

The first-order correction operator is 

. 

Ẑ1(x, ∂x) ∂x = w'2

4sinh2
[
1
2gw

]
{
1 + cosh2

[
1

2
gw

]
− gw coth

[
1

2
gw

]}
∂

∂x

+ y'
0

{
y'
0 − w' coth

[
1

2
gw

]
+ 1

2
gww'csch2

[
1

2
gw

]}
∂

∂x
.

(21.91) 

The computations to obtain the latter equation are presented in detail in 
Appendix 21.A.4.
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21.2.3 The Position-Dependent Effective Diffusion Coefficient 

In order to find the effective diffusion coefficient, the first-order correction operator, 
Eq. (21.91), is substituted into Eq. (21.78). When considering an isotropic system 
(.ϵ = 1), this yields 

. 

D(x) ≈ Dasym−g(x) = 1− w'2(x)

4sinh2
[
1
2gw

]
{
1+ cosh2

[
1

2
gw

]
−gw coth

[
1

2
gw

]}

− y'
0

{
y'
0 − w' coth

[
1

2
gw

]
+ 1

2
gww'csch2

[
1

2
gw

]}
.

(21.92) 

The second term on the right-hand side of the latter equation, which is multiplied by 
. y'
0, contains the asymmetric contribution of the channel to the diffusion of Brownian 
particles. This term vanishes if the system has symmetric walls instead, as we can 
see from the derivative of Eq. (21.86). Given that the effective diffusivity was found 
using Eqs. (21.70) and (21.71) (both obtained from the Smoluchowski equation), 
the system’s potential can be easily found using the free energy or normalization 
function .F(x), namely, 

. − βU(x) = 1

g
ln
[
e−gh1(x) − e−gh1(x)

]
. (21.93) 

This means that the difference in potential is 

. − βU(x) = −β [U(x) − U(x0)] = ln

[
e−gh1(x) − e−gh2(x)

e−gh1(x0) − e−gh2(x0)

]
, (21.94) 

where the reference potential has been defined as .U(x0) = 0. The potential function 
.U(x) contains information about the system’s boundaries and external forces 
exerted over the system. In other words, the potential is entropic and energetic. 

21.3 Interpolation Formula 

The position-dependent diffusion coefficient found by Zwanzig represents the first 
terms of a series. Inspired by this, Reguera and Rubi came up with the idea 
that the effective diffusivity should be written as in Eq. (19.56), a suggestion 
that was followed by Kalinay. This is the so-called interpolation formula, and its 
generalization considers that an external potential is
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.D(x) ≈ Dα(x) = D0[
1 + 1

4ϵw
'2(x)

]α(gw,y'
0)

, (21.95) 

where . α is a function that is dependent on the product gw. The midline derivative 
of the channel is . y'

0, while . w
' is the derivative of the width of the channel. By 

writing the effective diffusivity in the form of Eq. (21.95) and series-expanding 
such equation, we obtain the widely known first terms of the effective diffusion 
coefficient, in addition to further corrections to the original proposal by Fick-Jacobs. 

Then, for an asymmetric channel subject to an external transverse field, the 
exponent for the interpolation formula reads 

. 

αAg(gw, y'
0) = 1

sinh2
[
1
2gw

]
{
1 + cosh2

[
1

2
gw

]
− gw coth

[
1

2
gw

]}

+ 4
y'
0

w'2

{
y'
0 − w' coth

[
1

2
gw

]
+ 1

2
gww'csch2

[
1

2
gw

]}
,

(21.96) 

which can be substituted into Eq. (21.95), and the resulting series expression. This 
expansion yields to Eq. (21.92) as the first terms of the series. 

21.4 Limiting Cases 

21.4.1 Symmetric Channel with a Transverse Force 

For a symmetric channel, we have .y0(x) = 0, which means that .y'
0(x) = 0 and 

.w(x) = 2h(x). This means that Eq. (21.92) simplifies to the result that was first 
reported by Kalinay, also calculated in this chapter (see Eq. (21.79)), which is 

. 
DKg(x)

D0
= 1 − h'2(x)

sinh2[gh(x)]
{
1 + cosh2[gh(x)] − 2gh(x) coth[gh(x)]

}
.

(21.79) 

The last equation allows us to write an . α function to use in the interpolation formula, 
namely, 

.αKg = 1

sinh2 [gh]

{
1 + cosh2 [gh] − 2gh coth [gh]

}
, (21.97) 

which clearly replicates the first terms in Eq. (21.79) when substituted into 
Eq. (21.95).
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21.4.2 Dominant g 

Assuming that the external gravitational-like potential is too large, we compute the 
limit .g → ±∞ of Eq. (21.92). Using the relation of the . ξ variable defined in 
Eq. (21.89), we are  able to write  

.g → ±∞ ⇒ ξ = 1

2
gw → ±∞, (21.98) 

where we considered that .w(x) and .w'(x) remain finite. We first compute the 
following: 

.

lim
g→±∞ gwcsch2ξ = lim

g→±∞
gw

sinh2
[
1
2gw

]

= lim
g→±∞

w[
21
2g
]
sinh

[
1
2gw

]
cosh

[
1
2gw

]

= lim
g→±∞

4[
eξ − e−ξ

] [
eξ + e−ξ

]

= lim
g→±∞

4

e2ξ − e−2ξ

= 0,

(21.99) 

where we used the L’Hôpital rule. Additionally, 

.

lim
g→±∞ coth2 ξ = 1, lim

g→±∞ coth ξ = ±1

lim
g→±∞ coth ξ csch2ξ = 0, lim

g→±∞ csch2ξ = 0.
(21.100) 

Using these results, the limit of the effective diffusivity is given by 

.

Dg→±∞
D0

= 1 − w'2

4

{
csch2ξ + coth2 ξ − gw coth ξ csch2ξ

}

− y'
0

{
y'
0 − w' coth ξ + 1

2
gww'csch2ξ

}

= 1 − w'2(x)

4
{0 + 1 − 0} − y'

0

{
y'
0 ∓ w' + 0

}
,

(21.101) 

leading to 

.
Dg→±∞

D0
= 1 − y'

0
2 − 1

4
w'2 ± y'

0w
'. (21.102)
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The sign in .±y'
0w

' is fixed by the direction of the external constant force. Moreover, 
by rewriting Eq. (21.102) using the boundary functions . h1 y . h2, we arrive at  

.
Dg→±∞

D0
= 1 − 1

2

{
h'2
1 + h'2

2 ∓
(
h'2
2 − h'2

1

)}
, (21.103) 

or 

.
Dg→+∞

D0
= 1 − h'2

1 ,
DT,g→−∞

D0
= 1 − h'2

2 , (21.104) 

which, by following Zwanzig’s suggestion, are 

.Dg→+∞ = D0

1 + h'2
1

, Dg→−∞ = D0

1 + h'2
2

. (21.105) 

If .g → ±∞, then .G → ∓∞ (see Eq. (21.2)) due to the fact that G points downward 
as depicted in Fig. 21.2. Therefore, 

.DG→−∞ = D0

1 + h'2
1

, DG→+∞ = D0

1 + h'2
2

. (21.106) 

In other words, when experiencing a very intense external field, the Brownian 
particle will be pushed to one of the walls of the system, forcing it to follow a 
one-dimensional motion through that boundary of the diffusive channel. 

21.4.3 Small Values of g 

When .g ⪡ 1, the Laurent series of the hyperbolic functions can be used to write 
.D(x), that is, 

. 

Da,g(x)

D0
= 1 − 1

4

{[
1

ξ2
− 1

3
+ 1

15
ξ2 + O(ξ4)

]
+
[
1

ξ2
+ 2

3
+ 1

15
ξ2 + O(ξ4)

]

−2ξ

[
1

ξ
+ 1

3
ξ − 1

45
ξ3 + O(ξ5)

] [
1

ξ2
− 1

3
+ 1

15
ξ2 + O(ξ4)

]}

− y'
0

{
y'
0 − w'

[
1

ξ
+ 1

3
ξ − 1

45
ξ3 + O(ξ5)

]

+ξw'
[
1

ξ2
− 1

3
+ 1

15
ξ2 + O(ξ4)

]}

≈ 1 − 1

4
w'2

{
2

ξ2
+ 1

3
+ 2

15
ξ2 − 2

15
ξ2 − 2

ξ2

}
− y'

0

{
y'
0 − 2

3
ξw'

}

= 1 − 1

12
w'2 − y'

0

{
y'
0 − 2

3
ξw'

}
= Da

D0
,

(21.107)
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where the terms of order higher than two in . ξ were neglected. It follows that 

.
Da(x)

D0
= 1 − y'2

0 − 1

12
w'2 + 1

3
gww'y'

0, (21.108) 

or in Zwanzig notation 

.Da(x) = D0

1 + y'2
0 + 1

12w
'2 − 1

3gww'y'
0

. (21.109) 

The last equation is a generalization of Bradley’s equation, Eq. (20.53). Then we 
can write 

.Da(x) = DBr(x) + 1

3
D0 gww'y'

0. (21.110) 

An . α function can also be found by using the Laurent series of the hyperbolic 
functions in Eq. (21.96), leading to 

.αBg = 1

3
+ 4y'2

0
1

w'2 − 4

3
gwy'

0
1

w' , (21.111) 

where .αBg is the proposed . α function for a modified Bradley equation, which 
includes the influence of a weak external transverse field. By substituting 
Eq. (21.111) into Eq. (21.95), the Bradley-like equation for low gravity values, 
Eq. (21.109), is recovered. 

21.4.4 Asymmetric Channel Without an External Field 

Once we have found the equations for a weak gravity force, we can extend such 
results to completely remove the field effect over the system, depicted in Fig. 21.3, 
that is, .g = 0. In this case, the substitution of a null g into Eq. (21.111) leads to the 
Bradley equation, allowing us to write 

.αBr = 1

3
+ 4y'2

0
1

w'2 . (21.112) 

It is even possible to obtain the Reguera and Rubi diffusion coefficient consider-
ing a symmetric channel, that is, .y'

0 = 0. Then, for 

.αRR = 1

3
, (21.113)
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Fig. 21.3 Schematic 
representation of a 
two-dimensional 
variable-width asymmetric 
channel, 
.w(x) = h2(x) − h1(x), with  
curved midline, 
.y0(x) = [h1(x) + h2(x)]/2. 
The perfectly reflecting 
channel boundaries are given 
by .h1(x) and . h2(x)

Fig. 21.4 Effective diffusion coefficient predicted by Eqs. (20.51) (blue solid line) and (20.53) 
(red dotted line) and the set of lines representing Eqs. (21.95), (21.112) denoted by .RRa (orange 
dashed line). The system consists of a 2D asymmetrical cone channel with perfectly reflecting 
boundaries given by .h1(x) = −0.4x − 0.1 and . h2(x) = λ2x + 0.1

we obtain Eq. (19.56) immediately. Furthermore, by making a series of diffusivity 
.DRR , we obtain the first terms of Zwanzig’s results, that is, 

.DZw(x) = D0

1 + 1
12w

'2(x)
. (21.114) 

We conclude that with the . α function proposed in Eq. (21.96), we are able to obtain 
all previous results when substituting it in Eq. (21.95), as shown in Fig. 21.4. Thus, 
it is considered a generalization that is able to replicate all previous results under 
certain conditions. 

21.5 First-Passage Times in Conical Channels 

In previous sections, we found the effective diffusivities for two-dimensional 
channels under the influence of external potentials, particularly for a gravitational 
potential. These results allow us determine the time it takes for diffusing particles to
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be absorbed by a perfectly absorbing wall. In simple terms, we calculate the solution 
to Eq. (6.38), namely, 

.
∂

∂x0

[
D(x0) e

−βU(x0)
∂〈t (x0)〉

∂x0

]
= −e−βU(x0). (6.38) 

In Chap. 20, the exponential functions contained information about boundaries, 
which were referred to as the entropic potential. In the present case, the exponential 
functions contain both entropic and energetic potentials. 

21.5.1 Asymmetrical Cone Under the Influence of Gravity 

The system studied in the KP chapter exclusively considered the entropic potential, 
leading to .e−βU(x0) → w(x). For this system, we need a modification that accounts 
for the effects of the external potential, leading to the use of .e−βU(x0) → F(x), 
where .F(x) is given by Eq. (21.80), namely, 

.F(x) =
∫ h2(x)

h1(x)

e−gy dy = 1

g

[
e−gh1(x) − e−gh2(x)

]
, (21.80) 

which makes the equation for mean first-passage time (MFPT) be 

.
1

F(x0)

d

dx0

[
D(x0) F(x0)

d〈t (x0)〉
dx0

]
= −1. (21.115) 

After integrating this last equation, we find that 

. D(x0) F(x0)
d〈t (x0)〉
dx0

= −
∫

F(x0) dx0 + C1. (21.116) 

We require an explicit form of an asymmetrical channel’s boundaries to obtain a 
closed form of the free energy, as shown in Fig. 21.5. We make such computation 
for two different cases: narrow to wide (.n → w) and wide to narrow (.w → n). 

The .n → w boundaries are 

.h2(x0) = λx0 + b, h1(x0) = −μλx0 − b, (21.117) 

where . μ is an asymmetry factor. When .μ = 1, then the symmetric case is obtained. 
First, we substitute the latter relations into Eq. (21.80), yielding 

.F(x0) = 1

g

{
e+gb exp [+μgλx0] − e−gb exp [−gλx0]

}
. (21.118) 

Then, we integrate Eq. (21.116) using the explicit form of .F(x0), obtaining
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Fig. 21.5 Schematic representation of an asymmetrical cone wherein Brownian particles diffuse 
from narrow to wide (.n → w). The channel starts at .x = 0 and ends at .x = L. The width is given 
by .w(x) = h2(x) − h1(x), while the midline is defined by . y0(x) = [h1(x) + h2(x)]/2

. D(x0) F(x0)
d〈t (x0)〉
dx0

= − 1

λg2

{
1

μ
e+gb exp [+μgλx0] + e−gb exp [−gλx0]

}

+ C1. (21.119) 

The integration constant . C1 is obtained from the condition that the wall at .x0 = 0 is 
perfectly reflecting, meaning that 

.
d〈t (x0)〉
dx0

∣∣∣∣
x0=0

= 0. (21.120) 

Therefore, 

.C1 = 1

λg2

{
1

μ
e+gb + e−gb

}
. (21.121) 

Substituting the latter equation into Eq. (21.116) yields 

. 

D(x0) F(x0)
d〈t (x0)〉
dx0

= − 1

λg2

{
1

μ
e+gb exp [+μgλx0] + e−gb exp [−gλx0]

}

+ 1

λg2

{
1

μ
e+gb + e−gb

}
,

(21.122) 

which can be written as 

. D(x0) F(x0)
d〈t (x0)〉
dx0

= − 1

λg2

{
1

μ
e+gb (exp [+μgλx0] − 1)

+ e−gb (exp [−gλx0] − 1)

}
. (21.123)
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By integrating this last result, considering that the boundaries of the system are 
.x = 0 and .x = L, we obtain 

. 〈t (x0 = L)〉 − 〈t (x0 = 0)〉 = − 1

λg2

∫ L

0

1

D(x0) F(x0)

×
{
1

μ
e+gb (exp [+μgλx0] − 1) + e−gb (exp [−gλx0] − 1)

}
dx0.

(21.124) 

Considering a perfectly absorbing wall at .x = L, then 

.〈t (L)〉 = 0. (21.125) 

Thus, by using this condition, we arrive at 

. 〈t (0 → L)〉 ≡ 〈t (x0 = 0)〉= 1

λg2

∫ L

0

1

D(x0) F(x0)

{
1

μ
e+gb (exp [+μgλx0]−1)

+ e−gb (exp [−gλx0] − 1)

}
dx0, (21.126) 

where the notation .0 → L indicates that the particle starts to diffuse at .x = 0 and 
ends at .x = L. This trajectory is identified as the .n → w case, i.e., 

.〈t〉n→w = 〈t (0 → L)〉. (21.127) 

In previous results, the free energy and the effective diffusivity could be written as 
a function of the channel’s slope without an . x0 dependency. This is the reason why 
we take them out of the integral as constants. Now, for a system under the influence 
of an external field, the corresponding D also depends on the width of the channel 
w, which cannot be considered as constant in terms of . x0. This is the reason to 
numerically solve the integral to find the MFPT. 

The approximate theoretical result of the MFPT for the .n → w configuration is 
in excellent agreement with the Brownian dynamics simulations, seen in Fig. 21.6. 
Additionally, a remarkable behavior is observed as the MFPT is not bounded by the 
limiting case .g → ∞. For larger values of the slope . λ and intermediate values of 
g, the MFPT lies under the limiting case. Let us gain some physical insights about 
the mentioned results. When the force g is large, particles are driven to one of the 
boundaries, preventing them from exploring the channel in the transversal direction. 
Therefore, the particles cannot benefit from the entropic force pushing them toward 
the exit of the channel. In other words, particles cannot exit the channel faster since 
the force does not allow them to bounce onto the walls. Furthermore, moderated 
values of the force cause an optimal interplay between that force and the entropic
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Fig. 21.6 Mean first-passage 
times for an asymmetrical 
cone with parameters .L = 1, 
.b = 0.1, .μ = 0.8, and  
different g values. The 
configuration of the cone is 
from narrow to wide 
(.n → w) 

potential (boundaries), resulting in a beneficial bouncing on the walls, thrusting the 
particle to the exit and consequently decreasing the MFPT. 

21.5.1.1 Wide to Narrow 

For the case of a (.w → n) channel, the boundaries are 

.h2(x0) = −λ(x0 − L) + b, h1(x0) = μλ(x0 − L) − b. (21.128) 

Let us find a solution using quadratures as explained in Sect. 20.6. In this case, the 
particle starts to diffuse at .x0 = L and will be at . x0 a certain time t . These conditions 
establish the integration limits of the integrals in the computation of the MFPT. To 
simplify computations, let us make .x0 → x', which makes the integral of the MFPT 
to be 

.

∫ x0

L

d

dx'

[
D(x') F(x') d〈t (x')〉

dx'

]
dx' = −

∫ x0

L

F(x') dx'. (21.129) 

The right-hand side of this last equation results in 

. D(x0) F(x0)
d〈t (x0)〉
dx0

− D(L) F(L)
d〈t (x')〉
dx'

∣∣∣∣
x'=L

= D(x0) F(x0)
d〈t (x0)〉
dx0

,

(21.130) 

where we used .d〈t (x')〉/dx∣∣
x0=L

= 0. We substitute this last result into Eq. 21.129 
and then integrate again, namely, 

.〈t (0)〉 − 〈t (x0)〉 = −
∫ 0

x0

1

D(x'') F(x'')

∫ x0

L

F(x') dx' dx''. (21.131)
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The perfectly absorbing wall implies that 

.〈t (0)〉 = 0, (21.132) 

leading us to 

.〈t (x0)〉 =
∫ 0

x0

1

D(x'') F(x'')

∫ x0

L

F(x') dx' dx''. (21.133) 

The limits of integration of both integrals can be inverted by factorizing a minus 
sign for each integral, yielding 

.〈t (x0)〉 =
∫ x0

0

1

D(x'') F(x'')

∫ L

x''
F(x') dx' dx''. (21.134) 

This last equation is 

.〈t (L → 0)〉 ≡ 〈t (x0 = L)〉 =
∫ L

0

1

D(x'') F(x'')

∫ L

x''
F(x') dx' dx'', (21.135) 

which is also the case for .w → n, so then 

.〈t〉w→n = 〈t (L → 0)〉. (21.136) 

Now, the first integral inside Eq. (21.135) can be computed in a straightforward 
manner by using the explicit form of .F(x'), resulting in 

. 

∫ L

x''
F(x') dx' = − 1

g2λ

{
1

α
exp [+g (b + αλL)] exp

[−gαλx']

− exp [−g (b + λL)] exp
[+gλx'] }∣∣∣∣

x'=L

x'=x''
. (21.137) 

By substituting this integral into Eq. (21.135) and evaluating at the limits, we arrive 
at 

. 

〈t (L → 0)〉 = − 1

g2λ

∫ L

0

1

D(x'') F(x'')

×
{
1

α
exp [+g (b + αλL)]

(
exp [−gαλL] − exp

[−gαλx''])

− exp [−g (b + λL)]
(
exp [+gλL] − exp

[+gλx'']) } dx''.
(21.138)



21.6 Concluding Remarks 635

Fig. 21.7 Mean first-passage times for an asymmetrical cone with .L = 1, .b = 0.1, and  . μ = 0.8
for different values of g. The circle markers are the values obtained from Brownian dynamics 
simulations. The cone has a wide-to-narrow (.w → n) configuration. It is worth noting that the 
vertical scale is rather different to the one presented in Fig. 21.6 for the .n → w configuration, 
which shows times shorter than . 0.5. For the present case, the time increases rapidly for almost all 
. λ values 

The numerical evaluation of .〈t〉w→n is shown in Fig. 21.7. 
Notably, very good agreement between the theoretical MFPT expression is 

shown. Some deviations are observed at intermediate boundary slopes and larger 
g values. Regardless of these derivations, the one-dimensional description can be 
validated for this channel configuration by noting that the 1D reduction is actually 
an approximation technique. 

21.6 Concluding Remarks 

In this chapter, the projection method technique was applied to 2D systems, 
specifically to symmetrical and asymmetrical channels under the influence of a 
gravitational-like potential. We obtained the position-dependent diffusion coeffi-
cients for those systems. Interestingly, Eq. (21.92) simplifies previous solutions 
under certain conditions. More specifically, we found that every effective diffusion 
coefficient in the literature is contained within the first terms of a binomial expansion 
if the interpolation formula (19.15) and the appropriate exponent are properly 
selected. 

Finally, based on the results of .D(x), an equation for the MFPT of a conical 2D 
channel was obtained. Subsequently, we found the numerical solution of the MFPT 
and compared such results to the times obtained by means of Brownian dynamics 
simulations to validate the range of applicability of these equations.
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21.A Mathematical Computations 

21.A.1 Derivation of Eq. (21.61) 

The constant operator . Ĉ0 is obtained by substituting the perturbative series of 
Eq. (21.29) into Eq. (21.16), that is, 

.

ρ(x, t) =
∫ h(x)

−h(x)

e−gy σ̂ n(x, y, ∂x) dy

=
∫ h(x)

−h(x)

e−gy
∞∑

n=0

ϵn σ̂ n(x, y, ∂x)
ρ(x, t)

F(x)
dy

=
∫ h(x)

−h(x)

e−gy ϵ0�������1
σ̂ 0(x, y, ∂x)

ρ(x, t)

F(x)
dy

+
∞∑

n=1

ϵn

∫ h(x)

−h(x)

e−gy σ̂ n(x, y, ∂x)
ρ(x, t)

F(x)
dy

=
��������

F(x)∫ h(x)

−h(x)

e−gy dy
ρ(x, t)

F(x)

+
∞∑

n=1

ϵn

∫ h(x)

−h(x)

e−gy σ̂ n(x, y, ∂x) dy
ρ(x, t)

F(x)

= ρ(x, t) +
∞∑

n=1

ϵn

∫ h(x)

−h(x)

e−gy σ̂ n(x, y, ∂x) dy
ρ(x, t)

F(x)
,

(21.139) 

which means 

. 0 =
∞∑

n=1

ϵn

∫ h(x)

−h(x)

e−gy σ̂ n(x, y, ∂x) dy
ρ(x, t)

F(x)
. (21.140) 

Every term inside the series satisfies .ϵ /= 0 and .ρ(x, t)/F(x) /= 0. In other words, 
we have linear independence between the . ϵ powers. Therefore, the equation is 
satisfied if 

.

∫ h(x)

−h(x)

e−gy σ̂ n(x, y, ∂x) dy = 0, ∀n > 0. (21.141)
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We proceed to integrate . σ̂ 1, namely, 

. 

∫ h(x)

−h(x)

e−gy

{
h'(x)

sinh[gh(x)]
(
1

g
e−gy − y cosh[gh(x)]

)
∂

∂x
+ Ĉ0

}
dy

= h'(x)

gsinh[gh(x)]2h(x)
∂

∂x
− h'(x) cosh[gh(x)]

sinh[gh(x)]
∫ h(x)

−h(x)

y e−gy dy
∂

∂x

+ Ĉ0

∫ h(x)

−h(x)

e−gy dy

= 2h(x) h'(x)

gsinh[gh(x)]
∂

∂x
− h'(x) cosh[gh(x)]

sinh[gh(x)]
∫ h(x)

−h(x)

y e−gy dy
∂

∂x

+ Ĉ0

[
−1

g
e−gy

]∣∣∣∣
h(x)

−h(x)

= 0.
(21.142) 

The remaining integral is solved by parts, i.e., 

. 

∫ h(x)

−h(x)

y e−gy dy = − y
1

g
e−gy

∣∣∣∣
h(x)

−h(x)

+ 1

g

[
−1

g
e−gy

]∣∣∣∣
h(x)

−h(x)

= −h(x)

g

[
e−gh(x) + egh(x)

]
− 1

g2

[
e−gh(x) − egh(x)

]
,

(21.143) 

which, after using Eqs. (A.6) and (A.7), simplifies to 

.

∫ h(x)

−h(x)

y e−gy dy = −h(x)

g
{2 cosh[gh(x)]} + 1

g2
{2sinh[gh(x)]} . (21.144) 

Upon substitution of the latter equation into Eq. (21.142), we arrive at  

. 

2h(x) h'(x)

gsinh[gh(x)]
∂

∂x
+ Ĉ0 {2sinh[gh(x)]}

− h'(x) cosh[gh(x)]
sinh[gh(x)]

{
−h(x)

g
(2 cosh[gh(x)]) + 1

g2 (2sinh[gh(x)])
}

∂

∂x

= 0,
(21.145)
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which leads us to 

.

Ĉ0 = h'(x)

g

{
cosh[gh(x)]
sinh[gh(x)] − h(x) g

(
cosh2[gh(x)] + 1

)
sinh2[gh(x)]

}
∂

∂x

= h'(x)

g

{
cosh[gh(x)]
sinh[gh(x)] − gh(x)

(
1 + sinh2[gh(x)] + 1

sinh2[gh(x)]

)}
∂

∂x
.

(21.146) 

Finally, by rearranging, we find that 

.Ĉ0 = h'(x)

g

{
cosh[gh(x)]
sinh[gh(x)] − gh(x)

(
1 + 2

sinh2[gh(x)]
)}

∂

∂x
. (21.61) 

21.A.2 Derivation of Eq. (21.64) 

In order to obtain the correction operator .Ẑ1(x, ∂x), we make use  of  Eq.  (21.63). 
The derivative inside the integral is computed first, reading 

. 

∂

∂x
σ̂ 1(x, y, ∂x)

= h''(x)

g

{
egy + (1 − gy) cosh[gh(x)]

sinh[gh(x)] − gh(x)

(
1 + 2

sinh2[gh(x)]
)}

+ h'(x)

g

{
sinh[gh(x)] (gh'(x) [1 − gy] sinh[gh(x)])

sinh2[gh(x)]

− [egy + (1 − gy) cosh[gh(x)]] gh'(x) cosh[gh(x)]
sinh2[gh(x)]

− gh'(x)

(
1 + 2

sinh2[gh(x)]
)

− gh(x)
(
−4g h'(x) coth[gh(x)] csch2[gh(x)]

)}
.

(21.147) 

Then, we multiply this last equation by .e−gy and integrate the term containing . h''(x)

along the y direction, resulting in
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.

I = 1

sinh[gh(x)]

{∫ h(x)

−h(x)

dy + cosh[gh(x)]
∫ h(x)

−h(x)

e−gy dy

− g cosh[gh(x)]
∫ h(x)

−h(x)

y e−gy dy

}

− gh(x)

{∫ h(x)

−h(x)

e−gy dy + 2

sinh2[gh]
∫ h(x)

−h(x)

e−gy dy

}
,

(21.148) 

which after simplifying the terms yields 

.

I = 1

sinh[gh(x)]
{
2h(x) + 2

g
sinh[gh(x)] cosh[gh(x)]

− g cosh[gh(x)]
(

−2h(x)

g
cosh[gh(x)] + 2

g2
sinh[gh(x)]

)}

− 2h(x) sinh[gh(x)]
{
1 + 2

sinh2[gh(x)]
}

= 1

sinh[gh(x)]
{
2h(x) + 2

g
sinh[gh(x)] cosh[gh(x)]

+ 2h(x) cosh2[gh(x)] − 2

g
sinh[gh(x)] cosh[gh(x)]

}

− 2h(x) sinh[gh(x)] − 4h(x)

sinh[2h(x)] .

(21.149) 

Then, 

.

I = 1

sinh[gh(x)]
{
2h(x)

[
1 + cosh2[gh(x)

]}

− 2h(x)sinh[gh(x)] − 4h(x)

sinh[2h(x)]
= 2h(x) sinh[gh(x)] + 4h(x)

sinh[2h(x)] − 2h(x) sinh[gh(x)]

− 4h(x)

sinh[2h(x)]
= 0,

(21.150) 

and reducing terms
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. 

∂

∂x
σ̂ 1(x, y, ∂x)

= h'2(x)

sinh[gh(x)]
{
sinh[gh(x)] − gy sinh[gh(x)] − egy coth[gh(x)]

− cosh[gh(x)] coth[gh(x)] + gy cosh[gh(x)] coth[gh(x)]
− sinh[gh(x)] − 2csch[gh(x)] + 4g h(x) coth[gh(x)] csch[gh(x)]} .

(21.151) 

Then, we multiply this last result by .e−gy and integrate with respect to y, leading to 

. 

I2 =
∫ h(x)

−h(x)

e−gy ∂

∂x
σ̂ 1(x, y, ∂x) dy

= {− cosh[gh(x)] coth[gh(x)] − 2csch[gh(x)]

+ 4g h(x) coth[gh(x)] csch[gh(x)]}
∫ h(x)

−h(x)

e−gy dy

+ g {cosh[gh(x)] coth[gh(x)] − sinh[gh(x)]}
∫ h(x)

−h(x)

y e−gy dy

− coth[gh(x)]
∫ h(x)

−h(x)

dy

= −2

g
cosh2[gh(x)] − 4

g
+ 8h(x) coth[gh(x)]

+ g {cosh[gh(x)] coth[gh(x)] − sinh[gh(x)]}

×
{
2

g2 sinh[gh(x)] − 2h(x)

g
cosh[gh(x)]

}

= −2

g
cosh2[gh(x)] − 4

g
+ 8h(x) coth[gh(x)]

− 2h(x) coth[gh(x)] + 2

g
cosh2[gh(x)]

− 2h(x) cosh[gh(x)] coth[gh(x)]

− 2

g
sinh2[gh(x)] + 2h(x) sinh[gh(x)] cosh[gh(x)]

= 6h(x) coth[gh(x)] − 4

g
− 2

g
sinh2[gh(x)]

− 2h(x) cosh2[gh(x)] coth[gh(x)] + 2h(x) sinh[gh(x)] cosh[gh(x)],
(21.152)
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and by substituting .F(x) into Eq. (21.24), we obtain 

. 

Ẑ1(x, ∂x) = − 1

F(x)
I2

= h'2(x)

sinh2[gh(x)]
{
−3g h(x) coth[gh(x)] + 2 + sinh2[gh(x)]

+ gh(x) cosh2[gh(x)] coth[gh(x)] − gh(x) sinh[gh(x)] cosh[gh(x)]
}

= h'2(x)

sinh2[gh(x)]
{
−3g h(x) coth[gh(x)] + 2 + cosh2[gh(x)]

− 1 + gh(x) coth[gh(x)]
(
1 + sinh2[gh(x)]

)

− gh(x) sinh[gh(x)] cosh[gh(x)]},
(21.153) 

finally leading to 

. Ẑ1(x, ∂x) = h'2(x)

sinh2[gh(x)]
{
1 + cosh2[gh(x)] − 2g h(x) coth[gh(x)]

}
.

(21.64) 

21.A.3 Derivation of Eq. (21.84) 

We start by integrating Eq. (21.83) along the y direction, namely, 

. 

∫
∂

∂y

[
e−gy ∂

∂y
σ̂ 1(x, y, ∂x)

]
dy

=
∫

ge−gy

e−gh1(x) − e−gh2(x)

[
h'
2(x) e−gh2(x) − h'

1(x) e−gh1(x)
] ∂

∂x
dy, (21.154) 

resulting in 

. e−gy ∂

∂y
σ̂ 1(x, y, ∂x) = h'

1(x) e−gh1(x) − h'
2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
egy ∂

∂x
+ Ĉ1,

(21.155) 

where . Ĉ1 is a constant integration operator to be determined. We use Eq. (21.51) 
for the particular case when .n = 0, yielding 

.
∂

∂y
σ̂ 1(x, y, ∂x)

∣∣∣∣
y=hi(x)

= h'
i (x)

∂

∂x
σ̂ 0(x, y, ∂x)

∣∣∣∣
y=hi(x)

, (21.156)
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and since .σ̂ 0 = 1, we obtain 

. h
'
i (x)

∂

∂x
σ̂ 0(x, y, ∂x)

∣∣∣∣
y=hi(x)

= h'
i (x)

/
∂

∂x

∣∣∣∣
y=hi(x)

. (21.157) 

Now, we see that 

. h'
i (x)

∂

∂x
= h'

1(x) e−gh1(x) − h'
2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)

∂

∂x
+ egy Ĉ1

∣∣∣
y=hi(x)

. (21.158) 

By choosing the upper boundary .y = h2(x), the integration constant operator is 
obtained, that is, 

. Ĉ1 = h'
2(x) e−gh2(x) ∂

∂x
− h'

1(x) e−gh1(x) − h'
2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x) ∂

∂x
,

(21.159) 

from which, by substitution into Eq. (21.155), we obtain 

. 

e−gy ∂

∂y
σ̂ 1(x, y, ∂x) = h'

1(x) e−gh1(x) − h'
2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
egy ∂

∂x

+ h'
2(x) e−gh2(x) ∂

∂x

− h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x) ∂

∂x
.

(21.160) 

Then, the integration yields 

. 

σ̂ 1(x, y, ∂x) =
∫ {

h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
+ h'

2(x) e−gh2(x)egy

−h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x) egy

}
∂

∂x
∂y

=
{

y
h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)

+ h'
2(x) e−gh2(x) egy 1

g

−h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x) egy 1

g

}
∂

∂x

+ Ĉ0.

(21.161)
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We integrate again to find that 

.

0 =
∫ h2(x)

h1(x)

e−gy σ̂ 1(x, t, ∂x) dy

= Ĉ0

∫ h2(x)

h1(x)

e−gy dy

− 1

g
[h2(x) − h1(x)]

[
h'
2(x) e−gh2(x)

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x)

]
∂

∂x

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)

∫ h2(x)

h1(x)

y e−gy dy
∂

∂x
,

(21.162) 

where we have used Eq. (21.141). After integrating, we find that 

. 

0 = 1

g

[
e−gh1(x) − e−gh2(x)

]
Ĉ0 + 1

g
[h2(x) − h1(x)]

{
h'
2(x) e−gh2(x)

− h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x)

}
∂

∂x

− h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)

{
1

g

[
h2(x) e−gh2(x)

−h1(x) e−gh1(x)
]

+ 1

g2

[
e−gh2(x) − e−gh1(x)

]} ∂

∂x
.

(21.163) 
Finally, solving for . Ĉ0 takes us to 

.

Ĉ0 = h2(x) − h1(x)

e−gh2(x) − e−gh1(x)

[
h'
2(x) e−gh2(x)

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x)

]
∂

∂x

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

[
e−gh1(x) − e−gh2(x)

]2
{
h'
2(x) e−gh2(x)

− h'
1(x) e−gh1(x) + 1

g

[
e−gh2(x) − e−gh1(x)

]} ∂

∂x
,

(21.164) 

which is substituted into Eq. (21.161), namely,
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. 

σ̂ 1(x, y, ∂x) =
{

y
h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
+ h'

2(x) e−gh2(x) egy 1

g

−h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x) egy 1

g

}
∂

∂x

+ h2(x) − h1(x)

e−gh2(x) − e−gh1(x)

[
h'
2(x) e−gh2(x)

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

e−gh1(x) − e−gh2(x)
e−gh2(x)

]
∂

∂x

+ h'
1(x) e−gh1(x) − h'

2(x) e−gh2(x)

[
e−gh1(x) − e−gh2(x)

]2
{
h'
2(x) e−gh2(x)

− h'
1(x) e−gh1(x) + 1

g

[
e−gh2(x) − e−gh1(x)

]} ∂

∂x
.

(21.84) 

21.A.4 Derivation of Eq. (21.91) 

We start by computing the derivative with respect to x of Eq. (21.90), namely, 

. 

∂

∂x
σ̂ 1(x, y, ∂x) = y

{
y''
0 − 1

2
w'' coth ξ + 1

2
ξ 'w'csch2ξ

}

+ 1

2g
e+gy e−gy+

{
w'' + w'' coth ξ − ξ 'w'csch2ξ

}

− 1

4
ww' {−4ξ ' coth ξ csch2ξ

}

− 1

4

{
2 coth2 ξ − 1

} {
ww'' + w'w'}

− y'
0 y'

0 − y0 y''
0 + 1

2g
w'' coth ξ − 1

2g
ξ 'w'csch2ξ

+ 1

2

[
w'y'

0 + w''y0
]
coth ξ − 1

2
ξ 'w'y0 csch2ξ

+ 1

2

[
w'y'

0 + wy''
0

]
coth ξ − 1

2
ξ 'wy'

0csch
2ξ

+ 1

2g
e+gy e−gy+ [w' + w' coth ξ

] {−g

[
y'
0 + 1

2
w'
]}

− 1

g
y''
0 ,

(21.165)
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where the value of Eq. (21.89) is used to obtain 

. 

∂

∂x
σ̂ 1(x, y, ∂x)

= y

{
y''
0 − 1

2
w'' coth ξ + 1

4
gw'w'csch2ξ

}

+ 1

2g
e+gye−gy+

{
w'' + w'' coth ξ − 1

2
gw'w'csch2ξ

− gw'y'
0 − 1

2
gw'w' − gw'y'

0 coth ξ − 1

2
gw'w' coth ξ

}

+ 1

2
gww'w' coth ξ csch2ξ + 1

4
ww'' + 1

4
w'w' − 1

2
ww'' coth2 ξ

− 1

2
w'w' coth2 ξ − y'

0 y'
0 − y0 y''

0 + 1

2g
w'' coth ξ − 1

4
w'w'csch2ξ

+ w'y'
0 coth ξ + 1

2
w''y0 coth ξ − 1

4
gw'w'y0csch2ξ + 1

2
wy''

0 coth ξ

− 1

4
gww'y'

0csch
2ξ − 1

g
y''
0 .

(21.166) 

We proceed to compute 

.
1

F(x)

∫ y+

y−
e−gy ∂

∂x
σ̂ 1(x, y, ∂x) dy, (21.167) 

which is a direct integral. A quick inspection shows that the following three integrals 
must be solved: 

.

∫ y+

y−
dy = y+ − y− = w, (21.168) 

.

∫ y+

y−
e−gy dy = −1

g

[
e−gy+ − e−gy−] = 2

g
e−gy0 sinhξ, (21.169) 

and 

.

∫ y+

y−
y e−gy dy = 1

g
e−gy0 [2y0sinhξ − w cosh ξ ] + 2

g2 e−gy0 sinhξ. (21.170) 

Additionally, .1/F(x) can be written using hyperbolic functions, i.e.,
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.
1

F(x)
= 1

2
g e+gy0 cschξ. (21.171) 

Then, the integrals mentioned above become 

.
1

F(x)

∫ y+

y−
dy = 1

2
gw e+gy0 cschξ, (21.172) 

.
1

F(x)

∫ y+

y−
e−gy dy = 1, (21.173) 

and 

.
1

F(x)

∫ y+

y−
y e−gy dy = y0 − 1

2
w coth ξ + 1

g
, (21.174) 

respectively. The rest of the computation is rather tedious but straightforward, that 
is, 

. 

1

F(x)

∫ y+

y−
e−gy ∂

∂x
σ̂ 1(x, y, ∂x) dy

=
{
y0 − 1

2
w coth ξ + 1

g

}{
y''
0 − 1

2
w'' coth ξ + 1

4
gw'w'csch2ξ

}

+ 1

4
e−gy+ e+gy0 wcschξ

{
w'' + w'' coth ξ − 1

2
gw'w'csch2ξ − gw'y'

0

−1

2
gw'w' − gw'y'

0 coth ξ − 1

2
gw'w' coth ξ

}

+ 1

2
gww'w' coth ξ csch2ξ

+ 1

4
ww'' + 1

4
w'w' − 1

2
ww'' coth2 ξ − 1

2
w'w' coth2 ξ − y'

0 y'
0 − y0 y''

0

+ 1

2g
w'' coth ξ − 1

4
w'w'csch2ξ + w'y'

0 coth ξ + 1

2
w''y0 coth ξ

− 1

4
gw'w'y0csch2ξ + 1

2
wy''

0 coth ξ − 1

4
gww'y'

0csch
2ξ − 1

g
y''
0

= 1

4
gww'w' coth ξ csch2ξ + 1

4
gww'y'

0 − 1

4
gww'y'

0 coth
2 ξ

+ 1

4
w'w' − 1

2
w'w' coth2 ξ − y'

0 y'
0 + w' y'

0 coth ξ − 1

4
gww'y'

0csch
2ξ,

(21.175)
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where we can use . ξ , given by Eq. (21.89), together with Eq. (21.35) for .k = 1. 
Ultimately, we find that 

. 

Ẑ1(x, ∂x) ∂x = w'2

4sinh2
[
1
2gw

]
{
1 + cosh2

[
1

2
gw

]
− gw coth

[
1

2
gw

]}
∂

∂x

+ y'
0

{
y'
0 − w' coth

[
1

2
gw

]
+ 1

2
gww'csch2

[
1

2
gw

]}
∂

∂x
.

(21.91) 
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Chapter 22 
Periodical Systems 

Periodic channels are quite common in both natural and artificial systems. These 
systems have gained relevance due to the applications they have in a wide range 
of diffusion phenomena. Zeolites are an interesting example: They are solid 
nanoporous crystals with well-defined internal structures. They naturally occur as 
minerals, but they can also be artificially synthesized for specific uses. They contain 
internal cavities that join together to form chambers and channels. Zeolites facilitate 
the movement of both neutral and electrically charged particles into the structure. 
In addition, they can function as filters for particles that are larger in size than the 
length of the width of these channels. Thanks to these characteristics, zeolites can 
improve the efficiency of catalytic processes. 

Nanopores are another example of systems that can be made up of periodic 
structures. They are highly confined structures with small openings. The shape of 
these structures plays an important role in the behavior of the stream of particles 
that translocate inside them. In some situations, they act as gates that regulate 
the transport of ions or molecules. Nanopores are found in nature connecting 
the inside and outside of cells through cell membranes. As mentioned in earlier 
chapters of this book, they also regulate ionic transport in cells in the presence of 
electrochemical gradients. Artificial nanopores are used today to characterize the 
behavior of molecules such as DNA and RNA. 

This chapter is devoted to study the diffusion of Brownian particles through 
long, narrow, periodic channels or tubes. To such end, we have to simplify the 
effective diffusivity by means of the so-called Lifson-Jackson formula, which in 
fact, considerably simplifies the problem. This formula is an exact result for the 
one-dimensional Smoluchowski equation in the presence of a periodic potential and 
periodic diffusivity. For example, if the formula is applied to a periodic narrow 
channel, the effective diffusion coefficient is initially dependent on the position 
and later becomes independent and is reduced to the geometric parameters of the 
channel. Consequently, the effective diffusion coefficient becomes constant once 
the geometrical parameters, then, the system can be described by means of the 
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Fick-Jacobs equation, instead of the Fick-Jacobs-Zwanzig equation. We will also 
present the application of the formula for explicit periodic channels in two and three 
dimensions, as well as a system formed by cylindrical obstacles. 

22.1 Lifson-Jackson Formula 

In this section, we will obtain the Lifson-Jackson formula, which is an exact 
result for the one-dimensional Smoluchowski equation with periodic potential and 
diffusivity. Let us assume that we have a Brownian particle with initial position 
. x0, diffusing in a one-dimensional system in the presence of periodic potential and 
diffusivity of period L, where .U(x) = U(x + L) = U(x − L) and . D(x) =
D(x + L) = D(x − L) (see Fig. 22.1). 

The deduction presented here, which differs from the original one proposed by 
Shneior Lifson and Julius L. Jackson, is rigorous and much simpler. It arises from 
the observation that once the particle reaches a distance .x0 + L or .x0 − L, it comes 
back to the same situation as when it started. Consequently, it is like considering 
the mean round-trip time (RT), .〈tRT (a, b)〉, of a particle diffusing between two 
reflecting boundaries located at points .a = x0−L and .b = x0+L. This mean time is 
the sum of the mean first-passage times (MFPT) between the two points, . 〈t (a → b)〉
and .〈t (b → a)〉. Then, the Lifson-Jackson formula for the effective diffusivity is 
given by 

.Deff = L2

〈tRT (a, b)〉 . (22.1) 

To find the mean RT, we first need to find .〈t (a → b)〉 and .〈t (b → a)〉. Because 
of its periodicity, the simplest way to perform this task is calculating the MFPT 
between a reflecting boundary at a and an absorbing boundary at b and vice versa. 
These quantities can be obtained by solving Eq. (6.38): 

Fig. 22.1 Depiction of the 
periodic potential .U(x) as a 
function of x, with period  L 

x0 

L 

U(x) 

x
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.
d

dx0

[
D(x0)e

−βU(x0)
d

dx0
〈t (x0)〉

]
= −e−βU(x0). (6.38) 

To such end, we will solve this ordinary differential equation in quadratures.1 

Then, we will apply the boundary conditions to our specific transitions. 
After integrating Eq. (6.38) once from a to . x0, we have  

.D(x0) e
−βU(x0)

d

dx0
〈t (x0)〉 = A −

∫ x0

a

e−βU(x') dx'. (22.2) 

Now, integrating again, the general solution to Eq. (6.38) is 

. 〈t (x0)〉 = B + A
∫ x0

a

eβU(x'')

D(x'')
dx'' −

∫ x0

a

eβU(x'')

D(x'')

(∫ x''

a

e−βU(x') dx'
)

dx''.

(22.3) 

This last formula is the general solution of differential equation (6.38) in close 
quadratures. 

The next step is to introduce the boundary conditions to find the transitions. We 
start by calculating .〈t (a → b)〉, for which we need to impose a reflecting boundary 
at a and an absorbing boundary at b. From the first boundary, we find that .A = 0, 
and from the absorbing boundary, we find that 

.B =
∫ b

a

eβU(x'')

D(x'')

(∫ x''

a

e−βU(x') dx'
)

dx''. (22.4) 

Introducing the found values of . A and . B into Eq. (22.3) yields 

. 〈t (x0)〉 =
∫ b

a

eβU(x'')

D(x'')

(∫ x''

a

e−βU(x') dx'
)

dx''

−
∫ x0

a

eβU(x'')

D(x'')

(∫ x''

a

e−βU(x') dx'
)

dx''. (22.5) 

Finally, setting .x0 = a, we can write 

.〈t (a → b)〉 =
∫ b

a

eβU(x'')

D(x'')

(∫ x''

a

e−βU(x') dx'
)

dx''. (22.6)

1 This method is presented in AppendixA.12. 
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Now, in order to calculate .〈t (a → b)〉, we need to integrate Eq. (6.38) from x to 
b and apply the boundary conditions, namely, a reflecting boundary at .x = b and an 
absorbing boundary at .x = a. Then, after setting .x0 = b, the final result is 

.〈t (b → a)〉 =
∫ b

a

eβU(x'')

D(x'')

(∫ b

x''
e−βU(x') dx'

)
dx''. (22.7) 

By adding Eqs. (22.6) and (22.7), we find that the mean round-trip time is 

. 〈tRT (a, b)〉 =
∫ b

a

eβU(x'')

D(x'')

(∫ x''

a

e−βU(x') dx'
)

dx''

+
∫ b

a

eβU(x'')

D(x'')

(∫ b

x''
e−βU(x') dx'

)
dx''. (22.8) 

Now, to simplify this last expression, we need to define the antiderivative of the 
argument of the integral as 

.F(x) ≡
∫

e−βU(x) dx. (22.9) 

Consequently, by means of the fundamental theorem of calculus, we see that 

. 〈tRT (a, b)〉 =
∫ b

a

eβU(x'')

D(x'')
dx'' [F(x'') − F(a)

]

+
∫ b

a

eβU(x'')

D(x'')
dx'' [F(b) − F(x'')

]
, (22.10) 

which ultimately simplifies to 

.

〈tRT (a, b)〉 = [F(b) − F(a)]
∫ b

a

eβU(x'')

D(x'')
dx''

=
∫ b

a

eβU(x') dx'
∫ b

a

eβU(x'')

D(x'')
dx''.

(22.11) 

Setting .a = x0 and .b = x0 + L in this last expression and substituting the result 
into Eq. (22.1), we finally arrive at the so-called Lifson-Jackson formula: 

.Deff = L2

∫ x0+L

x0
e−βU(x) dx

∫ x0+L

x0

eβU(x)

D(x)
dx

. (22.12)
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This equation can be rewritten in a more simplified form by defining 

.〈f (x)〉 ≡ 1

L

∫ x0+L

x0

f (x) dx, (22.13) 

where the angular brackets denote averaging over the period, as 

.Deff = 1〈
e−βU(x)

〉〈
eβU(x)

D(x)

〉 . (22.14) 

In the following section, we will provide some specific examples of the Lifson-
Jackson formula applying it to calculate the effective diffusivity of narrow two-
dimensional channels and three-dimensional tubes and for diffusion in the presence 
of obstacles. 

22.2 Diffusion into a Periodic Tube Formed by Contacting 
Spheres 

In this section, we will focus on calculating the effective diffusivity in a tube 
formed by periodic contacting spherical cavities of radius R (see Fig. 22.2), over 
the entire range of the entropy barrier height, namely, for the whole circular 
aperture connecting neighboring cavities, a, from 0 to  R. To establish the range 
of applicability of the theoretical predictions, they will be compared to the results 
obtained by Brownian dynamics simulations. 

It is worth noting that when the mean squared displacement of a diffusing particle 
is much greater than the tube period L, the particle motion can be characterized by 
an effective diffusivity constant .Deff. This .Deff is smaller than the particle diffusion 
. D0, i.e., the diffusivity with no geometrical constraints. Then, we can approximately 
describe diffusion in a two-dimensional channel or three-dimensional tube of 
varying width, as one-dimensional diffusion along the channel axis in the presence 
of entropy potential using the generalized Fick-Jacobs (FJ) equation, Eq. (22.14). 
This one-dimensional description allows us to find .Deff by means of the Lifson-
Jackson (LJ) formula. Then, our first task for finding the effective diffusivity of a 
periodical tube will be to find the entropic potential. 

In general, since the entropic potential is given by the logarithm of the area, 
namely, .U(x) = −kBT ln[A(x)/A(0)], where .A(0) is a constant, then the LJ 
formula, Eq. (22.14), for narrow tubes or channels is 

.Deff = 1〈A(x)

A(0)

〉〈 1

D(x)
A(x)
A(0)

〉 = 1〈
A(x)

〉〈 1

D(x)A(x)

〉 . (22.15)
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Fig. 22.2 Schematic representation of a periodic sphere with period L, with its height given 
by .r(x) = √

R2 − x2. The radius a of the circular aperture is given by .a = √R2 − (L2/4). 
Consequently, if the tube period increases, the circular aperture decreases and vice versa 

From this last result, we can conclude that the calculation of .Deff reduces 

averaging of .
〈
w(x)

〉
and .

〈
1/(D(x)w(x))

〉
. As we can see, the approximation for 

the position-dependent diffusion coefficient is expressed explicitly in the second 
integral. 

For our specific tube formed by overlapping spheres, the cross-sectional area is 
given by .A(x) = πr(x)2, where .r(x) = √

R2 − x2 is the height of the sphere. 
Although this is all the information we need to find the effective diffusivity, it 
is a good idea to pause for a bit to explicitly calculate the entropic potential 
and describe its main characteristics. Explicitly, the entropy potential defined by 
.U(x) = −kBT lnA(x)/A(x = 0), setting .A(x = 0) = πR2, is given by 

.U(x) = −kBT ln
π(R2 − x2)

πR2 . (22.16) 

We observe that when the tube period increases, the radius a of the circular 
aperture connecting neighboring cavities decreases as .a = √R2 + (L2/4), where L 
is within the domain .[0, 2R]. As a result, the entropy barrier increases and the ratio 
.Deff/D0 decreases. Potentials .U(x) with high and low entropy barriers are shown 
in Fig. 22.3. 

Now, let’s obtain two approximations for the LJ formula: one with a position-
independent diffusion coefficient, .D(x) = D0, otherwise known as the Fick-Jacobs 
approximation, and another where the effective diffusivity is approximated by the 
Reguera-Rubi or Kalinay-Percus formula, Eq. (20.118), namely,
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Fig. 22.3 Entropy potential for tubes with .(a/R) = 0.1 (left panel) and .(a/R) = 0.5 (right panel). 
The dimensionless maximum heights of the entropy barriers are . ΔU/(kBT ) = 2 ln 10 = 4.6051
(left panel) and .ΔU/(kBT ) = 2 ln 2 = 1.3862 (right panel) 

.D(x) ≈ DRR = D0√
1 + r '(x)2

=
√

R2 − x2

R
D0. (22.17) 

Consequently, we need to know the channel width, its derivative, and the 
approximated position-dependent diffusivity, in order to substitute them into the 
Lifson-Jackson equation, Eq. (22.26). In the first case, when .D(x) = D0, we have  
to calculate the following two integrals: 

.

〈
A(x)

〉
= 1

L

∫ L/2

−L/2
A(x) dx = 1

L

∫ L/2

−L/2
π(R2 − x2) dx

= π

(
R2 − L2

12

)
,

(22.18) 

and 

. 

〈
1

D0 A(x)

〉
= 1

D0 L

∫ L/2

−L/2

dx

A(x)
= 1

LD0

∫ L/2

−L/2

dx

π(R2 − x2)

= 2

πLR
coth−1

(
2R

L

)
= 1

πLR

[
ln

(
L

2R
+ 1

)
− ln

(
1 − L

2R

)]
.

(22.19) 

Substituting .L = 2
√

R2 − a2 into Eqs. (22.18) and (22.18), and the resulting 
expressions into Eq. (22.15), yields 

.DFJ
eff = 6

√
1 − (a/R)2

2 + (a/R)2
ln

[
1 −√1 − (a/R)2

1 +√1 − (a/R)2

]
D0. (22.20)
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Now, let’s calculate the effective diffusivity by means of the RR approximation 
for the position-dependent diffusivity. In this case, .〈w(x)〉 is the same as the one 
we already calculated and is given by Eq. (22.18). On the other hand, to calculate 
.〈1/(D(x)w(x))〉, we need to introduce Eq. (22.17) into this last average, which 
gives 

. 

〈
1

D(x)A(x)

〉
= 1

L

∫ L/2

−L/2

dx

D(x)A(x)
= 1

LD0

∫ L/2

−L/2

dx√
R2 − x2

R
π(R2 − x2)

= R

πLD0

∫ L/2

−L/2

dx

(R2 − x2)
3
2

= 2

πD0R
√
4R2 − L2

.

(22.21) 

Since .L = 2
√

R2 − a2, substituting Eqs. (22.18) and (22.21) into Eq. (22.15), 
leads to 

.DRR
eff = 3(a/R)

2 + (a/R)2
D0. (22.22) 

Figure 22.4 shows that the results obtained by Brownian dynamics simulations 
is in good agreement with .DFJ

eff for .a/R > 0.8. On the other hand, .DRR
eff provides a 

reasonably good approximation for .Deff over the entire size range of the aperture. 
From these results it becomes clear that we need to introduce the diffusivity’s 
dependence on position to obtain a better description. 

Looking to get a better approximation of the effective diffusivity over the entire 
range of the tube period, an empirical formula for periodic systems was proposed in 
2016 by R. Verdel et al. To such end, they introduced a dimensionless parameter, . γ , 
given by 

.γ = L/a

1 + (L/a)
= L

a + L
, (22.23) 

which increases from zero to unity as the period increases from zero to infinity. They 
used this parameter to define the effective diffusivity as 

.D
γ

eff = D0 − γ (D0 − DLJ
eff), (22.24) 

where .DLJ
eff is the approximated formula obtained by the LJ formula. We can see 

that Eq. (22.24) decreases from . D0 to .DLJ as . γ goes from zero to unity. Replacing 
.DLJ

eff = DRR
eff , given by Eq. (22.22), in Eq.  (22.23), the formula obtained is in perfect 

agreement with the results from simulations, as shown in Fig. 22.4.
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Fig. 22.4 Effective diffusion 
constants found by Brownian 
dynamics simulations (open 
circles) and predicted by 
Eqs. (22.20), (22.22) (solid 
curves), and (22.24) (dashed 
line). Effective diffusivity 
was determined through 
simulations for the long-time 
behavior of .〈Δx2(t)〉, setting  
. D0 = 1
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Fig. 22.5 Schematic representation of a linearly corrugated two-dimensional channel of period L, 
minimum half-width a, wall slope . λ, and position-dependent width . w(x)

22.3 Diffusion in a Periodic Channel with Corrugated Walls 

In this section, we calculate the effective diffusivity for a two-dimensional periodic 
channel with linearly corrugated walls shown in Fig. 22.5. The coordinate system is 
chosen in a way that its x-axis coincides with the channel centerline. The channel 
width is a periodic function of x given by 

.
w(x)

2
= a + λ(L/2) − |x|, (22.25) 

where .|x| ≤ L/2, a and L are the minimum half-width of the channel and its period, 
respectively, and . λ is one half of the absolute value of the width variation rate. 

One can approximately describe the diffusion into this channel of varying width 
as one-dimensional diffusion along the channel axis in the presence of entropy 
potential. Then, to calculate the effective diffusivity of this channel, we will apply 
the techniques outlined in Sect. 22.2. Then, for a two-dimensional channel, since
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the entropic potential is given by the logarithm of the width, namely, . U(x) =
−kBT ln[w(x)/w(0)], where .w(0) is a constant, the Lifson-Jackson equation, 
Eq. (22.15), becomes 

.Deff = 1〈w(x)

w(0)

〉〈 1

D(x)
w(x)
w(0)

〉 = 1〈
w(x)

〉〈 1

D(x)w(x)

〉 . (22.26) 

Then, to calculate the integrals involved in the processes, we need to know the 
channel width, given by Eq. (22.25), its derivative, and the position-dependent dif-
fusivity. By substituting Eq. (22.25) into the Kalinay-Percus formula, Eq. (20.118), 
we are led to 

.D(x) ≈ arctan [w'(x)/2]
w'(x)/2

D0 = arctan λ

λ
D0 = Dλ. (22.27) 

Now, we have the information needed to perform the averaging of .〈w(x)〉 and 
.〈1/(D(x)w(x))〉; hence, 

.

〈
w(x)

〉
= 1

L

∫ L

0
w(x) dx = 1

L

∫ L

0
2 [a + λ(L/2) − |x|] dx

= 2a + (λ − 1)L,

(22.28) 

and 

.

〈
1

D0 w(x)

〉
= 1

Dλ L

∫ L

0

dx

w(x)
= 1

LDλ

∫ L

0

dx

2 [a + λ(L/2) − |x|]

= 2

LDλ

[ln(2a + λL) − ln [2a + (λ − 2)L]] .

(22.29) 

Substituting these last equations and Eq. (22.27) into Eq. (22.15), we arrive at  

.Dλ
eff = λL/(2a)

[1 + λL/(4a)] ln[1 + λL/(2a)]
arctan λ

λ
D0. (22.30) 

To test the accuracy of this approximate theoretical expression for effective 
diffusivity and to establish the range of its applicability as a function of the channel 
period L, we compare it to the values obtained from Brownian dynamics simulations 
(see Fig. 22.6). The solid curves show the L-dependences of the effective diffusivity 
and the symbols give the values of .Deff/D0 obtained from simulations, for . λ =
0.5. Comparison shows that the accuracy of the theoretical predictions increases 
with the channel period and that the theory fails to predict the behavior of the 
effective diffusivity as .L → 0, as if the particles were diffusing in a channel with
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Fig. 22.6 Effective 
diffusivity normalized to . D0, 
as a function of the .L/a ratio 
for .λ = 0.5. The solid curve 
is the theoretically predicted 
dependence drawn by 
Eq. (22.30). Symbols are the 
normalized values of the 
effective diffusivity obtained 
from Brownian dynamics 
simulations. Dashed curve is 
drawn using Eq. (22.24) 
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practically flat walls. The reason why the theory fails is because the one-dimensional 
description in terms of the modified Fick-Jacobs equation is not applicable in this 
limiting case. To construct an expression that describes the effective diffusivity over 
the entire range of the channel period, including small L, we can use Eq. (22.24) 
again. 

22.4 Diffusion in the Presence of Cylindrical Obstacles 

As discussed in the two preceding sections, the generalized Fick-Jacobs equation 
is widely used to study diffusion of Brownian particles in three-dimensional 
tubes and quasi-two-dimensional channels of varying constrained geometry. In this 
section, we show how this equation can be applied to studying the slowdown of 
unconstrained diffusion in the presence of obstacles. Particularly, we will study 
diffusion in the presence of identical cylindrical obstacles arranged in a square 
lattice. To such end, we consider an equivalent problem of diffusion on a plane 
containing disks arranged in a square lattice, as shown in Fig. 22.7. A distinctive 
feature of this geometry is that .Deff is identical to the effective diffusion coefficient 
of the particle in a corresponding two-dimensional channel, two examples of which 
are shown in Fig. 22.7. Again, one can approximately describe diffusion in this 
channel of varying width as one-dimensional diffusion along the channel axis in 
the presence of entropy potential. 

Now, following the techniques outlined in Sect. 22.2, we need to know the 
channel width and its derivative, as well as the position-dependent diffusivity, and 
substitute them into the Lifson-Jackson equation, Eq. (22.15). From the upper right 
panel of Fig. 22.7, we can see that because of the symmetry along the channel axis, 
we only need to take half of the channel to perform the integrals into the LJ formula. 
In such a case, the channel’s width is given by
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Fig. 22.7 Schematic diagram of a square lattice of perfectly reflecting circular disks (left panel) 
representing cylindrical obstacles and equivalent two-dimensional channels (right panel) 

.w(x) =

⎧⎪⎨
⎪⎩

L − 2
√

b2 − x2, 0 < x < b

L, b < x < L/2
. (22.31) 

which in compact form can be written as .w(x) = L − 2
√

b2 − x2H(b − |x|) for 
.0 ≤ |x| ≤ L/2. The  x-coordinate originates at the center of one of the disks and 
.H(z) is the Heaviside step function. Then, .w'(x) is given by 

.w'(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x√
b2 − x2

, 0 < x < b

0, b < x < L/2

. (22.32) 

Now, we will approximate the effective diffusivity by means of the position-
dependent diffusivity given by three approximations. In the first case, we will 
assume .D(x) = D0, which is known as the Fick-Jacobs approximation. Then, we 
will take a couple of position-dependent approximation by means of the Reguera-
Rubi and Kalinay-Percus approaches. For the first case, from Eq. (22.26), we need 
to calculate the following two integrals:
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. 

〈
w(x)

〉
= 2

L

∫ L/2

0
w(x) dx = 2

L

[∫ b

0
(L − 2

√
b2 − x2)dx +

∫ L/2

b

L dx

]

= L

(
1 − πb2

L2

)
,

(22.33) 

. 

〈
1

D0 w(x)

〉
= 2

D0 L

∫ L/2

0

dx

w(x)
= 2

LD0

[∫ b

0

dx

L − 2
√

b2 − x2
+
∫ L/2

b

dx

L

]

= 2

LD0

[∫ b

0

dx

L − 2
√

b2 − x2
+ 1

L

(
L

2
− b

)]
.

(22.34) 

Now, we will focus on calculating the first integral in Eq. (22.34), but first, we 
need to make a couple of transformations to solve it. By introducing the change of 
variable .y = x/b, this integral becomes 

.

∫ b

0

dx

L − 2
√

b2 − x2
= 1

2

∫ 1

0

dy
L
2b −√1 − y2

. (22.35) 

Furthermore, by introducing a second change of variable, .y = sinϕ, where . dy =
cosϕ dϕ, it transforms into 

.
1

2

∫ π/2

0

dϕ
L
2b − cosϕ

. (22.36) 

After some algebraic manipulations, we can write this integral as 

.
1

2

∫ π/2

0

(
1

1 − 2b
L
cosϕ

− 1

)
dϕ = 1

2

∫ π/2

0

(
dϕ

1 − 2b
L
cosϕ

)
− π

4
. (22.37) 

The remaining integral can be found in tables,2 and after a bit of algebra, one 
finds that 

.

〈
1

w(x)

〉
= 1

L

⎡
⎢⎢⎣ 2√

1 −
(
2b
L

)2 arctan
⎛
⎝
√√√√1 + 2b

L

1 − 2b
L

⎞
⎠− π

2
+ 1 − 2b

L

⎤
⎥⎥⎦ . (22.38)

2 .
∫ π/2
0

dϕ

1 − A cosϕ
= 2√

1 − A2
arctan

(√
1 + A

1 − A

)
. 
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Direct substitution of Eqs. (22.33) and (22.38) into Eq. (22.26) yields 

.DFJ
eff = D0(

1 − π
4 ν2
) [ 2√

1−ν2
arctan

(√
1+ν
1−ν

)
− π

2 + 1 − ν

] , (22.39) 

where .ν = 2b/L. 
Now, let us calculate the effective diffusivity by means of the RR approximation 

for the position-dependent diffusivity given by 

.D(x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0(
1 + 1

4w
'2(x)
)1/3 , 0 < x < b

D0, b < x < L/2

. (22.40) 

By substituting the explicit values of the derivative of width, given by Eq. (22.32), 
we have 

.DRR(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0(
b2

b2−x2

)1/3 , 0 < x < b

0, b < x < L/2

. (22.41) 

In this case, .〈w(x)〉 is the same as the one we already calculated and is given by 
Eq. (22.33). On the other hand, to calculate .〈1/(D(x)w(x))〉, we need to substitute 
Eqs. (22.32), (22.40), and (22.41) into it, yielding 

. 

〈
1

D(x)w(x)

〉
= 2

L

∫ L/2

0

dx

DRR(x)w(x)

= 2

L

[∫ b

0

dx

DRR(x)w(x)
+
∫ L/2

b

dx

D0 w(x)

]

= 2

L

⎡
⎢⎣
∫ b

0

(
b2

b2−x2

)1/3
D0 (L − 2

√
b2 − x2)

dx +
∫ L/2

b

dx

D0 L

⎤
⎥⎦

= 2

LD0

[
b2/3
∫ b

0

dx

(b2 − x2)1/3(L − 2
√

b2 − x2)
+ 1

2

(
1 − 2b

L

)]
.

(22.42) 

Now, let’s calculate the remaining integral. To such end, we introduce the 
following two changes of variable: first .y = x/b and then .y = sin(ϕ), as we did  
previously, so that
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. 

b
2
3

∫ b

0

dx

(b2 − x2)1/3(L − 2
√

b2 − x2)
= 1

2

∫ 1

0

dy

(1 − y2)1/3
(

L
2b −√1 − y2

)

= b

L

∫ π
2

0

cosϕ dϕ

(cosϕ)
1
3

(
1 − 2b

L
cosϕ

) .

(22.43) 

This last integral must be solved numerically. Finally, after some algebra and by 
substituting Eq. (22.43) into Eq. (22.42), we have  

.DRR
eff = D0

(
1 − π

4 ν2
) [

ν
∫ π/2
0

(cosϕ)1/3 dϕ

(1 − ν cosϕ)
+ 1 − ν

] , (22.44) 

where .ν = 2b/L. 
Finally, let’s proceed to calculate the KP approach. Substituting Eq. (22.32) into 

the KP approximation 

.D(x) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan
(

w'2(x)
2

)
w'2(x)

2

D0, 0 < x < b

D0, b < x < L/2

, (22.45) 

yields 

.DKP(x) =

⎧⎪⎪⎨
⎪⎪⎩

x

√
b2 − x2 arctan

(
x√

b2−x2

)D0, 0 < x < b

D0, b < x < L/2

. (22.46) 

In this case, .〈w(x)〉 is the same as in the previous cases and is given by 
Eq. (22.33). Additionally, to calculate .〈1/(D(x)w(x))〉, we have to substitute 
Eqs. (22.32), (22.40), and (22.46) into it, which gives
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. 

〈
1

D(x)w(x)

〉

= 2

L

∫ L/2

0

dx

DKP(x)w(x)

= 2

L

[∫ b

0

dx

DKP(x)w(x)
+
∫ L/2

b

dx

D0 w(x)

]

= 2

L

⎡
⎢⎢⎣
∫ b

0

(
x√

b2−x2

)

D0 arctan

(
x√

b2−x2

)
(L − 2

√
b2 − x2)

dx +
∫ L/2

b

dx

D0 L

⎤
⎥⎥⎦

= 2

LD0

⎡
⎢⎢⎣
∫ b

0

(
x√

b2−x2

)

arctan

(
x√

b2−x2

)
(L − 2

√
b2 − x2)

dx + 1

2

(
1 − 2b

L

)
⎤
⎥⎥⎦ .

(22.47) 

Now, let’s calculate the remaining integral. To such end, we introduce the 
following two changes of variable: first .y = x/b and second .y = sin(ϕ), as done 
previously, so then, 

.

∫ b

0

(
x√

b2−x2

)

arctan

(
x√

b2−x2

)
(L − 2

√
b2 − x2)

dx

= b

∫ 1

0

y√
1−y2

arctan

(
y√
1−y2

)(
L − 2b

√
1 − y2

)dy

= b

L

∫ π
2

0

sinϕ dϕ

ϕ
(
1 − 2b

L
cosϕ

) .

(22.48) 

This last integral must be solved numerically. Finally, after some algebra and by 
substituting Eq. (22.48) into Eq. (22.47), we have  

.DKP
eff = D0(

1 − π
4 ν2
) [

ν
∫ π/2
0

sinϕ dϕ
ϕ(1−ν cosϕ)

+ 1 − ν
] , (22.49) 

where .ν = 2b/L.
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Fig. 22.8 Effective 
diffusivity normalized to . D0, 
as a function of the ratio 
.ν = 2b/L. Comparison of the 
approximate formulas in 
Eqs. (22.39), (22.44), (22.49), 
and (22.50) (curves), with the 
values of the effective 
diffusion coefficient obtained 
from Brownian dynamics 
simulations (symbols)
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Eq. (22.50) 

In Fig. 22.8, we show the .ν-dependencies predicted by this equation, which is in 
good agreement with the simulation results over the entire range. Also shown are 
the predictions made by Eqs. (22.39) and (22.44). 

The expression that describes the effective diffusivity over the entire range of the 
channel period can be constructed using Eqs. (22.24) and (22.49), namely, 

.D
γ

eff = D0 − γ (D0 − DKP
eff ), (22.50) 

where 

.γ = L

a + L
= L

(L − b) + L
= 1

2 − ν
. (22.51) 

It is remarkable to see that when a Brownian particle diffuses in the presence of 
obstacles, one can use the generalized Fick-Jacobs equation to describe the effect of 
varying constrained geometry on particle motion. Consequently, this equation can 
be used to analyze the slowdown of the particle’s constrained diffusion due to its 
interaction with the obstacles. 

22.5 Concluding Remarks 

In this chapter, we studied the diffusion of Brownian particles through long, narrow, 
periodic channels. To such end, we need to simplify the effective diffusivity by 
means of the so-called Lifson-Jackson formula, which considerably simplifies the 
problem. This formula is an exact result for the one-dimensional Smoluchowski 
equation in the presence of a periodic potential and periodic diffusivity. 

For the reader’s convenience, listed below are the most important equations to 
depict and define diffusion in the presence of periodic potentials.
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.Deff = 1〈
e−βU(x)

〉〈eβU(x)

D(x)

〉 , (Lifson-Jackson equation) 

where 

.〈f (x)〉 ≡ 1

L

∫ x0+L

x0

f (x) dx. (22.52) 

.Deff = 1〈
R(x)

〉〈 1

D(x)R(x)

〉 , (LJ equation for narrow tubes/channels) 

where .R(x) represents the transverse area or width of the tubes and channels, 
respectively. 
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Chapter 23 
Active Brownian Particles 

Unlike passive Brownian particles, active particles, also known as self-propelled 
Brownian particles, microswimmers, or nanoswimmers, are capable of taking up 
energy from their environment and converting it into directed motion. Active 
particles can be microscopic and nanoscopic in size and have propulsion speeds that 
are typically up to a fraction of a millimeter per second. Studying these particles 
provides us with a whole new field of physics and is spearheading the way toward 
the development of novel strategies for designing smart devices and materials. 
In recent years, a significant and growing effort has been devoted to exploring 
their applications in a diverse set of disciplines such as statistical physics, biology, 
robotics, soft matter, and biomedicine. 

Self-propelled Brownian particles include biological organisms (e.g., spermato-
zoa and E. coli bacterium) or man-made objects (e.g., Janus rods or spheres1 and 
vesicles) that can propel themselves by taking up energy from their environment 
and converting it into directed motion. They were originally studied to model the 
swarm behavior of animals at the macroscale. We can find examples to simulate 
the aggregate motion of flocks of birds, herds of land animals, and schools of fish. 
Swarming systems give rise to emergent behaviors that occur at many different 
scales. Some of these behaviors are turning out to be counterintuitive, robust, and 
universal, i.e., they are independent of the type of animals constituting the swarm. 
Important progress has recently been made toward the fabrication of artificial active 
particles, which can self-propel based on different propulsion mechanisms. 

1 Janus particles, which are named after the two-faced Roman god Janus, have two or more distinct 
sides with different surface features, structures, and compositions. A Janus particle may have one-
half of its surface composed of hydrophilic groups and the other half of hydrophobic groups. When 
added to water, their hydrophobic sides huddle together, protected by the polar side. They locally 
decompose water into .H2O and . O2 and thus create a local concentration gradient that eventually 
leads to self-diffusiophoresis. 
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This chapter deals with self-propelled Brownian particles subject to thermal 
fluctuations confined in a two-dimensional narrow cavity. In such case, both 
hydrodynamic effects near the walls and particle-particle interactions are neglected. 
We derive the corresponding Fick-Jacobs-Zwanzig equation for the probability 
distribution function of the active particle moving inside a narrow asymmetric 
channel effective swimmer diffusivity. 

23.1 Low Reynolds Number 

In 1851, George Stokes originally introduced Reynolds number, which is given by 
the ratio of the forces required to accelerate masses (inertial forces) to the forces 
required to generate shear (viscous forces). This dimensionless ratio describes 
the onset of turbulent flow of a fluid within a pipe. Laminar flow occurs at high 
viscosities (low Reynolds numbers), since turbulent flow occurs at low viscosities 
(high Reynolds numbers). The Reynolds number of a particle that moves at a 
velocity v in a fluid is defined by 

.R = l2v2ρ

lvη
= lvρ

η
, (23.1) 

where l is the size of the particle (the characteristic linear dimension) and . ρ and . η
are the density and the viscosity of the fluid, respectively. 

A classic example to understand the physical meaning of the Reynolds number 
consists of comparing this value for a bacterium to the Reynolds number for a fish 
swimming in water. Typically for a bacterium, .v ≃ 10−3 cm s−1 and .l ≃ 10−4 cm, 
since water has a .ρ ≃ 1 g cm−3, and .η ≃ 10−2 g cm−1 s−1, and by substituting 
into Eq. (23.1), we find that .R ≃ 10−5. In contrast, typical values for a fish are 
.v ≃ 102 cm s−1 and .l ≃ 10 cm, consequently .R ≃ 105. As seen from this example, 
these two values are quite different. 

The time and distance that these swimmers can coast before they come to a stop 
are very useful quantities that can help us to understand the physical consequences 
of different Reynolds numbers. For a spherical particle swimming in a viscous 
material, according to Newton’s second law, we arrive at the following relation: 

.m
dv

dt
= −6πηa, (23.2) 

where m is the mass of the particle, v is the velocity, . η is the viscosity of the fluid, 
and a is the particle radius (derivation of Eq. (23.2) is given in Appendix 23.A). 
Solving this differential equation results in 

.v(t) = v(0) e−t/τ , (23.3)
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where .v(0) is the initial velocity of the spherical particle and . τ is given by 

.τ = m

6πηa
= 2a2ρ

9η
, (23.4) 

where . ρ is the density of the particle. Equation (23.3) can be integrated to obtain the 
distance coasted, d, by the spherical object before it comes to a halt: 

.d =
∫ ∞

0
v(t) dt = v(0)τ = 2a2ρ

9η
v(0). (23.5) 

The stopping distance scales up as the initial velocity and square of the particle’s 
radius increase. Consequently, small particles coast much smaller distances than 
large particles. 

Through substitution of typical values for v, a, . ρ, and . η as done above, we find 
that the coasting distance of a bacterium is counterintuitively small, around .0.04Å, 
and it stops in .1× 10−7 s! A counterintuitive behavior is observed for low Reynolds 
numbers. Then, we found that the fish’s coasting distance is around . 2m, and it 
stops in .0.2 s! From these results, we can conclude that the fish propels itself by the 
acceleration of the water that surrounds it, whereas bacterium uses viscous shear. 

It is worth mentioning that the Reynolds number is found to be very useful 
through an analysis of the Navier-Stokes equation: a partial differential equation 
that describes the motion of viscous fluids. This equation for an incompressible 
fluid is 

. − ∇p + η∇2v = ρ
∂v
∂t

+ ρ(v · ∇)v. (23.6) 

From Eq. (23.1), we can see that for low Reynolds numbers, the right-hand side 
of the Navier-Stokes equation, the inertial terms, can be neglected at reasonably 
long-time scales (.>0.001 s), and time makes no difference. The reversibility of the 
pressure when the direction is changed implies reversibility of the flow. 

Finally, we can conclude that low-Reynolds-number hydrodynamics are at the 
heart of the ability of bacterium to generate propulsion at the micrometer scale. 

23.2 Rotational Diffusion: Debye’s Problem 

Consider a spherical particle of radius a immersed in a molecular fluid, constrained 
to rotating only about a fixed axis through its center that is perpendicular to a unit 
vector . ̂eu. By choosing x- and y-axes on the plane in which . ̂eu moves, we can 
represent its configuration by a single angle . ϕ (see Fig. 23.1). 

Fluid molecule collisions with the sphere will generate a fluctuating torque on the 
sphere. On the other hand, if we try to rotate the sphere by means of an externally
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Fig. 23.1 Schematic representation of a spherical particle of radius a constrained to rotating on 
the xy-plane 

applied torque, there will be a systematic drag resistance to rotation proportional to 
the angular velocity. Then, the Langevin-like equation for the angular momentum L 
about the rotation axis (z-axis) is given by 

.
dL(t)

dt
= I

d2ϕ(t)

dt2
= −ζ

dϕ(t)

dt
+ TB(t), (23.7) 

where I is the moment of inertia about the rotation axis, . ζ is a rotational friction 
coefficient, and . TB is a fluctuating Brownian torque. The effect of the fluctuating 
torque can be summarized by giving its first and second moments as time averages 
over an infinitesimal time interval: 

.〈TB(t)〉 = 0, 〈TB(t) TB(t ')〉 = 𝚪(t − t '). (23.8) 

The random torque exhibits no time correlation between impacts in any distinct 
time intervals dt and . dt ', but has a characteristic strength factor . 𝚪 that does 
not change over time, which strength factor is a measure of the strength of the 
fluctuating torque. 

We can find the mean of the squared angular velocity, .dϕ/dt = ω, using  the  
delta correlation. Then, integrating Eq. (23.7) as in the translational case leads to 
the relation: 

.〈ω2(t)〉 = 〈ω2(0)〉e−2ζ t/I + 𝚪

2Iζ

(
1 − e−2ζ t/I

)
. (23.9) 

At long times, the mean squared angular velocity tends to a constant value 
given by 

. lim
t→∞〈ω2(t)〉 = 𝚪

2Iζ
. (23.10)
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If we use the equilibrium equipartition theorem, .〈 12Iω2〉 = 1
2kBT , we find the 

fluctuation-dissipation relation: 

.𝚪 = 2ζkBT . (23.11) 

On the slow time scale, the angular displacement is 

.〈(ϕ(t) − ϕ(0))2〉 = 2kBT

ζ
t = 2DΩt, (23.12) 

with a rotational diffusion coefficient: 

.DΩ ≡ kBT

ζ
. (23.13) 

It is worth noting that physically, angles . ϕ and .ϕ+2π are identical. Consequently, 
the result is identical to that for translational diffusion only in a mathematical sense. 
For a sphere of uniform density . ρ and radius a, .ζ = 8πρa3, and the rotational 
diffusion coefficient is 

.DΩ = kBT

8πρa3
. (23.14) 

On the other hand, the translational diffusion constant for a spherical particle, 
denoted here by . DB to clearly differentiate it from its rotational counterpart, is 

.DB = kBT

6πηa
. (23.15) 

A brief inspection of the above equation reveals that while the translational 
diffusion of a particle scales with its linear dimension, its rotational diffusion 
scales with its volume. For example, since water has a .ρ ≃ 1 g cm−3 and . η ≃
10−2 g cm−1 s−1, for a particle with .a = 1μm in water, . DB ≃ 0.2μm2 s−1

and .DΩ ≃ 0.17 rad2 s−1, while for a particle ten times smaller, .a = 100 nm, 
.DB ≃ 2μm2 s−1 is one order of magnitude larger, but .DΩ ≃ 170 rad2 s−1 is three 
orders of magnitude larger. 

The evolution equation for the probability density .p(ϕ, t) for finding the particle 
with velocity . u at angle . ϕ at time t , i.e., the corresponding Smoluchowski equation, 
is given by the rotational diffusion equation: 

.
∂p(ϕ, t)

∂t
= DΩ

∂2p(ϕ, t)

∂ϕ2
. (23.16) 

This equation can be deduced by following the same steps used in Sect. 2.2.
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23.3 Fick-Jacobs-Zwanzig Equation for Active Brownian 
Particles 

In this section, we will study the effect of confinement in two-dimensional narrow 
cavities for diffusing spherical active particles of radius a. The upper and lower 
boundaries of the system are defined by .A1(x) and .A2(x), where . A2(x) > y >

A1(x). Consequently, the channel width is given by .w(x) = A2(x) − A1(x). 
Both the hydrodynamic effects near the walls and particle-particle interactions are 
neglected. The self-propelling particle has a swimming velocity, .Us(t) = Us(t)ê(t), 
where .e(t) = [e1(t), e2(t)] is the instantaneous unit vector in the direction of 
swimming with the origin at its center. For rotational collisions between active 
particles and walls, we assume a frictionless wall that does not affect the particle’s 
orientation. For the case of translation reflections, we assume a mirror reflective 
wall, as we did in the previous chapters. 

Our main goals are to derive the Fick-Jacobs-Zwanzig equation and obtain the 
effective diffusivity, which are the key results of this chapter. To such end, we 
use the diffusion equation to calculate the translation, Eq. (6.50), and the Fokker-
Planck equation, Eq. (23.16), to describe the evolution equation for the propagator, 
.p(x, y, ϕ, t), of an active particle, namely, 

. 
∂p(x, y, ϕ, t)

∂t
+ Us ê(t) · ∇p(r, t |r0) = DB ∇2p(x, y, ϕ, t) + DΩ

∂2p(x, y, ϕ, t)

∂ϕ2
,

(23.17) 

where .p(x, y, ϕ, t) represents the probability of locating the particle at position 
.(x, y) and orientation . ϕ at time t . Our first goal is to show how to extend 
the projection method introduced by Kalinay and Percus to Eq. (23.17) onto 
the longitudinal dimension, as an expansion in parameter .λ = Dx/Dy , for an 
asymmetrical channel. To such end, we have to define the projected one-dimensional 
density .p(x, y, ϕ, t) as 

.G(x, ϕ, t) =
∫ A2(x)

A1(x)

p(x, y, ϕ, t) dy. (23.18) 

For the sake of brevity, from now on, we will omit the dependence of .A1(x), 
.A2(x), .p(x, y, ϕ, t), and .G(x, ϕ, t). Using  Eq.  (23.18) and integrating the diffusion 
equation (23.17) over y, valuing the upper and lower limits, we arrive at 

.
∂G
∂t

+ Us e1

[
∂G
∂x

+ dA1

dx
p

∣∣∣∣
y=A1

]
− Us e1

dA2

dx
p

∣∣∣∣
y=A2

+ Us e2 p|y=A2
y=A1

= DB

∂2G
∂x2 + DB

∂p

∂y

∣∣∣∣
y=A2

y=A1

+ DΩ

∂2G
∂ϕ2 − DB

∂

∂x

(
dA2

dx
p

∣∣∣∣
A2

− dA1

dx
p

∣∣∣∣
y=A1

)
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+ DB 
∂p 
∂x

∣∣∣∣
y=A1 

dA1 

dx 
− DB 

∂p 
∂x

∣∣∣∣
y=A2 

dA2 

dx 
. (23.19) 

On the boundaries, the vector of the current density must be parallel to the 
walls. Consequently, the translational and rotational fluxes, i.e., . Jt = −DB∇p +
Us(t) e(t) p and .JR = −DΩ(∂p/∂ϕ) ϕ̂, respectively, must satisfy 

.̂vu × Jt = 0, v̂l × Jt = 0, (23.20) 

where .̂vu = [
i + A'

2(x)j
]
/

√
1 + A'

2(x)2 is the upper unit tangent vector to . y =
A2(x), and .̂vl = [

i + A'
1(x)j

]
/

√
1 + A'

1(x)2 is the lower unit tangent vector to 

.y = A1(x). Here the prime denotes the derivative with respect to x. Subtracting the 
flux given in Eq. (23.20) results in 

. DB

∂p

∂y

∣∣∣∣
y=A2

y=A1

+ DB A'
1

∂p

∂x

∣∣∣∣
y=A1

− DB A'
2

∂p

∂x

∣∣∣∣
y=A2

= Us e2 p|y=A2
y=A1

+ Us e1

[
A'
1p

∣∣
y=A1

− A'
2p

∣∣
y=A2

]
. (23.21) 

Later, after imposing an infinite transverse diffusion rate, from Eq. (23.18) we 
have that 

. p(x,A2(x), ϕ, t) ≃ p(x,A1(x), ϕ, t)

= G(x, ϕ, t)

A2(x) − A1(x)
. (23.22) 

Finally, inserting Eq. (23.21) into Eq. (23.19), and using Eq. (23.22), we see that 

.
∂G
∂t

= DB

∂

∂x

[
w(x)

∂

∂x

(
G

w(x)

)]
+ DΩ

∂2G
∂ϕ2 − Us e1

∂G
∂x

, (23.23) 

which is the Fick-Jacobs equation for a confined active particle swimming inside an 
asymmetric channel, and in KP’s scheme, it is the zeroth order of the projected 1D 
diffusion equation in the parameter . λ. It is worth noting that, if .w(x) is constant, 
we recover the one-dimensional diffusion problem of an active particle performing 
translational and rotational Brownian motion. 

23.4 Effective Diffusivity for Active Brownian Particles 

In this section, we will focus on obtaining the effective diffusion considering both 
confinement and that the Brownian particles are active. For an active particle
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swimming at constant speed .Us(t) = U without constraints, the then one-
dimensional diffusivity is given by2 

.DB + U2

2DΩ

. (23.24) 

Regarding effective diffusion that is position-dependent, we propose the follow-
ing ansatz: The active particle is affected by the presence of walls in the same 
manner as passive particles are. Consequently, .D0 = DB + U2/(2DΩ). Using this 
expression in one of the position-dependent effective diffusivity coefficients, in the 
Reguera-Rubi approximation, Eq. (20.118), for example, we arrive at 

.Dap(x) = DB + U2/(2DΩ)[
1 + (1/4)w'(x)2

]1/3 . (23.25) 

In order to verify the ansatz, in the next section, we will apply Eq. (23.25) to  
a corrugated periodical channel and compare the theoretical result with Brownian 
dynamics simulations. 

23.5 Corrugated Periodical Channel 

To find the effective diffusivity for a corrugated periodical channel (see Fig. 22.2), 
we need to use the Lifson-Jackson equation, Eq. (22.26), 

.Deff = 1〈w(x)

w(0)

〉〈 1

D(x)
w(x)
w(0)

〉 = 1〈
w(x)

〉〈 1

D(x)w(x)

〉 , (22.26) 

and follow the method outlined in Sect. 22.3. 
To calculate the integrals involved in the processes, we need to know the channel 

width, given by Eq. (22.25), its derivative, and the position-dependent diffusivity, 
given by Eq. (23.25), which for this specific channel is constant and given by 

.Dλap = DB + U2/(2DΩ)(
1 + λ2

)1/3 . (23.26) 

Now, we have the information needed to perform the averaging appearing in 
Eq. (22.26), namely, .〈w(x)〉 and .〈1/(D(x)w(x))〉. Averaging over channel width

2 The deduction of this formula is out of the scope of this book. Readers interested in learning the 
details are referred to the original article by P. S. Lovely and F. W. Dahlquist. 
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was performed in Sect. 22.3, arriving at the following result: 

.

〈
w(x)

〉
= 2a + (λ − 1)L. (22.28) 

On the other hand, the second averaging in this case is given by 

. 

〈
1

D0 w(x)

〉
= 1

Dλap L

∫ L

0

dx

w(x)
= 1

LDλap

∫ L

0

dx

2(a + λ(L/2) − |x|)

= 2

LDλap

[ln(2a + λL) − ln(2a + (λ − 2)L)] .

(23.27) 

Substituting these last equations and Eq. (22.27) into Eq. (22.15), we arrive at  

.D
λap

eff =
[

DB + U2/(2DΩ)(
1 + λ2

)1/3
]

2λ 2L
a[

2 + λ 2L
a

]
ln

(
1 + λ 2L

a

) , (23.28) 

which is the effective diffusion formula for an active confined particle. 
To test the accuracy of this approximate theoretical expression for the effective 

diffusivity and to establish the range of its applicability as a function of the 
channel period L, we compare it to the values obtained from Brownian dynamics 
simulations. 

In simulations, we consider a spherical swimmer of radius .a = 1 . μm, immersed 
in water at .T = 300 K, swimming at speed .Us(t) = U = 1 . μm/s, inside two 
different corrugated periodical channels with slopes .λ = 0.5 and .λ = 1, and 
period .L = 20 . μm. The results are shown in Fig. 23.2. From this figure, we can 
observe there is excellent agreement between theory and simulations almost over 
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Fig. 23.2 Effective diffusion coefficient .Dλap

eff , [Eq. (23.28)], for two corrugated periodical chan-
nels with .λ = 0.5 and .λ = 1, normalized by .D0 = DB + U2/(2DΩ) (non-confined active 
diffusion), plotted as a function of .2L/b (solid lines). Brownian simulation results are shown as 
open circles and diamonds, for .λ = 0.5 and .λ = 1, respectively, with period .L = 20 . μm



676 23 Active Brownian Particles

the entire range, except for smaller .L/b, when the theory fails. It is worth noting 
that excellent agreement between theory and numerical experiments is observed 
at moderate swimming velocities of the order of 1 . μm/s. For higher swimming 
velocities, the theory predicts a larger effective diffusion coefficient compared to 
the one obtained in simulations. 

23.6 Concluding Remarks 

In this chapter, we study Brownian active particles under confinement by means of 
the Fick-Jacobs approach. As part of the description, we derive an approximation 
formula for position-dependent diffusivity, which seems to work very well for 
low velocities when compared with Brownian dynamics simulations. Another 
conclusion is that particles with large Reynolds numbers propel themselves by the 
acceleration of the liquid that surrounds them, while particles with small Reynolds 
numbers use viscous shear. 

For the reader’s convenience, listed below are the most important equations to 
depict active particles into a two-dimensional channel: 

.R = lvρ

η
. (Reynolds number) 

.DΩ = kBT

8πρa3
. (Rotational diffusion coefficient for a sphere) 

.DB = kBT

6πηa
. (Translational diffusion coefficient for a sphere) 

. 
∂G
∂t

= DB

∂

∂x

[
w(x)

∂

∂x

(
G

w(x)

)]
+ DΩ

∂2G
∂ϕ2 − Us e1

∂G
∂x

(Fick-Jacobs equation for an active particle) 

.D0 = DB + U2

2DΩ

. (Diffusivity for an active particle) 

23.A Translational and Rotational Friction Coefficients 

In this appendix, we derive the translational and rotational friction coefficients for 
a sphere. Firstly, we compute the local fluid velocity . v by means of an auxiliary
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Fig. 23.3 Schematic 
representation of the Stokes 
problem: a moving sphere of 
radius a in an incompressible 
viscous fluid. We indicate the 
direction of the current lines 
for the translation of a sphere 
in viscous fluid with black 
arrows. The velocity . u is 
parallel to the z-axis 

vectorial function . A. Secondly, we use . v to determine the pressure p, and thirdly we 
use p to find the force associated with the problem. To such end, we consider the 
problem of a Stokes flow caused by a moving sphere of radius a in an incompressible 
viscous fluid (see Fig. 23.3). We start with the Navier-Stokes equation, which is 
Newton’s equation of motion for a viscous fluid per unit volume. Such equation, in 
its convective form, is given by 

.ρ

(
∂

∂t
+ v · ∇·

)
v = −∇p + η∇2v + g, (23.29) 

where . ρ is the mass density, .v(r, t) the local fluid velocity, p the pressure, . η the 
viscous coefficient, and . g the body acceleration. The ratio of the nonlinear inertial 
term, .ρu · ∇v, to the viscous dissipation term, .η∇2v, is the so-called Reynolds 
number, given by Eq. (23.1). At low Reynolds numbers, .R ⪡ 1, the flow is 
dominated by viscosity and the inertial term vanishes. Moreover, in the steady state, 
the partial derivative of the local fluid is neglected, and the Navier-Stokes equation, 
in the absence of acceleration, is simplified to the Stokes equation, namely, 

.∇p = η∇2v. (23.30) 

On taking the curl of the latter equation and applying the fact that . ∇ × (∇φ) = 0
for any scalar field . φ twice-differentiable (differenciability class . C2), together with 
.∇ × (∇2v) = ∇2(∇ × v), we find 

.∇2(∇ × v) = 0. (23.31) 

The problem of a sphere moving in a viscous fluid is equivalent to the flow 
through a fixed sphere, where the fluid is given a constant velocity . u at infinity. 
In order to find the Stokes formula, we will use spherical coordinates3 considering

3 See Appendix B, Sect. B.3, for further details on spherical coordinates. 
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that there is no privileged direction other than the direction of velocity . v. Given  the  
symmetry of the problem, the velocity . v has to be contained within the plane passing 
through the Z-axis. Additionally, . v must remain unchanged as we pivot around such 
axis in the . ̂ek direction. These requirements imply that . v is subject to the following 
conditions: 

.
∂vr

∂φ
= 0,

∂vθ

∂φ
= 0, vφ = 0, (23.32) 

meaning that . vr and . vθ are functions of r and . θ only. Furthermore, . u = u cos θ êr −
u sin θ êθ . Then, 

.∇ · (v − u) = 0, (23.33) 

which is an extension of the equation of continuity, namely, .∇·(v − u) = ∇·v = 0. 
Therefore, .v − u can be expressed as 

.v − u = ∇ × A. (23.34) 

Let . A be .A = ∇f × u, where .f = f (r) is a scalar function of r . Then, the 
velocity can be written as 

.v = u + ∇ × (∇f (r) × u), (23.35) 

or 

.v = u + ∇ × ∇ × (f u), (23.36) 

if we consider . u as a constant vector. Now, by taking the curl of the latter equation, 
and comparing it to Eq. (23.31), we obtain 

.∇2∇2[(∇f ) × u] = 0. (23.37) 

This last equation is satisfied if 

.∇2∇2(∇f ) = 0. (23.38) 

Direct integration of Eq. (23.38) yields4 

.∇2∇2f = 1

r2

d

dr

(
r2

d

dr

)
∇2f = 0, (23.39)

4 Since the velocity must vanish at infinity, the constant of the first integration is automatically 
zero. 
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the solution of which is 

.∇2f = 2A

r
+ C, (23.40) 

where A and C are constants, yet C is set to zero without any loss of generality, 
allowing us to compose a final ordinary differential equation for f , namely, 

.
d

dr

[
r2

(
d

dr
f

)]
= 2Ar. (23.41) 

The solution is directly found, yielding 

.f (r) = Ar + B

r
. (23.42) 

Substituting Eq. (23.42) into Eq. (23.36) leads to 

.v = u + ∇ × ∇ ×
[(

Ar + B

r

)
u
]

. (23.43) 

Using Eq. (B.16), we obtain 

. 

∇ × (f u) = 1

r

{
∂

∂r

[
−

(
Ar2 + B

)
u sin θ

]
− ∂

∂θ

[(
Ar + B

r

)
u cos θ

]}
êφ

=
(

−A + B

r2

)
u sin θ êφ.

(23.44) 
Therefore, .∇ × ∇ × (f u) is 

.

∇ × ∇ × (f u) = −A

r

(
u cos θ êr + u

) + B

r3

(
3u cos θ êr − u

)

= −A

r
[(u · êr )êr + u] + B

r3

[
3(u · êr )êr − u

]
,

(23.45) 

where we used that .u · êr = (u cos θ êr − u sin θ êθ ) · êr = u cos θ . Constants A and 
B are computed by imposing the boundary condition at the surface of the sphere 
.v(r = a) = 0, i.e., 

.v = −A
u + (u · êr )êr

a
+ B

3(u · êr )êr − u
a3

+ u = 0. (23.46) 

When rearranging this last equation, we obtain
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.u
(

−A

a
− B

a3
+ 1

)
+ (u · êr ) êr

(
−A

a
+ 3B

a3

)
= 0, (23.47) 

a relation that is satisfied if both scalar factors are zero, giving a linear system of 
equations: 

. − A

a
− B

a3
+ 1 = 0 and − A

a
+ 3B

a3
= 0, (23.48) 

with solutions .A = 3a/4 and B = a3/4. Consequently, substituting all 
components of the local velocity in spherical coordinates, together with constants A 
and B, we find 

.

vr = u cos θ

(
1 − 3a

2r
+ a3

2r3

)
êr ,

vθ = −u sin θ

(
1 − 3a

4r
− a3

4r3

)
êθ ,

(23.49) 

as well as 

.f (r) = 3ar

4
+ a3

4r
. (23.50) 

Once we have Eqs. (23.49) and (23.50), we can calculate the pressure by using 
Eq. (23.30), namely, 

.∇p = η∇2v = η∇2[∇ × ∇ × (f u)]. (23.51) 

Since both . ∇2 and . ∇· are scalar operators, .∇ × (∇ × V) = ∇(∇ ·V) − ∇2V for 
any vector . V, and given that .∇2∇2f = 0 (see Eq. (23.38)), we can assure that 

.∇p = η∇
{
∇2 [∇ · (f u)]

}
, (23.52) 

from which we find the following equation: 

.p = p0 + ηu · ∇(∇2f ), (23.53) 

where . p0 is the pressure far away from the sphere. For the sake of simplicity, we 
first compute .∇2f using the simplified version of f , i.e., in terms of A and B. With 
the use of Eq. (B.17), we obtain 

. ∇2f = 1

r2

∂

∂r

[
r2

∂

∂r

(
Ar + B

r

)]
= 2A

r
. (23.54)
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Now, the gradient of a scalar function .g = g(r, θ, φ) in spherical coordinates is 
given by (see Eq. (B.14)) 

. ∇g = ∂g

∂r
êr + 1

r

∂g

∂θ
êθ + 1

r sin θ

∂g

∂φ
êφ, (23.55) 

then, 

.u · ∇ = u cos θ
∂

∂r
− u sin θ

r

∂

∂θ
, (23.56) 

.ηu · ∇(∇2f ) = u η cos θ
∂

∂r

(
2a

r

)
= −2auη

r2
cos θ. (23.57) 

Substituting into Eq. (23.53) finally leads to 

.p = p0 − 3auη

2r2
(u · êr ). (23.58) 

The force . F acting on a unit surface area is given by 

.F = −σiknk = pni − σ '
iknk, (23.59) 

with . σik being the stress tensor and . σ '
ik the viscous stress tensor. In a process of 

inertial friction in an incompressible fluid, . σik is 

.σik = −p δik + η

(
∂vi

∂xk

+ ∂vk

∂xi

)
, (23.60) 

where . δik is the Kronecker delta. In spherical coordinates, the normal and tangential 
components of the viscous stress tensor are 

.σ '
rr = 2η

∂vr

∂r
and σ '

rθ = η

(
1

r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

)
, (23.61) 

which are simplified when substituting . vr and . vθ as in Eq. (23.49), and evaluated at 
the surface, namely,5 

.σ '
rr = 0 σ '

rθ = −3uη

2a
sin θ. (23.63) 

5 The reader should be able to verify that, for an arbitrary radius r , 

.σ '
rr = 3uη cos θa

r2

[
1 −

( a

r2

)2]
, and σ '

rθ = −3uη sin θ

2r4
a3. (23.62)
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As we can see, . F has to be in the . u direction. Thus, the projection of the total 
force (Eq. (23.59) integrated over the surface of the sphere leads to the magnitude 
of the Stokes force, i.e., 

.Fz =
∮

(−p cos θ + σ '
rr cos θ − σ '

rθ sin θ) dS. (23.64) 

Substituting Eqs. (23.58) and (23.63) evaluated at the surface into the latter 
equation yields 

.

Fzs =
∮ [

−
(

p0 − 3uη

2a
cos θ

)
cos θ +

(
3uη

2a
sin θ

)
sin θ

]
dS

= −
∮

p0 cos θ dS + 3η

2a

∮
dS.

(23.65) 

Therefore, 

.Fz = −
∫ 2π

0

∫ π

0
p0a

2 cos θ sin θ dθ dφ+ 3η

2a

∫ 2π

0

∫ π

0
a2 sin θ dθ dφ. (23.66) 

The first term of the latter equation is zero, since .sin θ and .cos θ are orthogonal 
functions. The second term in . Fz is the solid angle in spherical coordinates. Thus, 

.Fz = 6πηau. (23.67) 

As mentioned earlier, the problem of a moving sphere in a viscous fluid is the 
exact same problem as that of a fluid passing through a fixed sphere. For that reason, 
the reader may find the Stokes force in the literature either as in Eq. (23.67) or as 

.Fz = −6πηau. (23.68) 

The difference remains in the direction of velocity . u. The velocity distribution 
for the moving sphere problem (the problem we solved here) is obtained from the 
fixed sphere problem by subtracting . u from . v, as done in Eq. (23.34). 
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Chapter 24 
Diffusion in Narrow Channels Embedded 
on Curved Manifolds 

The emergence of the concept of membrane fluidity motivated the study of diffusion 
on curved manifolds of molecular components in biological membranes. The 
plasma membrane is composed of several different kinds of lipids and a great 
diversity of proteins, spatially and temporally organized as a requirement for the 
membrane’s biological function. In fact, the two-dimensional diffusion coefficients 
of both lipids and proteins are at least two orders of magnitude lower than those of 
typical globular proteins. 

The diffusion processes of molecules in cell membranes can also be hindered by 
the presence of impermeable lateral heterogeneities, patches, rafts, microdomains, 
holes, and tubular networks. Proteins that are anchors in membranes provide an 
example in which spatially restricted diffusion is important. Moreover, analysis of 
experimental data has revealed that, in some cases, diffusion proceeds at a different 
rate than conventional diffusion on the plane. As such, lateral diffusion of membrane 
components will resemble the problem of particles in a confined embedded channel 
on a curved surface. 

Inspired by two-dimensional diffusion across the cell membrane, this chapter 
extends the generalization of the Kalinay-Percus projection method for asymmetric 
channels introduced in Chap. 20. To such end, we will project the anisotropic 
two-dimensional diffusion equation on a curved manifold into an effective one-
dimensional generalized Fick-Jacobs equation that is modified according to the 
curvature of the surface. To have a complete description of this reduction, we also 
derive a general position-dependent effective diffusion coefficient and analyze a 
collection of systems having major symmetries. 

For readers who are not familiar with differential geometry, we strongly recom-
mend reading Appendix C before reading the last two chapters of this book. 
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24.1 Transformation of Differential Operators 

The Brownian motion of particles in curved manifolds provides interesting insights 
on the diffusion process. The development of the theory describing this phenomena 
requires a detailed understanding of small particles moving throughout bounded 
domains in at least a two-dimensional system. Notwithstanding, in a number of 
interest, the transport of mass takes place along a privileged direction, such as in 
narrow channels or domains, which serve as an advantageous representation of an 
array of biological systems occurring on a curved surface in both nature and tech-
nology. The presence of such biological machinery extends from ion translocation 
through biological channels embedded in cell membranes, nanoscaled channels, 
and carbon nanotubes to artificial pores in thin solid films. As such, it naturally 
follows to characterize the problem in one effective direction, or more precisely, 
to conceive this problem as a quasi-one-dimensional problem by introducing a 
reduced or marginal concentration .ρ(x, t) (see Eq. (20.2)). The reduction of the 
diffusion equation to the effective one-dimensional problem has been studied in flat 
Euclidean spaces (for further examples, see Chaps. 18, 20, and 21). Intending to 
obtain the one-dimensional reduction of the diffusion equation together with the 
position-dependent diffusivity on curved manifolds, we analyze the covariant form 
of the diffusion equation by first considering a slightly more general equation, the 
Fokker-Planck equation, Eq. (2.12). 

The N -dimensional Fokker-Planck equation can be written as follows: 

.
∂p(x, t)

∂t
=

[
− ∂

∂xi

ζi(x, t) + ∂2

∂xi∂xj

Dij (x, t)
]

p(x, t), (24.1) 

where the propagator .p(x, t) now depends on N variables .x = {x1, x2, x3, · · · , xN }, 
while .ζi(x, t) = (ζ1(x, t), · · · , ζN (x, t)) is the drift vector and .Dij the diffusion 
tensor. Let’s say that we want to use other N variables .x' = {x'

1, x
'
2, x3, · · · , xN } to 

express the Fokker-Planck equation, so that 

.x'
i = x'

i (x1, x2, x3, · · · , xN , t), (24.2) 

for .i = 1, 2, 3, · · · , N , meaning that each variable . x'
i is a function of the N 

non-primed variables, . xi , and time t .1 This defines a transformation of variables, 
something that is commonly used in classical mechanics and dynamical systems. 
Physically, the probability of finding a particle in a volume element .dNx and its 
corresponding transformation .dNx' remains the same, namely, 

1 This relation could be inverted to find 

.xi = xi(x
'
1, x

'
2, x

'
3, · · · , x'

N , t), i = 1, 2, 3, · · · , N. (24.3)
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.p(x, t)dNx = p'(x', t)dNx', (24.4) 

allowing us to find the probability density .p'(x', t) in terms of .p(x, t) through the 
Jacobian J , which is given by 

.J = ∂(x1, x2, x3, · · · , xN)

∂(x'
1, x

'
2, x

'
3, · · · , x'

N)
= ϵi1i2i3···iN

∂xi

∂x'
1

∂x2

∂x'
i2

∂x3

∂x'
i3

· · · ∂xN

∂x'
iN

, (24.5) 

where .ϵi1i2i3···iN is the Levi-Civita symbol. Since .J = 1/J ', the probability densities 
satisfy the equation 

.p'(x', t) = p(x, t)
J ' = Jp(x, t). (24.6) 

The next step is to find the derivative of the Jacobian and use the result to compute 
new differential operators. Given that that2 

.
∂x'

i

∂xj

∂xj

∂x'
k

= δik, (24.8) 

with .δik being the Kronecker delta, the . j, kth cofactor .cjk of an element . aji =
∂x'

i/∂xj of the Jacobian . J ' reads 

.cjk = J ' ∂xj

∂x'
k

. (24.9) 

Furthermore, by invoking the Laplace expansion of a determinant,3 we can assure 
that 

2 This is easily shown noting that, by direct partial differentiation, we have 

.
∂x'

i

∂xj

∂xj

∂x'
k

= ∂x'
i

∂x'
l

. (24.7) 

Considering that both . x'
i and . x'

j are independent coordinates, the variation of . x'
i with respect to . x'

j

must be zero if they are different, or one if they coincide. 
3 The Laplace expansion of a determinant provides an alternative method to calculate determinants: 
Considering a square matrix .B = (bij ) with .(bi1, bi2, bi3, · · · , biN ) a typical row, we can expand 
the determinant .det(B) as a function of .bi1, bi2, bi3, · · · , biN , yielding 

.

δij detB = bi1c
j1 + bi2c

j2 + bi3c
j3 + · · · + biNcjN

= b1i c
1j + b2i c

2j + b3i c
3j + · · · + bNic

Nj .

(24.10)
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.cjk = ∂J '

∂ajk

, (24.11) 

thus, 

.cjk = ∂J '

∂ajk

= J ' ∂xj

∂x'
k

. (24.12) 

Now, using the chain rule, together with Eqs. (24.6), (24.12), and . ∂J '/∂xi =[
∂J '/∂ajk

] [
∂ajk/∂xi

]
, we find 

. − 1

J

∂J

∂xi

= ∂

∂x'
k

∂

∂x'
k

xi and − 1

J

(
∂J

∂t

)
x

= ∂

∂x'
k

(
∂x'

k

t

)
x
, (24.13) 

where the subscript . x indicates partial derivative at constant . x. Additionally, we can 
compute the differential operator .∂/∂xi similarly, namely, 

.
∂

∂xi

= ∂

∂x'
k

∂x'
k

∂xi

+ 1

J

∂J

∂xi

, (24.14) 

Using the chain rule once more, we obtain 

.
∂

∂xi

= 1

J

∂

∂x'
k

∂x'
k

∂xi

J. (24.15) 

Applying this last equation twice, we ultimately find 

.
∂2

∂xixj

= 1

J

∂2

∂x'
k∂x'

r

∂x'
k

∂xi

∂x'
r

∂xj

J − 1

J

∂

∂x'
k

∂2x'
k

∂xi∂xj

J. (24.16) 

The components of the time derivative, 

.

(
∂

∂t

)
x

=
(

∂

∂t

)
x'

+
(

∂x'
k

∂t

)
x

∂

∂x'
k

, (24.17) 

are carried out similarly, yielding 

.

(
∂

∂t

)
x

= 1

J

(
∂

∂t

)
x'

J + 1

J

∂

∂x'
k

(
∂x'

k

∂t

)
x
J. (24.18) 

Substituting Eqs. (24.15), (24.16), and (24.18) into Eq. (24.1), leads to
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. 

[
1

J

(
∂

∂t

)
x'
J + 1

J

∂

∂x'
k

(
∂x'

k

∂t

)
x

]
p(x, t) = − 1

J

∂

∂x'
k

∂x'
k

∂xi

J ζi(x, t)p(x, t)

+ 1

J

∂2

∂x'
k∂x'

t

∂x'
k

∂xi

∂x'
t

∂xj

J Dij (x, t)p(x, t)

− 1

J

∂

∂x'
k

∂2x'
k

∂xi∂xj

J Dij (x, t)p(x, t).

(24.19) 

By implementing Eq. (24.6) into this last equation and rearranging the terms, we 
obtain 

. 

(
∂p'(x', t)

∂t

)
x'

= − ∂

∂x'
k

[(
∂x'

k

∂t

)
x
+ ∂x'

k

∂xi

ζi(x, t) + ∂2x'
k

∂xi∂xj

Dij (x, t)

]
p'(x', t)

+ ∂2

∂x'
k∂x'

r

∂x'
k

∂xi

∂x'
r

∂xj

Dij (x, t)p'(x', t),

(24.20) 

which by making 

.D'
kr = ∂x'

k

∂xi

∂x'
r

∂xj

Dij (x, t), (24.21) 

.ζ '
k =

(
∂x'

k

∂t

)
x
+ ∂x'

k

∂xi

ζi(x, t) + ∂x'
k

∂xixj

Dij (x, t), (24.22) 

we can finally write the Fokker-Planck equation with the new variables . x', i.e., 

.

(
∂p'(x', t)

∂t

)
x'

=
(

− ∂

∂x'
k

ζ '
k + ∂2

∂x'
k∂x'

r

D'
kr

)
p'(x', t). (24.23) 

From this last relation, we can obtain the diffusion equation in the absence of 
drift by setting . ζ '

k equal to zero, namely, 

.

(
∂p'(x', t)

∂t

)
x'

= ∂2

∂x'
k∂x'

r

D'
krp

'(x', t). (24.24) 

In the following section, we will introduce the elements required to write the 
covariant form of the diffusion equation.
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24.2 Covariant Form of the Diffusion Equation 

Consider a proper coordinate transformation independent of time, namely,4 

.x'
i = x'i (x1, x2, x3, · · · , xN), (24.25) 

.xi = xi(x'1, x'2, x'3, · · · , xN), (24.26) 

provided that it is continuous and can be inverted. This is equivalent to saying that 
the Jacobian J in finite and different from zero. Under this statement, the differential 
of the coordinates obeys the linear transformation law: 

.dx'i = ∂x'i

∂xj
dxj , (24.27) 

or, 

.dx' = ϵj dxj , (24.28) 

with .ϵj =
(

∂x'j
∂x1 , ∂x'j

∂x2 , ∂x'j
∂x3 , · · · , ∂x'j

∂xN

)
, i.e., a prototype of the contravariant surface 

vector. In addition, we say that .A
'i is a contravariant surface vector if, in the 

coordinate system . x', its components are given by 

.A'i = ∂x'i

∂xj
Aj , (24.29) 

while covariant surface vectors transform according to 

.A'
i = ∂xj

∂x'i Aj . (24.30) 

Similarly, for any (scalar) function .f = f (x) defined in the domain, its partial 
derivatives transform as follows: 

.
∂f

∂x'i = ∂xj

∂x'i
∂f

∂xj
, (24.31) 

which defines the gradient, giving a covariant vector. Moreover, a scalar is not 
changed by a coordinate transformation, that is, .f ' = f . 

The transformation of the diffusion tensor .D̄ij = Dij , a tensor of rank 2 having 
two contravariant indices, giving a purely contravariant tensor, reads

4 The new coordinates are in general nonlinear functions of the old coordinates, such as spherical 
coordinates (see Appendix B). 
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.D̄'kr = ∂x'k

∂xi

∂x'r

∂xj

D̄ij , (24.32) 

as anticipated by Eq. (24.21). 
We now need the probability density, since .p'(x', t) dNx' is a dimensionless 

invariant number and must transform as a scalar does. Given that .p(x, t) cannot 
be used as a scalar, we need something that is analogous to this quantity to continue 
with the covariant description. Let us follow the classical approach by making 

.p̄(x, t) ≡ √
Det p(x, t), (24.33) 

with .Det ≡ det(D̄ij ), on the condition that the determinant of the diffusion matrix 
is real, and not negative or null. By looking at Eq. (24.32), we conclude that5 

.Det' = Det

J 2 , (24.35) 

meaning that .p̄(x, t) is in fact a scalar. In addition, we implement the covariant 
divergence: 

.V̄ i
;i ≡ Det

∂

∂xi

V̄ i

Det
(24.36) 

and the covariant gradient of a scalar f : 

.f;i = ∂f

∂xi
, (24.37) 

where . V̄ i is the contravariant probability flux (for the flat Euclidean diffusion with 
drift system, see Eq. (6.1) and its simplification to that of the diffusion equation in 
Eq. (2.73)), which in this case is given by 

.V̄ i = −D̄ij ∂p̄(x, t)
∂xj

. (24.38) 

Then, by using Eqs. (24.33), (24.36)–(24.38), we find 

.

∂p̄(x, t)
∂t

= −V̄ i
;i

[
D̄ij ∂p̄(x, t)

∂xi

]
;

= √
Det

∂

∂xi

1√
Det

D̄ij ∂p̄(x, t)
∂xj

,

(24.39) 

5 Note that for square matrices of equal size A and B, the product AB fulfills the following relation: 

.det(AB) = det(A)det(B). (24.34)
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which is the covariant form of the diffusion equation. Furthermore, the diffusion 
matrix .D̄ij is associated with the contravariant metric tensor . gij , namely, 

.gij = D̄ij , (24.40) 

and therefore, the covariant metric tensor . gij is the inverse of the diffusion matrix: 

.gij = (D−1)ij , (24.41) 

a relation that, when using Eq. (24.34), leads to .
√

Det = √
g, with .g = det (gij ). In  

other words, on a curved surface, diffusion will always be inherently anisotropic. 
The main reason for writing a manifestly covariant diffusion equation is that, as 

presumed, all relations expressing physical assets should be manifestly covariant, 
since all physical properties should be independent of any coordinates. Afterward, 
we write Eq. (24.39) for a two-dimensional system and use the Kalinay-Percus 
projection method to obtain the quasi-one-dimensional problem. 

24.3 2D Asymmetric Channel in Curved Surfaces: 
Projection Method 

24.3.1 Fick-Jacobs Equation on Curved Surfaces 

Consider the manifestly covariant form of the diffusion equation in the two-
dimensional coordinate system .x = {ξ, η}. In the anisotropic case, the diffusion 
matrix can be arranged as the following diffusion tensor: 

.Di
j =

(
Dξ 0
0 Dη

)
, (24.42) 

while the metric tensor is defined as 

.gij =
(

g1(ξ) 0
0 g2(ξ)

)
, gij =

(
g−1

1 (ξ) 0
0 g−1

2 (ξ)

)
. (24.43) 

Moreover, let us introduce the anisotropy into the diffusion constant by .Dξ /= Dη. 
Note that when writing the last two equations, we have implicitly chosen . x1 = ξ

as the privileged direction for the diffusion process and imposed .x2 = η as the fast 
equilibrium in the transverse direction. Then, we are able to write Eq. (24.39) using 
Eqs. (24.33) and (24.41) as follows: 

.
∂p̄(ξ, η, t)

∂t
= 1√

g

∂

∂xi

√
gDi

jg
jk ∂p̄(ξ, η, t)

∂xk
, (24.44)
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where . xi are the local coordinates on the surface. More specifically, the diffusion 
equation on the curved two-dimensional surface, in local coordinates, is the 
isotropic diffusion. The diffusion tensor is proportional to the identity .Di

j = Dδi
j , 

denoting that the corresponding diffusion equation is obtained by substituting the 
Laplacian operator in Eq. (2.13) for the Laplace-Beltrami operator, i.e., . ∇2

g =
1√
g
∂i

(√
ggij ∂j

)
: 

. 
∂p̄(ξ, η, t)

∂t
= Dξ√

g1g2

∂

∂ξ

[√
g2

g1

∂

∂ξ
p̄(ξ, η, t)

]
+ Dη√

g1g2

√
g1

g2

∂2

∂η2
p̄(ξ, η, t).

(24.45) 

Once we have managed to write Eq. (24.45), the goal is to derive the position-
dependent diffusion coefficient for narrow asymmetric channels embedded on a 
curved manifold by means of the mapping procedure presented in Chap. 20. We will 
refer to Chap. 20 for certain mathematical steps, since most of the computations are 
quite similar to those performed previously. 

Due to the reasons outlined above, . η is the variable to be integrated to obtain the 
marginal probability distribution .ρ(ξ, t), namely, 

.ρ(ξ, t) =
∫ h2(ξ)

h1(ξ)

p̄(ξ, η, t) dη, (24.46) 

where .h1(ξ) and .h2(ξ) are the lower and upper boundaries of the channel, i.e., 
.h2(ξ) > η > h1(x). Using the Leibniz integral rule, Eq. (A.9), we obtain (see 
Eq. (20.5)) 

. 

∂ρ(ξ, t)

∂t
= Dξ√

g1g2

{
∂

∂ξ

√
g2

g1
ρ(ξ, t)

− ∂

∂ξ

√
g2

g1

[
h'

2(ξ) p̄(ξ, h2(ξ), t) − h'
1(ξ) p̄(ξ, h1(ξ), t)

]

−
[
h'

2(ξ)

√
g2

g1

∂p̄(ξ, η, t)

∂t

∣∣∣∣
h2(ξ)

− h'
1(ξ)

√
g2

g1

∂p̄(ξ, η, t)

∂ξ

∣∣∣∣
h1(ξ)

] }

+ Dη

g2

∂2p̄(ξ, η, t)

∂η

∣∣∣∣
h2(ξ)

h1(ξ)

.

(24.47) 

Now, we obtain the boundary conditions (BCs) from the flux components in a 
manifold, which are determined by (see Eq. (24.38))
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.J i = −D
ξ
j

1

g1

∂p̄(ξ, η, t)

∂ξ
− Di

η

1

g2

∂p̄(ξ, η, t)

∂η
. (24.48) 

Following the same process, we used to obtain Eq. (25.14), we find 

.
Dη

g2

∂p̄(ξ, η, t)

∂η

∣∣∣∣
hn(ξ)

= Dξh
'
n(ξ)

g1

∂p̄(ξ, η, t)

∂ξ

∣∣∣∣
hn(ξ)

, n = 1, 2, (24.49) 

where the . ̂vn unit vector tangent to the upper .(n = 2) and lower .(n = 1) boundaries 
is now given by 

.v̂n = ξ̂ i + h'
n(ξ)η̂i√

1 + h'
n(ξ)2

. (24.50) 

By inserting Eq. (24.49) into Eq. (24.47), we are led to  

.

∂ρ(ξ, t)

∂t
= Dξ√

g1g2

{
∂

∂ξ

[√
g2

g1

∂

∂ξ
ρ(ξ, t)

]

− ∂

∂ξ

√
g2

g1

[
h'

2(ξ) p̄(ξ, h2(ξ), t) − h'
1(ξ) p̄(ξ, h1(ξ), t)

]}
.

(24.51) 

The first approximation is obtained when we provide an infinite transverse diffusion 
rate, an artificial anisotropy, assuming that .Dη ⪢ Dξ . From Eq. (24.46), we see that 

.p̄(ξ, η, t) = ρ(ξ, t)

h2(ξ) − h1(ξ)
. (24.52) 

This allows us to simplify Eq. (24.51), yielding the Fick-Jacobs-like equation on a 
symmetric curved surface, namely, 

.
∂ρ(ξ, t)

∂t
= Dξ√

g1g2

∂

∂ξ

[√
g2

g1
w(ξ)

∂

∂ξ

ρ(ξ, t)

w(ξ)

]
, (24.53) 

where we used .w(ξ) ≡ h2(ξ) − h1(ξ) as the function of the channel’s width. Note 
the similarity between the latter equation and Eq. (20.15). In the rest of the chapter, 
we will focus on obtaining the recurrence formula for operators .σ̂j (ξ, η, ∂ξ ). 

24.3.2 Recurrence Formula for Operators σ̂ j (ξ, η, ∂ξ ) 

Kalinay and Percus suggested an operator procedure to map the solutions of 
Eq. (24.53) into the space of solutions to the original two-dimensional problem.
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The intention of this section is to obtain the corrections of the Fick-Jacobs-like 
equation on curved surfaces, Eq. (24.53). Using the same approach as the one shown 
in Sect. 20.1, we define the parameter of anisotropy as the ratio of the two diffusion 
coefficients, i.e., .ϵ = Dξ/Dη, and construct .p̄(ξ, η, t) as a perturbation series, 
namely, 

.p̄(ξ, η, t) =
∞∑

j=0

ϵjσ j (ξ, η, t), (24.54) 

where .σ (ξ, η, t) will have the form of some operators acting on .ρ(ξ, t) in order to 
make Eq. (24.51) self-consistent: 

.σ j (ξ, η, t) = σ̂ j (ξ, η, ∂ξ )
∂

∂ξ

ρ(ξ, t)

w(ξ)
. (24.55) 

The first operator .j = 0 is simply .σ̂ 0(ξ, η, ∂ξ )
∂
∂ξ

= 1. Using Eq. (24.54), 
Eq. (24.53) translates to 

.

∂ρ(ξ, t)

∂t
= Dξ√

g1g2

∂

∂ξ

√
g1

g2

{
w(ξ) −

∞∑
j=1

ϵj
[
h'

2(ξ) σ̂ j (ξ, h2(ξ), ∂ξ )

− h'
1(ξ) σ̂ j (ξ, h1(ξ), ∂ξ )

]} ∂

∂ξ

ρ(ξ, t)

w(ξ)
.

(24.56) 

With the present methods, we are able to find the recurrence relation for operators 
.σ̂ (ξ, η, ∂ξ ). To do this, we use Eqs. (24.54) and (24.55) to rewrite (24.45) and then 
substitute .∂ρ(ξ, t)/∂t as seen in Eq. (24.56), yielding 

. 

1

g2

∂2

∂η2 σ̂ j+1(ξ, η, ∂ξ ) = −
j∑

k=1

σ̂ j−k(ξ, η, ∂ξ )
∂

∂ξ

1√
g1g2w(x)

∂

∂ξ

√
g2

g1

×
[
h'

2(ξ) σ̂ k(ξ, h2(ξ), ∂ξ ) − h'
1(ξ) σ̂ k(ξ, h2(ξ), ∂ξ )

]

+ σ̂ j (ξ, η, ∂ξ )
∂

∂ξ

1√
g1g2w(ξ)

∂

∂ξ

√
g2

g1
w(ξ)

− 1√
g1g2

∂

∂ξ

√
g2

g1

∂

∂ξ
σ̂ j (ξ, η, ∂ξ ).

(24.57)
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A double integration over . η will allow us to calculate .σ̂ j+1(ξ, η, ∂ξ ) at any 
order. The first integration constant is set to fulfill the boundary condition (BC) 
in Eq. (24.49), while the second integration constant provides a normalization 
condition, yielding 

.

∫ h2(ξ)

h1(ξ)

σ̂ j (ξ, η, t)
∂

∂ξ

ρ(ξ, t)

w(ξ)
dη = 0, j > 0. (24.58) 

The reader should be aware of the similarity between Eqs. (20.20) and (24.56) 
and Eqs. (20.24) and (24.57). More generally, each of the steps carried out in 
Chap. 20, and therefore those in Sect. 20.1.3, can be implemented in this case where 
diffusion occurs on a curved manifold. We show the first operator of this recurrence 
scheme: 

.

σ̂ 1(ξ, η, ∂ξ ) = g2

g1w(ξ)

{[
y'

0(ξ) − η
][

h1(ξ)h'
2(ξ) − h2h

'
1(ξ)

]

+ w'(ξ)

2

[
η2 − 1

3

(
h2

1 + h1(ξ)h2(ξ) + h2
2(ξ)

)] }
,

(24.59) 

where the midline derivative is defined as .y'
0(ξ) = [h'

2(ξ) + h'
1(ξ)]/2. Note that 

we can obtain Eq. (24.59) simply by multiplying the ratio of the components of 
the metric tensor .g2/g1 times Eq. (20.33). This means that the effect of diffusing 
on a curved surface translates to a scaling in the Euclidean flat corrections of the 
propagator obtained in Chap. 20. In the following section, we provide the steps to 
determine the position-dependent diffusion coefficient. 

24.3.3 The Position-Dependent Effective Diffusion Coefficient 

Let us write Eq. (24.56) as follows: 

.
∂ρ(ξ, t)

∂t
= D0

∂

∂ξ
w(ξ)[1 − ϵẐ(ξ, ∂ξ )] ∂

∂ξ

ρ(ξ, t)

w(ξ)
, (24.60) 

where . Ẑ is an operator. In the steady state, there is no difference between using this 
operator and the diffusion coefficient .D(ξ). Therefore, both equations represent the 
same physical phenomena, i.e., a 1D mass conservation law, enabling us to write the 
flux as 

.J = −w(ξ)D(ξ)
∂

∂ξ

ρ(ξ)

w(ξ)
, (24.61)
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as well as 

.J = −w(ξ)
[
1 − ϵẐ(ξ, ∂ξ )

] ∂

∂ξ

ρ(ξ)

w(ξ)
. (24.62) 

In order to find .D(ξ), we combine these last two equations, finding that 

.1 = w(ξ)
[
1 − ϵẐ(ξ, ∂xi)

] 1

w(ξ)D(ξ)
, (24.63) 

which, as it turns out, has the exact same structure of Eq. (20.42). Thus, we can be 
certain that, on a curved surface, we will obtain 

.D(ξ) ≃ 1 − ϵw(ξ)Ẑ(ξ, ∂ξ )
1

w(ξ)
, (24.64) 

as we did in the flat Euclidean space. 
The first-order correction is obtained by setting .Dξ = D0, together with .ϵ = 1, 

in the use of Eq. (24.60), yielding 

.

Dξ = D0

[
1 −

(√
g2

g1
y'

0(ξ)

)2

− 1

3

(√
g2

g1

w'(ξ)

2

)2
]

≃ D0

1 +
(√

g2
g1

y'
0(ξ)

)2 + 1
3

(√
g2
g1

w'(ξ)
2

)2 ,

(24.65) 

which is analogous to Bradley’s result (see Table 20.1). The effective diffusion 
coefficient up to the second order reads 

. 

D(ξ) = D0

[
1 −

(√
g2

g1
y'

0(ξ)

)2

− 1

3

(√
g2

g1

w'(ξ)

2

)2

+
(√

g2

g1
y'

0(ξ)

)4

+ 2

(√
g2

g1
y'

0(ξ)

)2 (√
g2

g1

w'(ξ)

2

)2

+ 1

5

(√
g2

g1

w'(ξ)

2

)4

− · · ·
]
.

(24.66) 

By neglecting the second and higher derivatives of .w(ξ) and . y0(ξ), we arrive at  

. D(ξ)=D0

∞∑
n=0

(−1)n

2n+1

2n∑
i=0

[√
g2

g1

(
y'

0(ξ)+w'(ξ)

2

)]i [√
g2

g1

(
y'

0(ξ)−w'(ξ)

2

)]2n−i

.

(24.67)
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The last expression can be reduced to 

. D(ξ) = D0

w'(ξ)

√
g2

g1

{
arctan

[√
g2

g1

(
y'

0(ξ) + w'(ξ)

2

)]

− arctan

[√
g2

g1

(
y'

0(ξ) − w'(ξ)

2

)]}
. (24.68) 

This last equation is the main result of the study of diffusion in narrow channels 
embedded on curved manifolds. Moreover, by making . g2 = g1, Eq. (20.51) 
is recovered, meaning that Eq. (24.68) is a general expression for the effective 
diffusion coefficient along the slow coordinate . ξ . It recovers all the well-known 
approximations for the effective diffusion coefficient for both symmetric and 
asymmetric 2D channels, either in a flat Euclidean space or in a curved manifold. 

24.4 Narrow Channels on Curved Manifolds 

In this section, we study the effective diffusion coefficient for a narrow channel 
embedded on different curved surfaces, specifically on a cylinder, a sphere, and 
a torus. As previously outlined in the introduction, surfaces of this kind play a 
significant role in physical and biophysical systems. To such end, we need to 
determine the width .w(ξ) and the midline .y0(ξ) functions for the chosen channel, 
with . ξ being the longitudinal coordinate across the surface. This process is carried 
out using the components of the metric, namely, . g1 and . g2. 

Generally, the metric tensor is determined by 

.gij =
∑
kl

δkl

∂xk

∂q 'i
∂xl

∂x'j =
∑

k

∂xk

∂x'i
∂xk

∂x'j , (24.69) 

or, in its matrix form, by 

.g = J T J. (24.70) 

The notation . J T indicates that we have to take the transpose of the Jacobian matrix. 
For instance, the Euclidean metric tensor is written as 

.g =
(

1 0
0 1

)
. (24.71) 

However, due to the physical reasons, we are interested in the induced metric. The  
induced metric will allow us to define distances on a surface (submanifold) that is 
embedded in a higher-dimensional space (manifold), a task that is accomplished by 
restricting the original metric to the tangent space of the surface. The induced metric
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is computed as follows: 

.ginduced
ij =

∑
k

eti · etj , (24.72) 

where the tangent vectors to the surface are given by 

.eti = ∂xk

∂x'i and etj = ∂xk

∂x'j . (24.73) 

The components of the induced metric, .ginduced
ij , will be the required input 

in Eq. (24.68) to find a closed form of the effective diffusion coefficient .D(ξ). 
Additionally, along the computation of the induced metric, we will rely on the 
fact that, assuming orthogonal tangent vectors in the off-diagonal components, 
.ginduced

ij = 0 for .i /= j , meaning that we only have to calculate the diagonal 
components of the tensor. These specifications fit perfectly for the curved surfaces 
discussed in this chapter. 

Initially, it is essential to establish a parametric relation between . xi and . x'i to 
characterize the surface (from flat Euclidean coordinates . xi to curved coordinates 
. x'i , in this practical case). 

Let us consider a cylinder with constant radius r having a narrow channel 
oriented along the angular variable . θ .6 The connection of Cartesian coordinates 
.(x, y, z) and cylindrical coordinates .(r, θ, z) is given by (see Appendix B, Sect. B.2) 

.x = r cos θ, y = r sin θ, z = z, (24.75) 

where the parametric variables will be .(θ, z) with .0 ≤ θ ≤ 2π and .−∞ < z < ∞. 
Thus, by using Eq. (24.72) together with Eq. (24.73), we obtain 

. g11 = g1 =
(

∂x

∂θ

)2

+
(

∂y

∂θ

)2

+
(

∂z

∂θ

)2

= (−r sin φ)2 + (r cos θ)2 + 0 = r2 (24.76) 

6 In principle, we can orient the channel along the z-axis, as well as around the cylinder, yielding 
different results for Eq. (24.68) (the factor .

√
gi/gj is set, with .i = 1 and .j = 2, depending on 

the orientation of the channel). Nonetheless, the reader should be able to verify that, for a cylinder 
oriented along the z-axis having a narrow channel of varying width formed by straight walls defined 
as 

.θ1(z) = m1
z

r
− θ0, and θ2(z) = m2

z

r
+ θ0, (24.74) 

the resulting .D(z) is likewise defined by Eq. (24.85).
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and 

. g22 = g2 =
(

∂x

∂z

)2

+
(

∂y

∂z

)2

+
(

∂z

∂z

)2

= 1 (24.77) 

yielding 

.gcyl =
(

r2 0
0 1

)
. (24.78) 

An identical procedure is implemented for spheres and tori. In the case of a sphere 
of constant radius r having a narrow channel oriented in the .θ -direction, where the 
parameterized coordinates are .(θ, φ), with .0 ≤ θ ≤ π and .0 ≤ φ ≤ 2π , we have  
(see Appendix B, Sect. B.3) 

.x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (24.79) 

Therefore, the induced metric is 

. g11 = g1 = (r cos θ cos φ)2 + (r cos θ sin φ)2 + (−r sin θ)2 = r2 (24.80) 

and 

. g22 = g2 = (−r sin θ sin φ)2 + (r sin θ cos φ)2 = r2 sin2 θ, (24.81) 

leading to 

.gsph =
(

r2 0
0 r2 sin2 θ

)
(24.82) 

Finally, a torus of radii a and b (with .a > b) is parameterized as 

.x = (a + b cos θ) cos φ, y = (a + b cos θ) sin φ, z = b sin θ, (24.83) 

where, again, .(θ, φ) are the surface parameters both ranging from 0 to . 2π , while . θ
is chosen as the privileged direction. Thus, 

.gtorus =
(

b2 0
0 (a + b cos θ)2.

)
(24.84) 

Equations (24.78), (24.82), and (24.84) will be used in the following sections, where 
we compute the diffusion coefficient for special systems.
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24.4.1 Cylindrical Surface 

In the case of a cylindrical surface, the induced metric is given by Eq. (24.78). If we  
focus on a channel of varying width formed by straight walls defined by . f1(θ) =
m1rθ − z0 and .f2(θ) = m2rθ + z0, then, by direct computation, the position-
dependent diffusion coefficient is 

.Dcyl(θ) = arctan(m2) − arctan(m1)

m2 − m1
D0, (24.85) 

which is the same result obtained for the flat surface case, Eq. (20.55). This is  
because the metric components are constants with zero curvature. 

24.4.2 Spherical Surface 

In this section, we examine the effective diffusion on the surface of a sphere, which 
its induced metric being given by Eq. (24.82). Each value of r is considered fixed 
and only . θ varies. We consider both the symmetrical and asymmetrical conical 
channels. In the case of a symmetric channel, the upper boundary is given by 
.f2(θ) = r(mθ + φ0), while the lower boundary is .f2(θ) = −f1(θ), leading to 

.Dsph(θ) = arctan(rm sin θ)

rm sin θ
D0, (24.86) 

where, in comparison with flat Euclidean geometry, we have additional dependence 
on both r and . θ . In Fig. 24.1, we show a schematic representation of this system 
together with representative plots of the effective diffusion coefficient, as a function 
of the angular variable for different values of the radius. The dependence on . θ of 
the diffusion coefficient increases as the effective diffusion decreases. This behavior 
is also observed for large radii. Moreover, for large radii, the flat surface solution 
is recovered, whereas for small angles, the boundaries have no influence on the 
dynamics of the particles, yielding to free diffusion. 

For the asymmetrical simple conical channel, we set .f1(θ) = r(m1θ − φ0) and 
.f2(θ) = r(m2θ + φ0) (see Fig. 24.2 for a graphic representation of the channel). 
Therefore, 

.Dsph(θ) = arctan(rm1 sin θ) − arctan(rm2 sin θ)

r(m1 − m2) sin θ
D0. (24.87) 

Representative plots of the latter equation are shown in Fig. 24.3, where we kept 
constant the upper slope . m2 while varying the lower slope . m1. The typical behavior 
of the flat surface is recovered when r is large enough.
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Fig. 24.1 On the left-hand side, we see an schematic representation of the system, a symmetric 
channel with straight walls, .f1(θ) and .f2(θ), and midline .y0(θ) embedded in a spherical surface, 
i.e., a conical channel. The dependence of the angular coordinate . θ can be seen in the varying width 
.w(θ) of the channel. On the right-hand side, we present the diffusion coefficient as a function of 
.2θ/π . The yellow color is for small radii, changing to blue as the radius increases 

Fig. 24.2 Schematic representation on an asymmetric channel with straight walls, i.e., . f1 =
r(m1θ − φ0) and .f2(θ) = r(m2θφ0), embedded in a spherical surface. In this case, the upper 
boundary is held constant at a fixed . m2, whereas the lower boundary gradually increases its slope 
. m1

24.4.3 Torus Surface 

A torus is a surface of revolution generated by rotating a circle in three-dimensional 
space about an axis that does not intersect the circle. The corresponding metric of 
this system is given by Eq. (24.84). Furthermore, the torus’ curvature depends on 
the corresponding angle . θ and is given by 

.K = cos θ

b(a + b cos θ)
. (24.88) 

Additionally, Eq. (24.84) allows us to write the ratio .
√

g1(θ)/g2(θ) as 

.

√
g1(θ)

g2(θ)
= 1

a/b + cos θ
. (24.89)
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Fig. 24.3 Characteristic plots of the diffusion coefficient in Eq. (24.87), where the increase in 
radius is shown with the change in color from yellow to blue. The slope of the upper boundary 
is set at .m2 = 1 and the slope of the lower boundary varies from .−1 ≤ m1 ≤ 1. The left-hand  
side plot is showing the effective diffusion coefficient at .θ = π/20, i.e., in close proximity to the 
beginning of the channel. In contrast, the right-hand side graph exhibits its behavior at . θ = π/2

Fig. 24.4 Schematic 
representation of an 
asymmetric channel 
embedded in a torus. The 
walls are given by the 
boundary functions .f1(θ) and 
.f2(θ)m and determine the 
width and midline functions, 
.w(θ) and .y0(θ), respectively 

In Fig. 24.4, we show a schematic representation of an asymmetric channel embed-
ded in a torus. 

With regard to a simple asymmetrical conical channel made up of two straight 
lines, .φ2 = m2θ −φ0 and .φ1 = m1θ +φ0, and inserting the latter equation, together 
with the width and midline functions into Eq. (24.68), we arrive at  

. Dtorus(θ) = D0

m1 − m2

1

a/b + cos θ

{
arctan

[
m1

(a

b
+ cos θ

)]

− arctan
[
m2

(a

b
+ cos θ

)]}
. (24.90) 

In Fig. 24.5, we show a schematic representation of this system together with 
characteristic plots of the effective diffusion coefficient, where we keep constant



704 24 Diffusion in Narrow Channels Embedded on Curved Manifolds

Fig. 24.5 Schematic representation of an asymmetric channel with straight walls, i.e., . φ(θ) =
m2θ − φ0 and .φ1 = m1θ + φ0, embedded in a torus. In this case, the upper boundary is held 
constant at a fixed . m2, whereas the lower boundary gradually increases its slope . m1

Fig. 24.6 Characteristic plots of the diffusion coefficient given by Eq. (24.90), where the increase 
in radius is shown with the change in color from yellow to blue. The slope of the upper boundary 
is set at .m2 = 1 and the slope of the lower boundary varies from .−2 ≤ m1 ≥ 2. The effective 
diffusion coefficient is plotted at (a) . θ ≈ 0, (b) .θ = π/2, (c) . θ = π , and (d) .θ = 3π/2. From  
(a) to (b), the diffusion coefficient grows and continues growing until (c). Subsequently, it starts to 
decrease again to .θ = 2π , or equivalently to .θ = 0. In all cases, we keep the radius fixed at .a = 1, 
while the small radius b takes values in the range . 0.01 ≤ b ≤ 1

the upper slope .m2 while varying the lower slope, i.e., . m1, demonstrating that 
the diffusion coefficient increases as the radius increases as shown in Fig. 24.6. 
Equation (24.90) can be written in terms of the curvature, noting that
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.

√
g1(θ)

g2(θ)
= b

a
(1 − b2K), (24.91) 

is equivalent to Eq. (24.89). Therefore, Eq. (24.90) becomes 

. Dtorus = D0b(1 − b2K)

a(m1 − m2)

{
arctan

[
a

b(1 − b2K)
m1

]
− arctan

[
a

b(1 − b2K)
m2

]}
.

(24.92) 

This last equation provides us with insights into how the curvature of the 
manifold changes the dynamics of the system. More specifically, it shows how it 
influences the effective diffusion in the confined geometry, i.e., as the curvature 
varies, the effective diffusion coefficient changes. 

24.5 Mean First-Passage Time 

In Chap. 6, we derived the evolution equation for the moments of mean first-
passage time (MFPT) in the presence of a force field by means of the backward 
Smoluchowski operator, Eq. (6.28), and relations obtained in Chap. 2, ultimately 
yielding 

.
∂

∂x0

[
D(x0)e

−βU(x0)
∂

∂x0
〈t (x0)〉

]
= −e−βU(x0), (6.38) 

which, by introducing the entropic potential .U(x) as defined in Eq. (17.21), becomes 

.
1

w(x0)

∂

∂x0
D(x0)w(x0)

∂

∂x0
〈t (x0)〉 = −1. (24.93) 

This last result is extended in a straightforward manner for narrow channels 
embedded in manifolds as 

.
1√

g1g2w(x0)

∂

∂x0
D(x0)w(x0)

∂

∂x0
〈t (x0)〉 = −1. (24.94) 

24.5.1 Mean First-Passage Time on a Cylinder 

As a simple example, we compute the MFPT for an asymmetric narrow channel 
embedded in a cylinder surface of constant radius r made by straight walls given by 
.z1(θ) = m1rθ − z0 and .z2(θ) = m2rθ + z0, with .z2(θ) > z1(θ) .∀ θ ∈ [0, θL]. The  
corresponding BCs of this system are
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.
d

dθ0
〈t (θ0)〉

∣∣∣∣
θ0

= 0, and 〈t (θ0)〉
∣∣∣∣
θ0

= θL, (24.95) 

i.e., we have a reflecting boundary at .θ0 = 0 and an absorbing target at .θ0 = θL. In  
this given situation, the backward equation reads 

.
1

rw(θ0)

∂

∂θ0
w(θ0)D(θ0)

∂

∂θ0
〈t (θ0)〉 . (24.96) 

Using Eq. (24.85) and setting the initial position of the particles at the origin .θ0 = 0, 
the solution to the latter equation is found directly, obtaining 

. 〈t (θ0 = 0)〉 = 1

4D(θ0 = 0)γ 2r

{
γ 2r2θ2

L + 4z0γ rθL + 8γ 2 log

[
2h

2h + rθLγ

]}
,

(24.97) 

with .γ = m2 − m1. The difference between the flat Euclidean case and the last 
equation is the radius of the cylinder, meaning that the metric components of the 
surface play an important role in the structure of the MFPT if the channels are 
embedded in a manifold. 

24.6 Concluding Remarks 

In this chapter, we used the Kalinay and Percus projection method for a two-
dimensional narrow asymmetrical channel with varying width .w(ξ) and a non-
straight midline .y0(ξ), embedded in a symmetric curved manifold. Along this 
procedure, we introduced the corresponding Fick-Jacobs-like equation, Eq. (24.53), 
from which we found the recurrence formula for . σ̂ j operators, and ultimately, the 
position-dependent effective diffusion coefficient to the first order in the metric 
determinant, Eq. (24.68), which is a general expression that contains all the previous 
results of the flat Euclidean space as particular cases (see Eq. (20.51)). 

Then, we brought forward an asymmetric channel embedded on three different 
curved surfaces, i.e., a cylinder, a sphere, and a torus. For each of the systems, we 
computed the diffusivity and analyzed its behavior when varying the geometrical 
properties of either the walls of the channel or the surface itself. 

Finally, we showed that by using backward equations, we can study the mean 
first-passage time (MFPT) for asymmetric channels embedded in curved surface. 
In addition, we calculated the MFPT when a channel is embedded in a cylindrical 
surface, where the effect of the metric elements is clear (see Eq. (24.97)). Equa-
tions (24.68) and (24.94) are the main results of this chapter and listed below for the 
reader’s convenience.
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(Position-dependent diffusion coefficient) 

. D(ξ) = D0

w'(ξ)

√
g2

g1

{
arctan

[√
g2

g1

(
y'

0(ξ) + w'(ξ)

2

)]

− arctan

[√
g2

g1

(
y'

0(ξ) − w'(ξ)

2

)]}
. (24.98) 

.
1√

g1g2w(x0)

∂

∂x0
D(x0)w(x0)

∂

∂x0
〈t (x0)〉 = −1. (Mean first-passage time) 
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Chapter 25 
Representation of a Channel as a Tubular 
Manifold: Frenet-Serret Moving Frame 

In this chapter, we will apply the Kalinay-Percus (KP) projection method to narrow 
channels and tubes where the coordinate frame is placed at the axis curve of the tube 
or channel, using the Frenet-Serret moving frame as the coordinate system to study 
the diffusion of bounded Brownian point-like particles. This covariant description 
for the diffusion equation maps the shape of a general channel in two dimensions 
or a tube in three dimensions, in a straight tube or channel seen in a non-Cartesian 
space. In other words, this description mimics traveling within a moving frame that 
travels through the midline and that allows us to constantly keep the perspective 
of being confined by a straight channel or tube. Significant contributions of this 
method include the possibility of extending the study of geometrical confinement 
to variable cross-section as well as the possibility of considering more general 
parametric curves to describe the channel or tube axis. Moreover, the zeroth order of 
this theoretical frame is capable of reproducing the first order of the KP approach. 

The method consists of writing the covariant anisotropic diffusion equation in 
tubular coordinates, namely, .(s, θ, ρ) (see Fig. 25.1), and projecting it along the 
tube’s axis, eliminating the transverse degrees of freedom due to fast equilibration. 
The resulting equation for marginal concentration is rewritten as a generalized Fick-
Jacobs-Zwanzig-like equation, from which one can identify the effective diffusion 
coefficient, namely, 

. 
∂p(s, t)

∂t
= ∂

∂s

[
D(s)A(s)

∂

∂s

(
p(s, t)

A(s)

)]
,

where the marginal concentration .p(s, t) in terms of the arclength s of the mid-
curve is obtained by integrating the concentration .c(s, θ, ρ, t) over transversal 
coordinates, . θ and . ρ, which parameterize the closed curve in the orthogonal planes. 
The cross-sectional area .A(s) can be calculated by integrating the determinant of the 
tubular metric .∆(s, θ, ρ) over .θ ∈ [0, 2π ] and .ρ ∈ [0, 1]. The position-dependent 
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Fig. 25.1 Schematic representation of tube parametrization for a circular tube. A curve represent-
ing the tubular axis (red dashed line) is surrounded by a set of circles that represent the tube’s 
boundary, which lie at the planes’ normal to the curve’s tangent direction. The tube is constructed 
considering a continuous set of such circles centered around . r(s). At any point along s, we  
can define the moving orthonormal frame, namely, the Frenet-Serret trihedron. This theoretical 
representation can be pictured as a ride on a roller coaster through a tube, where the rail is the axis 
of the tube 

diffusion coefficient .D(s) considerably extends the validity of the FJ equation, 
which is recovered when .D(s) = D0. 

In this chapter, we will give a very general introduction to the theoretical 
framework used to describe the diffusion processes for two-dimensional asymmetric 
varying-width channels and for three-dimensional curved midline tubes formed by 
straight walls. For more details, readers are referred to the references cited at the 
end of the chapter. 

25.1 Fick’s Laws in General Coordinates 

In this section, we will present the geometrical properties of diffusion in any 
coordinate system, such as Fick’s laws and the reflecting boundary condition. 
Consider that diffusion processes are confined by a three-dimensional (3D) tube 
represented by a subset of space . R3. Then, the line element can be written using 
the Cartesian metric g as .dl2 = g(dr, dr) = gabdXadXb, where .dXa is the 
displacement in direction .a = 1, 2, 3, corresponding to .(x, y, z), and .gab are the 
components of the metric tensor g in Euclidean coordinates, where 

.gab = diag(1, 1, 1), (25.1) 

and .X1 = X, X2 = Y, X3 = Z. Using  Eq. (25.1), the metric is obtained through 
the following transformation: 

.gμν = gab

∂Xa

∂xμ

∂Xb

∂xν
, (25.2)
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where .μ, ν = 1, 2, 3 refer to the tubular coordinates, denoted in covariant language 
as .s = x1, .θ = x2 and .ρ = x3. In summary, Greek indices take the values .{1, 2, 3}, 
where, in our case, . xμ corresponds to the tubular coordinates .(s, θ, ρ), respectively. 

The corresponding Christoffel symbols can be obtained through the coordinate 
transformation, namely, 

.𝚪μ
νσ = 𝚪a

bc

∂xμ

∂Xa

∂Xb

∂xν

∂Xc

∂xσ
+ ∂xμ

∂Xa

∂2Xa

∂xν ∂xσ
. (25.3) 

Clearly, for the Euclidean metric, the first term vanishes because all .𝚪a
bc are 

identically zero. To compute Eq. (25.3), one needs the inverse transformation, given 
by 

.
∂xμ

∂Xa
= ϵabcϵ

μνσ

2∆(x)

∂Xb

∂xν

∂Xc

∂xσ
, (25.4) 

where .ϵabc and .ϵμνσ are the 3D Levi-Civita symbols, such that . ϵ123 = ϵ123 =
+1. The function .∆(x) is the Jacobian of the transformation, in our case, from 
Cartesian to tubular coordinates. Due to the Euclidean metric, this coincides with 
the determinant of the metric .detGμν in tubular coordinates, namely, 

.∆(x) = 1

3!ϵ
μνσ ϵabc

∂Xa

∂xμ

∂Xb

∂xν

∂Xc

∂xσ
. (25.5) 

Then, the expression for Christoffel connections is 

.𝚪μ
νσ = 1

2∆(x)
ϵabc ϵμηλ ∂Xb

∂xη

∂Xc

∂xλ

∂2Xa

∂xν ∂xσ
, (25.6) 

which is used in the definition of the covariant derivative: 

.∇μ = ∂μ + 𝚪
(·)
μ(·). (25.7) 

The corresponding diffusion tensor components can be obtained using Eq. (25.4): 

.Dμν = Dab ∂xμ

∂Xa

∂xν

∂Xb
, (25.8) 

which are useful for calculating other quantities, such as the flux. 
Now, let us write the diffusion equation in tubular coordinates. To such end, 

we consider that the particle concentration .c(r, t) and flux .J(r, t) must satisfy the 
continuity equation, Eq. (2.72): 

.
∂c

∂t
+ ∇ · J = 0, (2.72)
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where c is assumed to be an invariant scalar field under coordinate transformations. 
Now, the term .∇ · J is the contraction of the covariant derivative . ∇ and the flux field 
. J, given through the metric g. Then, the flux is defined as follows: 

.J = −D(∇C), (25.9) 

It is worth noting that, in this last equation, D is the diffusion tensor, whose 
Euclidean components are .Dab = diag (Dx,Dy,Dz). Equations (2.72) and (25.9) 
are Fick’s laws in general coordinates, and in terms of their components, they 
become 

.Jμ = −Dμν ∂νC, (25.10) 

and 

.∂tC = (∂μDμν)∂νC + Dμν∂2μνC + 𝚪μ
μνD

νσ ∂σ C, (25.11) 

respectively. .Dμν are the diffusion tensor components in general coordinates that 
can be obtained from .Dab through the corresponding transformation, and .𝚪μ

μν are 
the Christoffel symbols. 

The derivatives are taken with respect to the transformation from coordinates . Xa

to any set of well-behaved coordinates . xμ, and . ∆ is the determinant of the metric 
given by Eq. (25.5). Now, introducing these geometrical quantities, the diffusion 
equation (25.11) reads 

.∂tC = ∂μ[Dμν∂νC] + 1

∆
(∂μ∆)Dμν∂νC, (25.12) 

and by multiplying both sides by . ∆, it results in 

.∆∂tC = ∂μ

[
∆Dμν∂νC

]
. (25.13) 

Let’s conclude this section by determining the boundary conditions (BCs) in 
tubular coordinates as defined by a reflecting boundary. Assuming that the flux 
component perpendicular to the channel wall is equal to zero at the boundary, . ρ0, 
we have that 

.Jρ |ρ=ρ0 = −Dρμ∂μC|ρ=ρ0 = 0. (25.14) 

This last expression will be used to obtain the diffusion effective coefficient for 
narrow tubes.
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25.2 Representation of a Channel as a Tubular Manifold 

A tube with no self-intersections, and therefore, not knotted, can be constructed 
through a vector .r0(s), which represents the axis of the tube. As the parameter s 
varies, the endpoint of this vector moves along the axis, which is a curve in the 
space. In Cartesian coordinates, 

. ⃗r0(s) = X(s)êi + Y (s)êj + Z(s)êk, (25.15) 

where .X(s), .Y (s), and .Z(s) are the parametric equations of the curve. Along this 
curve, we can define the Frenet-Serret basis, .(t(s), n(s), b(s)). The unit tangent 
vector . t is given by 

.t = 1

l(s)

dr0
ds

, (25.16) 

the principal normal vector, . n, by  

.n ≡ t'

||t'|| = t × (r ''
0 × r '

0)

||r ''
0 × r '

0||
, (25.17) 

and the binormal (product of tangent and normal) vector .  ⃗b, by  

.b ≡ t × n = r '
0 × r ''

0

||r '
0 × r ''

0||
, (25.18) 

where primes denote differentiation with respect to the curve parameter s, and 
.l(s) = √

X'2(s) + Y '2(s) + Z'2(s) is the arclength function of the curve. The three 
mutually perpendicular unit vectors form a right-handed triad (see Fig. 25.1). 

Using the normal vectors .n(s) and .b(s), we can define the normal plane where 
the tube’s cross-section lies. The tube’s boundaries can be defined with a closed 
curve . P in this .nb−plane, and described in polar coordinates .(R, θ), which depend 
on s, namely, 

.P(s, θ) = R(s, θ) cos θ n(s) + R(s, θ) sin θ b(s). (25.19) 

Consequently, any point on the surface of the channel, where . r0 is the tube’s axis, 
can be written as .r0 + P(s, θ). 

In order to foliate the space inside the tube, we can introduce a parameter . ρ ∈
[0, ρ0], and points on the surface and within the tube are given by 

.rc(s, θ, ρ) = r0(s) + ρP(s, θ). (25.20)
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On the other hand, the function .R(s, θ) can be written as 

.R(s, θ) = √
a(s)R̃(θ), (25.21) 

where .a(s) characterizes changes in surface area and .R̃(θ) the shape of the closed 
curve at the nb-plane. Consequently, the cross-sectional area of the tube is given by 

.Ac(s) = |a(s)|
2

∫ 2π

0
R̃2(θ) dθ. (25.22) 

Finally, let us insert Eqs. (25.16)–(25.18) into Eqs. (25.20) and (25.21), in order 
to obtain the Cartesian components of points inside the tube .rc(s, θ, ρ): 

. 

Xc = X(s) + ρ
√

a(s) R̃(θ)

ρ0 || ⃗r ''
0 ×  ⃗r '

0||
{[

X''(Y '2 + Z'2) − Y ''X'Y ' − Z''X'Z']
l(s)

cos θ

+ (
Z''Y ' − Y ''Z') sin θ

}
,

(25.23) 

. 

Yc = Y (s) + ρ
√

a(s) R̃(θ)

ρ0 || ⃗r ''
0 ×  ⃗r '

0||
{[−X''X'Y ' + Y ''(X'2 + Z'2) − Z''Y 'Z']

l(s)
cos θ

+ (
X''Z' − Z''X') sin θ

}
,

(25.24) 

. 

Zc = Z(s) + ρ
√

a(s) R̃(θ)

ρ0 || ⃗r ''
0 ×  ⃗r '

0||
{[−X''X'Z' − Y ''Y 'Z' + Z''(X'2 + Y '2)

]
l(s)

cos θ

+ (
Y ''X' − X''Y ') sin θ

}
.

(25.25) 

Expressions (25.23)–(25.25) depict the relation between the Cartesian coordi-
nates and .(s, θ, ρ), which become our new coordinates. It is worth noting that the 
components of . rc have a linear dependence on . ρ. The tube’s surface, given by 
.ρ = ρ0, facilitates the reduction of the diffusion equation on .(s, θ, ρ). 

We will outline the steps needed to arrive at Fick’s law equation in tubular 
coordinates in the section that follows. 

25.3 Generalized Fick-Jacobs-Like Equation: 3D 
Frenet-Serret Moving Frame 

Now, we will project the diffusion Eq. (25.13) on the tube’s axis .  ⃗r0 to perform a 
one-dimensional reduction following the procedure, introduced by P. Kalinay and J.
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Percus, previously outlined in Chap. 20. This projection is performed by integrating 
over the tube radius .ρ ∈ [0, ρ0] and the angular coordinate .θ ∈ [0, 2π). The integral 
on . ρ, expanding the sum in . μ, is given by 

. 

∫ ρ0

0
dρ ∆∂tc = ∂s

∫ ρ0

0
dρ ∆Dsν∂νc +

∫ ρ0

0
dρ ∂ρ∆Dρν∂νc

+ ∂θ

∫ ρ0

0
dρ ∆Dθν∂νc, (25.26) 

where . ∂t is the time partial derivative. Integrating the second term on the right-hand 
side, we obtain .∆Dρν∂νC|ρ=ρ0 and .∆Dρν∂νC|ρ=0. The first relation vanishes due 
to the boundary condition, Eq. (25.14). The second is proportional to . ∆(s, θ, ρ =
0), which is zero, since the determinant is null at .ρ = 0. 

Now, integrating this equation with respect to . θ for a closed curve on the 
.nb−plane leads to 

. 

∫ 2π

0

∫ ρ0

0
dθdρ ∆∂tc = ∂s

∫ 2π

0

∫ ρ0

0
dθdρ ∆Dsν∂νc

+
∫ 2π

0
dθ ∂θ

∫ ρ0

0
dρ ∆Dθν∂νc. (25.27) 

Now, integrating the second term on the right-hand side with respect to . θ , this last 
equation can be rewritten in terms of flux components, which gives 

. −
∫

dρ
(
∆(s, 2π, ρ)J θ |θ=2π − ∆(s, 0, ρ)J θ |θ=0

)
. (25.28) 

Because the determinant . ∆ depends on the angle through .R̃(θ) and because . R̃(0) =
R̃(2π) for closed curves, then .∆(s, 0, ρ) = ∆(s, 2π, ρ), the determinant can be 
factorized, and Eq. (25.28) results in the difference between fluxes. On the other 
hand, we can also consider that the angular component of the flux is periodic 
.J θ |θ=0 = J θ |θ=2π , so this term also vanishes. 

By defining the marginal concentration (see Eq. (18.4)) as  

.p(s) ≡
∫ 2π

0

∫ ρ0

0
c∆dρ dθ, (25.29) 

Eq. (25.27) becomes 

.∂tp = ∂s

∫∫
dθ dρ ∆

[
Dss∂sc + Dsθ∂θ c + Dsρ∂ρc

]
. (25.30) 

Now, this equation can be rewritten to obtain a generalized Fick-Jacobs-like 
equation as follows:
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.∂tp = ∂s

[
D(s)A(s)∂s

(
p

A(s)

)]
, (25.31) 

where the cross-sectional area of the tube associated with the corresponding entropic 
potential is given by 

. A(s) =
∫ 2π

0

∫ ρ0

0
∆dρ dθ,=

∫ 2π

0
dθ

(
1

2
α(s)R̃2(θ) + 1

3
R̃3(θ)β(s) cos θ

)
,

(25.32) 

where . α and . β are certain functions of s that can be associated with geometrical 
properties of the curve. Comparing (25.30) with (25.31), we find that the diffusion 
coefficient is given by 

.D(s) =
∫∫

dθ dρ ∆
[
Dss∂sc + Dsθ∂θ c + Dsρ∂ρc

]
A(s) ∂s

[
1

A(s)

∫∫
∆c dθ dρ

] . (25.33) 

It is worth noting that this expression depends on . ∂θc, . ∂ρc, and . ∂sc. To express 
these quantities as functions of . ∂sc, we can use the transversal flow components, 
given by 

.J θ = −Dθs∂sc − Dθθ∂θ c − Dθρ∂ρc, (25.34) 

.Jρ = −Dρs∂sc − Dρθ∂θc − Dρρ∂ρc. (25.35) 

Solving this system of equations for . ∂θ c and .∂ρc results in 

.∂θc = DθρJ ρ − DρρJ θ + (DθρDρs − DρρDθs)∂sC

DρρDθθ − DθρDρθ
, (25.36) 

.∂ρc = DθθJ ρ − DρθJ θ + (DθθDρs − DρθDθs)∂sC

DρθDθρ − DθθDρρ
. (25.37) 

Substituting these expressions into Eq. (25.33) gives 

. D(s) =
F(s) +

∫∫
dθ dρ ∆

(
Dss + DsθDθρDρs − DsθDρρDθs − DsρDθθDρs + DsρDρθDθs

DθθDρρ − DρθDθρ

)
∂sC

A(s) ∂s

[
1

A(s)

∫∫
∆C dθ dρ

] ,

(25.38) 
where 

. F(s) =
∫∫

dθdρ∆

(
DsθDθρ − DsρDθθ

)
Jρ + (

DsρDρθ − DsθDρρ
)
J θ

DρρDθθ − DθρDρθ
.

(25.39)
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Equation (25.39) can be simplified by applying additional approximations. For 
channels with a circular cross-section or boundary, we can assume that . c(s, θ, ρ) ≈
c(s) for stationary flow. Consequently, even though . Jρ may have nonzero pro-
jections over the entire range of integration, we assume that these deviations are 
negligible. Due to this symmetry, the concentration dependencies are canceled out, 
.Dsθ = Dθs = 0, and .J θ = 0. With these considerations, Eq. (25.39) can be 
neglected and Eq. (25.38) is simplified as follows: 

.D(s) =

∫∫
dθ dρ ∆

(
Dss + DsθDθρDρs − DsθDρρDθs − DsρDθθDρs + DsρDρθDθs

DθθDρρ − DρθDθρ

)

A(s) ∂s

[
1

A(s)

∫∫
∆dθ dρ

] . (25.40) 

By means of Eqs. (25.31) and (25.40), we have a theoretical framework that gives 
the projected Fick-Jacobs-like equation in 3D, as well as its effective diffusion. 

Summarizing, in order to obtain the position-dependent effective diffusivity 
for an asymmetric channel or tube, one has to follow these steps: (1) define the 
centerline of the tube of interest, (2) find the Frenet-Serret basis, and (3) calculate 
the determinant and the components of the diffusion tensor. 

25.4 Straight Tube with Circular-Shaped Cross-Section 

In this section, we will calculate the effective diffusion coefficient for a straight tube 
with circular-shaped cross-section. To such end, we need to calculate the explicit 
expressions involved in the transformation of tubes with a straight axis and circular-
shaped cross-sections into tubular coordinates, as depicted in the last paragraph of 
the preceding section. 

The normal and binormal vectors are not uniquely specified in this particular 
case. For simplicity, we propose writing the straight axis line as a limiting case of 
a curve by the parameter K . Let us consider the parametric space curve .  ⃗r0(s;K) =
(s,KY(s),KZ(s)), where .Y (s) and .Z(s) are functions of the tube’s axis parameter 
and K is an additional variable that is set equal to zero when .  ⃗r0 is a straight line. 
For plane curves, we additionally consider .Y (s) = 0 and .Z''(s) > 0. Under such 
conditions and setting .K → 0, the Frenet-Serret trihedron reduces to 

.t → êi , n → êk, b → −êj . (25.41) 

Now, according to Eqs. (25.23)–(25.25), the Cartesian components of points into 
the tube are given by 

.Xc = s, Yc = ρ
√

a(s)

ρ0
sin θ, Zc = ρ

√
a(s)

ρ0
cos θ. (25.42)
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To write Eqs. (25.5)–(25.8) in tubular coordinates, we need to evaluate the 
derivatives of the transformation (25.42), namely, 

. 
∂Xc

∂s
= 1,

∂Xc

∂θ
= ∂Xc

∂ρ
= 0,

. 
∂Yc

∂s
= − ρa'(s)

2ρ0
√

a(s)
sin θ,

∂Zc

∂s
= ρa'(s)

2ρ0
√

a(s)
cos θ,

. 
∂Yc

∂θ
= −ρ

√
a(s)

ρ0
cos θ,

∂Zc

∂θ
= −ρ

√
a(s)

ρ0
sin θ,

.
∂Yc

∂ρ
= −

√
a(s)

ρ0
sin θ,

∂Zc

∂ρ
=

√
a(s)

ρ0
cos θ. (25.43) 

These relations and Eq. (25.5) allow us to calculate the determinant for our 
particular case: 

.∆(x) = − ρ

ρ2
0

a. (25.44) 

It is worth noting that the determinant is proportional to . ρ, so consequently 
.∆(s, θ, ρ = 0) = 0. 

From (25.8), we find that the tubular components of the diffusion tensor are given 
by 

. Dss =
(

∂s

∂Xc

)2

Dx +
(

∂s

∂Yc

)2

Dy +
(

∂s

∂Zc

)2

Dz,

. Dsθ = Dθs = ∂s

∂Xc

∂θ

∂Xc

Dx + ∂s

∂Yc

∂θ

∂Yc

Dy + ∂s

∂Zc

∂θ

∂Zc

Dz,

. Dsρ = Dρs = ∂s

∂Xc

∂ρ

∂Xc

Dx + ∂s

∂Yc

∂ρ

∂Yc

Dy + ∂s

∂Zc

∂ρ

∂Zc

Dz,

. Dθθ =
(

∂θ

∂Xc

)2

Dx +
(

∂θ

∂Yc

)2

Dy +
(

∂θ

∂Zc

)2

Dz,

. Dθρ = Dρθ = ∂θ

∂Xc

∂ρ

∂Xc

Dx + ∂θ

∂Yc

∂ρ

∂Yc

Dy + ∂θ

∂Zc

∂ρ

∂Zc

Dz,

.Dρρ =
(

∂ρ

∂Xc

)2

Dx +
(

∂ρ

∂Yc

)2

Dy +
(

∂ρ

∂Zc

)2

Dz. (25.45)
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Explicitly, using Eqs. (25.43), we find that 

. Dss = DX a2ρ2

∆2ρ4
0

, Dsθ = Dθs = 0,

. Dρs = Dsρ = −DX a a'ρ3

2∆2ρ4
0

,

. Dθθ = a

∆2ρ2
0

(
DY cos2 θ + DZ sin2 θ

)
,

. Dθρ = Dρθ = a

∆2ρ2
0

(
DY − DZ

)
ρ cos θ sin θ,

.Dρρ = DX a'2ρ4

4∆2ρ4
0

+ aρ2

∆2ρ2
0

(
DZ cos2 θ + DY sin2 θ

)
. (25.46) 

Given the factorization in Eq. (25.21), the circular shape can be depicted by 
setting the function .R̃(θ) = 1. For such a case, the components (25.23)–(25.25) 
and all the geometric quantities are significantly reduced, especially the functions 
.−α(s) = a(s) = R(s)2 and .β(s) = 0. Consequently, the determinant and the 
cross-sectional area have the following expressions: 

.∆ = − ρ

ρ2
0

a(s), (25.47) 

and 

.A(s) = −πa(s) = −πR2(s). (25.48) 

Given the geometry and using these last expressions, now the corresponding 
transversal flux (25.35) is given by 

.Jρ = −Dρs∂sc(s). (25.49) 

By imposing the BCs in Eq. (25.49), we have  

.Jρ |ρ=ρ0 = DXρ0 a'

2a
∂sc(s) = 0. (25.50) 

Because the equilibrium concentration does not depend on the transversal 
coordinates, the denominator of Eq. (25.40) becomes proportional to .A(s)∂sc(s). 
As a consequence, the term .∂sc(s) is removed from Eq. (25.40). Considering the
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components of the diffusion tensor given by Eq. (25.4) and setting .DX = D0, we  
finally find that effective diffusion coefficient is 

.D(x) = D0
ln

(
1 + R'(x)2

)
R'(x)2

, (25.51) 

where we set .DY = DZ and .DX/DY = DX/DZ = 1 for the isotropic medium. 
This coefficient explicitly depends on .R'(x)2. In fact, the first two terms of the series 
expansion of Eqs. (25.51) reproduce Zwanzig’s formula, Eq. (18.62). For values 
of . R' up to 1, the difference between Eq. (25.51) and Rubi-Reguera’s formula, 
Eq. (20.118), is less than 4%. And under the range of applicability, .R' << 1, they  
are practically identical. 

Finally, it is worth mentioning that Eq. (25.50) gives us the condition of validity 
of our model at this order, namely, 

.
a'

2a
= R'(s)

R(s)
⪡ 1. (25.52) 

25.5 Tilted Straight Tube with Circular-Shaped 
Cross-Section 

Now, we will show how to obtain the effective diffusivity of a straight tube with 
a circular-shaped cross-section when it is tilted, a simple extension of the result 
obtained in the preceding section. What is interesting is that the new property does 
not appear in Eq. (25.51) in a trivial way. As previously mentioned, we first need 
to define the centerline of the tube of interest. Next, we need to find the Frenet-
Serret basis. Then, using these values, we need to calculate the determinant and all 
the components of the diffusion tensor. The above data is inserted into Eq. (25.40), 
giving us the diffusion coefficient. Let us consider the parametric space curve, 
.r(t) = (0, s, r '

0s), for a curved midline tube with constant slope . r '
0. Then, the Frenet-

Serret basis is given by the unit tangent vector . t: 

.t = 1√
1 + r '2

0

(0, 1, r '
0), (25.53) 

the binormal vector: 

.b =
(
1/

√
1 + r '2

0

)
(1, 0, 0), (25.54) 

and the principal normal vector:
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.n = 1√
1 + r '2

0

(0,−r '
0, 1). (25.55) 

In terms of the Frenet-Serret basis, we can now write out the parametric equation 
as follows: 

.r(s, ρ, θ) = ρ
√

a(s)

⎛
⎝sin θ, s − r '

0 cos θ√
1 + r '2

0

, r '
0s + cos θ√

1 + r '2
0

⎞
⎠ . (25.56) 

Now, setting .R(θ) = 1 for a closed circular tube, the determinant is given by 

.∆ = −ρ

√
1 + r '2

0 a(s). (25.57) 

This last relation allows us to calculate the terms of the diffusion tensor, .Dμν , and 
therefore, Eq. (25.40). When integrating over . θ and . ρ, for this specific case, we have 

.D(x) = D0

ln

(
1 + R'(x)2

1+r '2
0

)

R'(x)2
. (25.58) 

Note that the effect of the curved midline simply appeared in the logarithm 
argument. By setting .r '

0 = 0, we recover Eq. (25.51), as expected. 

25.6 Generalized Fick-Jacobs-Like Equation: 2D 
Frenet-Serret Moving Frame 

Once the 3D case has been resolved, it is not difficult to expand our theoretical 
framework to describe particles diffusing into a two-dimensional (2D) narrow 
channel. To determine the Frenet-Serret moving frame in 2D, we only need to define 
the tangent vector and the principal normal. Let us take points of . R2 in Cartesian 
coordinates and a centerline given by a well-behaved curve . ⃗r0(s, ρ) = (s, y0(s)), 
with .y'

0(x) being the centerline of the channel. Then, points on the surface and 
within a channel (see Fig. 25.2) are  given by  

. ⃗rc(s, ρ) =  ⃗r0(s) + ρa(s)

ρ0
ρa(s)ên. (25.59) 

The Cartesian components of points inside the channel are given by 

.Xc(s, ρ) = s − a(s)ρ

lρ0
y'
0(s) (25.60)
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Fig. 25.2 Schematic representation of an asymmetric 2D channel of varying width formed by 
walls defined by .ρ1(s), .ρ2(s), and the centerline .y0(s). The channel is constructed considering 
a continuous set of perpendicular lines to the normal unit vector centered around .  ⃗r(s). For each 
value of s, it is possible to define the moving orthonormal frame through the normal and unit 
tangent vectors 

and 

.Yc(s, ρ) = y0(s) + a(s)ρ

lρ0
, (25.61) 

where .l =
√
1 + y'2

0 and .ρ ∈ [−ρ1, ρ2]. Then, 

.
∂Xc(s, ρ)

∂ρ
= −a(s)

lρ0
y'
0(s) (25.62) 

and 

.
∂Yc(s, ρ)

∂ρ
= a(s)

lρ0
. (25.63) 

The width of the channel is given by . w = | ⃗rc(s, ρ0)− ⃗rc(s,−ρ0)| = ∫ ρ0
−ρ0

∆dρ =
2a(s), and the determinant by 

.∆ = ∂Xc

∂s

∂Yc

∂ρ
− ∂Yc

∂s

∂Xc

∂ρ
= − la(s)ρ

ρ0

(
1 − ρa(s)y''

0 (s)

l3ρ0

)
. (25.64) 

Using Eq. (25.8), the components of the diffusion tensor have the following 
expressions: 

.Dss = 1

∆2

[
Dx

(
∂Yc

∂ρ

)2

+ Dy

(
∂Xc

∂ρ

)2
]

= 1

∆2

(
DXY 2

ρ + DY X2
ρ

)
, (25.65)
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.

Dsρ = Dρs = − 1

∆2

[
Dx

(
∂Yc

∂ρ

∂Yc

∂s

)2

+ Dy

(
∂Xc

∂ρ

∂Xc

∂s

)2
]

= − 1

∆2

(
DXYρYs + DY XρXs

)
,

(25.66) 

. Dρρ = 1

∆2

[
Dx

(
∂Yc

∂s

)2

+ Dy

(
∂Xc

∂s

)2
]

= 1

∆2

(
DXY 2

s + DY X2
s

)
.

(25.67) 

Following the same steps as in Sect. 25.3, we have to project  the diffusion  
equation in general coordinates, Eq. (25.13), namely, 

. 

∫ ρ0

−ρ0

dρ ∆∂tc = ∂s

∫ ρ0

−ρ0

dρ ∆Dsν∂νc +
∫ ρ0

−ρ0

dρ ∂ρ∆Dρν∂νc.

Introducing the BCs, Eq. (25.14), this last equation becomes 

.∂tp = ∂s

[
D(s)w(s)∂s

(
p

w(s)

)]
, (25.68) 

where the marginal concentration is defined as 

.p(s) ≡
∫ ρ0

−ρ0

c∆dρ. (25.69) 

Finally, using .c(s, θ, ρ) ≈ c(s), and .Jρ = 0, .D(s) is given by 

.D(s) =
∫ ρ0
−ρ0

dρ∆
(

DssDρρ−DsρDρs

Dρρ

)
w(s)

. (25.70) 

This last expression allows us to calculate the position-dependent effective diffusiv-
ity in two dimensions, once the channel of interest is parameterized. 

25.7 Diffusivity Coefficient for an Asymmetric and Curved 
Midline Channel 

For an asymmetric 2D channel, the centerline is given by the well-behaved curve 
. ⃗r0(s, ρ) = (s, y0(s)), where . y0 is the channel midline. Now, we have to substitute 
our parameterization into Eq. (25.64), as shown in the previous section. Once we 
know the determinant, we can calculate the numerator of Eq. (25.70), which depends 
explicitly on the determinant times the elements of the diffusion tensor:
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.∆

(
DssDρρ − DsρDρs

Dρρ

)
= DxDy

∆2 . (25.71) 

We can now substitute this last expression into Eq. (25.70), and because we are 
interested in an asymmetric channel, we need to integrate from .ρ1(s) to .ρ2(s), the  
lower and upper walls of the channel, where .ρ1(s) > y0 > ρ2(s). Finally for this 
specific case, we find 

.D(x) =
arctan

(
y'
0(x) + 1

2w
'(x)

)
w'(x)

−
arctan

(
y'
0(x) − 1

2w
'(x)

)
w'(x)

. (25.72) 

This equation is the same expression obtained by Dagdug and Pineda, Eq. (20.51). 

25.8 Concluding Remarks 

In this chapter, we present a theoretical framework to study the problem of diffusion 
where the reference frame is placed at the axis of the tube or channel, depending 
on the number of dimensions. It has the advantage of allowing us to consider more 
general parametric curves to describe the tube or channel axis and boundaries. These 
elements, along with dimensionality, provide a great deal of flexibility to adapt this 
theory to more diverse kinds of confinements. 
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Appendix A 
Mathematical Requirements 

A.1 Useful Trigonometric Identities 

Here is a short list of trigonometric identities: 

. sin(x)2 + cos(x)2 = 1 (A.1) 

. sin(x) = eix − e−ix

2i
. (A.2) 

. cos(x) = eix + e−ix

2
. (A.3) 

.eix = cos(x) + i sin(x) (A.4) 

.e−ix = cos(x) − i sin(x) (A.5) 

A.2 Hyperbolic Function Relations 

A basic list of relations between hyperbolic functions is given below: 

. cosh(x) + senh(x) = ex. (A.6) 
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. cosh(x) − senh(x) = e−x. (A.7) 

. cosh2(x) − senh2(x) = 1. (A.8) 

A.3 Leibniz Rule for Integrals 

The Leibniz integral rule provides a formula for differentiation with respect to x 
of a definite integral with respect to t of a function .f = f (x, t) whose limits are 
functions of the differential variable x: 

. 
d

dx

(∫ b(x)

a(x)

f (x, t) dt

)
=
∫ b(x)

a(x)

∂f (x, t)

∂x
dt + f (x, b(x)) · b'(x)

− f (x, a(t)) · a'(x), (A.9) 

where the primes denote differentiation with respect to x. 

A.4 Table of Integrals 

.

∫ ∞

0
xn e−μx dx = n! μ−n−1. (A.10) 

.

∫
x e−x2 dx = −1

2
e−x2 . (A.11) 

.

∫ ∞

0
e−ax2 cos(bx) dx =

√
π

2
√

a
e− b2

4a . (A.12) 

.

∫ ∞

0
exp

(
−ax2 − b

x2

)
dx = 1

2

√
π

a
exp
(
−2

√
ab
)

(A.13)
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A.5 Gaussian Integral and the Feynman Rule 

The Gaussian integral is given by 

.

∫ ∞

−∞
e−λx2 dx =

√
π

λ
. (A.14) 

By differentiating with respect to the . λ parameter, we can obtain higher-order 
Gaussian integrals, a procedure that leads to the so-called Feynman rule: 

.(−1)n
∫ ∞

−∞
x2n e−λx2 dx = dn

dλn

√
π

λ
. (A.15) 

When working with Gaussian integrals, it is sometimes practical to know the 
following general result: 

.

∫ ∞

−∞
xn e−λx2 dx = 1 + (−1)n

2
λ− 1+n

2 𝚪

(
1 + n

2

)
. (A.16) 

A.6 Series and Products 

A.6.1 Taylor Series 

Taylor series are the sum representations of analytical functions expressed in terms 
of the function’s derivatives. Typically, every function is a sum of infinite and 
convergent terms. In order to expand a function in a Taylor series around a point 
a, the function has to be class .C∞ (i.e., infinitely differentiable or smooth). The 
Taylor expansion of function .f (x) around a is 

.f (x) =
∞∑

n=0

f (n)(a)

n! (x − a)n. (A.17) 

When the expansion is around .a = 0, the Taylor series is also called a Maclaurin 
series, specifically 

.f (x) =
∞∑

n=0

f (n)(0)

n! xn. (A.18) 

A brief list of Taylor and Maclaurin series expansions is presented below:
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.ex =
∞∑

n=0

xn

n! . (A.19) 

. ln(1 + x) =
∞∑

n=1

(−1)n+1 xn

n
. (A.20) 

. ln(1 − x) = −
∞∑

n=1

xn

n
. (A.21) 

. erf(x) = 2√
π

∞∑
n=0

(−1)n x2n+1

n! (2n + 1)
= 2√

π

(
x − x3

3
+ x5

10
− x7

42
+ · · ·

)
.

(A.22) 

A.6.1.1 Series of Hyperbolic Functions 

. csch x =
∞∑

n=0

2(1 − 22n−1) B2n x2n−1

(2n)! = 1

x
− x

6
+ · · · , 0 < |x| < π.

(A.23) 

. csch2 x =
[ ∞∑

n=0

2(1 − 22n−1) B2n x2n−1

(2n)!

]2
= 1

x2
− 1

3
+ x2

15
+ · · · ,

0 < |x| < π. (A.24) 

.coth x =
∞∑

n=0

22n B2n x2n−1

(2n)! = 1

x
+ x

3
+ · · · , 0 < |x| < π. (A.25) 

. coth2 x =
[ ∞∑

n=0

22n B2n x2n−1

(2n)!

]2
= − 1

x2 + 2

3
+ x2

15
+ · · · , 0 < |x| < π.

(A.26)



A.6 Series and Products 729

. − 2xcoth x csch2x = 2

x2
+ 2x2

15
+ · · · . (A.27) 

A.6.2 Euler Formula to Fourier Series Coefficients 

Assuming that a function with period p can be written as a trigonometric series, 

.f (x) = a0

2
+

∞∑
n=1

[an cos(nt) + bn sin(nt)] , (A.28) 

we could find the Fourier sine and cosine series. The Fourier sine of .f (x) series of 
the function .f (x) is 

. f (x) =
∞∑

n=1

bnsin

(
nπx

p

)
with bn = 2

p

∫ p

0
f (x)sin

(
nπx

p

)
dx,

(A.29) 
and the Fourier cosine series of .f (x) is given by 

.f (x) = a0

2
+

∞∑
n=1

an cos

(
nπx

p

)
, (A.30) 

with 

.a0 = 2

p

∫ p

0
f (x) dx and an = 2

p

∫ p

0
f (x) cos

(
nπx

p

)
dx. (A.31) 

A.6.3 Table of Series 

.

∞∑
k=1

sin(2k − 1) x

2k − 1
= π

4
sgn(x). (A.32) 

.

∞∑
k=1

(−1)k−1 sin(kx)

k
= x

2
. (A.33)



730 A Mathematical Requirements

.

∞∑
k=1

sin(kx)

k
= π − x

2
. (A.34) 

.

∞∑
k=1

sin(k x)

k3
= π2x

6
− πx2

4
+ x3

12
. (A.35) 

.

∞∑
k=1

(−1)k−1 cos(k x)

k2
= π2

12
− x2

4
. (A.36) 

.

∞∑
k=1

(2k − 1)−2(2n+1) =
[
1 − 2−2(n+1)

]
ζ [2(n + 1)]. (A.37) 

.

∞∑
k=1

cos[(2n − 1) π ]
(2k − 1)2

= −π2

8
. (A.38) 

A.6.4 Cauchy Product for Power Series 

The Cauchy product for power series is given in terms of a discrete convolution. Let 
two infinite series be 

.

∞∑
i=0

ai xi,

∞∑
j=0

bj xj , (A.39) 

where its coefficients are complex numbers, that is, 

.{ai}, {bj }. (A.40) 

Then, the product of the series in Eq. (A.39) is 

.

( ∞∑
i=0

ai xi

)⎛⎝ ∞∑
j=0

bj xj

⎞
⎠ =

∞∑
k=0

k∑
l=0

al bk−l xk. (A.41)
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A.6.5 Generalized Binomial Theorem 

Also known as Newton’s generalized binomial theorem, this theorem shows us how 
to write a binomial expansion as a series (sum). Let us take .r ∈ R and .|x| < |y|; 
therefore, 

.(x + y)r =
∞∑

k=0

rCk xk yr−k, (A.42) 

where the . rCk are the combinations of r in k, or the generalized binomial 
coefficients, that is, 

.
rCk = r(r − 1) · · · (r − k + 1)

k(k − 1) · · · 1 , (A.43) 

where .k ∈ N . Then, for the specific case of .r = −1/3, the binomial expansion 
reads 

.(1 + x)−
1
3 =

∞∑
k=0

1
3 Ck xk 1

1
3−k, (A.44) 

and after explicitly writing out certain terms, it becomes 

.
(1 + x)−1/3 = 1 +

−1

3
1! x1 +

−4

9
2! x2 +

−27

28
3! x3 + · · ·

= 1 − 1

3
x + 2

9
x2 − 14

81
x3 + · · · ,

(A.45) 

where in order for this series expansion to be valid, .|x| < 1. 

A.7 Fourier Transform 

One of the most useful integral transforms is the Fourier transform. The definition 
of this operator is 

.F{f (x)} = f (k) =
∫ ∞

−∞
f (x) eikx dx, (A.46) 

where .F{f (x)} and .f (k) are the notations to indicate that .f (x) is being trans-
formed. 

If we wish to transform two variables, we should write
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.f (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) ei(ux+vy) dx dy. (A.47) 

Once our problem has been solved in the Fourier space, we need to go back to 
the original state coordinate system by using the inverse Fourier transform: 

.f (x) = 1

2π

∫ ∞

−∞
f (k) e−ikx dk. (A.48) 

There is a useful representation of the Dirac delta function using the Fourier 
transform, i.e., 

.δ(x − x0) =
∫ ∞

−∞
eik(x−x0) dk. (A.49) 

A.7.1 Table of Transforms 

.F {x g(x)} = −i
dF {g(x)}

dk
. (A.50) 

.f (k) = e−ak2+bik, f (x) = 1

2
√

πa
e− (x−b)2

4a . (A.51) 

.F
{
dg(x)

dx

}
= −ik F {g(x)} , F

{
d2g(x)

dx2

}
= −k2 F {g(x)} . (A.52) 

A.8 Laplace Transform 

The Laplace transform of a function .f (t) is defined as 

.L{f (t)} = f (s) =
∫ ∞

0
f (t) e−st dt, (A.53) 

where the function’s transformation is shown in the dependence of the function, for 
instance, .f (s) instead of .f (x). Unlike the Fourier transform, the Laplace integral 
does not have a unique inverse structure for a given function .f (s). In order to 
invert its effects, we must always make use of complex analysis with the Bromwich
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integral, sometimes called the Fourier-Mellin integral: 

.f (t) = L−1{f (s)} = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

est f (s) ds, (A.54) 

where . γ is such a number that the path of integration is the region of convergence 
of .f (s), whereas the derivatives in time transform as 

.L
{
df (t)

dt

}
=
∫ ∞

0
e−st

[
df (t)

dt

]
dt = s L{f (t)} − f (0), (A.55) 

leading to the general result: 

.L{f n} = sn Λ{f (t)} − sn−1 f (+0) − · · · − f n−1(+0), (A.56) 

in which the zero needs to be approached from the positive side. 
The derivatives of transforms of the form .f (s) can be computed as follows: 

.
∂nf (s)

∂s
=
∫ ∞

0
e−st (−t)nf (t) dt = L

{
(−t)nf (t)

}
, (A.57) 

A.8.1 Change of Laplace Variable 

In certain problems, where we have a function .f (s), it is practical to change the 
original Laplace variable s for a function .z(s) to facilitate the computation of the 
inverse Laplace transform of .f (s). Consider an arbitrary function .f (t). We already 
know that the direct and inverse Laplace transforms in the Laplace variable s are 
given by Eqs. (A.53) and (A.54), respectively. Additionally, we introduce the direct 
and inverse Laplace transforms in the arbitrary function . z(s), namely, 

.f (z(s)) = Lz(s) {f (t)} =
∫ ∞

0
e−z(s)t f (t) dt, (A.58) 

and 

.f (t) = L−1
z(t)f (z(s)) = 1

2πi
lim

T →∞

∫ γ+iT

γ−iT

ez(s)t f (z(s)) d z(s). (A.59) 

Equations (A.58) and (A.59) represent a formal substitution of s by .z(s) in the 
original operators . L and .L−1. Therefore, all properties and previous results obtained 
for the ordinary Laplace transforms can be used for .Lz(s) and .L−1

z(t). Moreover, if in 
the original Laplace transform we replace the variable s for an arbitrary function 
.z(s) under the transformation
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.f (s) = f (s(z)) = f ∗(z(s)), (A.60) 

the relation between .f (t) and .f ∗(t) is given by1 

.f (t) =
∫ ∞

0
f ∗(τ )φ(t, τ ) dτ, (A.62) 

with 

.φ(t, τ ) = L−1
{
e−z(s)τ

}
. (A.63) 

A brief table of a few useful transformations and their inverse transformation is 
provided in the next section. 

A.8.2 Table of Transforms 

.f (s) = 1

s
, f (t) = 1. (A.64) 

.f (s) = 1

s − α
, f (t) = eαt . (A.65) 

.f (s) = 1√
s
, f (t) = 1√

πt
. (A.66) 

.f (s) = 1

s2(αs + β)
, f (t) = α(e−tβ/α − 1) + tβ

β2
. (A.67) 

1 To verify this claim, we should Laplace transform Eq. (A.62), i.e., 

. 

f (s) = L
{∫ ∞

0
f ∗(τ )φ(t, τ ) dτ

}
=
∫ ∞

0
f ∗(τ )L

{
L−1

[
e−z(s)τ

]}
dτ

=
∫ ∞

0
e−z(s)τ f ∗(τ ) dτ = Lz(s)

{
f ∗(τ )

} = f ∗(z(s)).
(A.61)
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.f (s) = 1

s(αs + β)
, f (t) = 1 − e−tβ/α

β
. (A.68) 

.f (s) = e−√
sα, f (t) = α e−α2/4t

2
√

πt3
. (A.69) 

.f (s) = e−α
√

s

√
s

, f (t) = e− α2
4t√

πt
. (A.70) 

.f (s) = e−2a
√

s

s
, f (t) = erfc

(
a√
t

)
. (A.71) 

.f (s) = 1 − e
−
√

4s
β

α

s
, f (t) = erf

(
α√
βt

)
. (A.72) 

A.9 Convolution of Functions 

A mathematical definition of convolution is 

. (f ⋆ g) (t) ≡
∫ ∞

−∞
f (τ) g(t − τ) dτ, (A.73) 

that is, a functional operator between two functions. The result is a third function 
where the shape of one function is modified by the other function. 

A.9.1 Convolution Theorem 

If a convolution under a Fourier transform is given, then 

.F {(f ⋆ g) (t)} = F
{∫ ∞

−∞
f (τ) g(t − τ) dτ

}
= f (k) g̃(k), (A.74) 

that is, the product of the transformed functions.
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A.10 Special Functions 

A.10.1 Gamma Function 

The gamma function appears quite often in physical and mathematical problems 
such as in the computation of probabilities in statistical mechanics (i.e., the 
propagator .p(x, t |x0) in the diffusion equation). The first definition made by Euler 
in terms of a limit is 

. 𝚪(z) = lim
n→∞

1 · 2 · 3 · · · n
z(z + 1)(z + 2) · · · (z + n)

nz, z /= 0,−1,−2,−3, . . . ,

(A.75) 
and defined by the Euler integral, it takes the following form: 

.𝚪(z) =
∫ ∞

0
tz−1 e−t dt. (A.76) 

The basic functional relation of the gamma function is rather a function of .z + 1, 
leading to 

.𝚪(z + 1) = z𝚪(z) = z! =
∏

(z). (A.77) 

Probably, the best known value of the gamma function is that of a non-integer 
argument: 

.𝚪

(
1

2

)
= √

π, (A.78) 

which can be generalized for non-integer values, namely, 

.𝚪

(
1

2
− n

)
= (−4)n n!

(2n)!
√

π =
√

π(−1/2
n

)
n! , (A.79) 

.𝚪

(
1

2
+ n

)
= (2n!)

4n n!
√

π =
(

n − 1/2

n

)
n! √

π. (A.80) 

A.10.2 Error Functions 

The error and complementary error integrals are 

.erf(x) = 2√
π

∫ x

0
e−t2 dt, erfc(x) = 2√

π

∫ ∞

x

e−t2 dt. (A.81)
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A pair of equations that have the following properties: 

.erf(−x) = −erf(x), erf(0) = 0, erf(∞) = 1, (A.82) 

and 

.erfc(−x) = 2 − erfc(x), erfc(0) = 1, erfc(∞) = 0, (A.83) 

respectively. 
Moreover, a quick proof of the relation between the . erf function and the 

complementary error function can be done when separating the limits of the integral 
in a practical manner, namely, 

.
2

π

∫ ∞

x

e−t2 dt = 2√
π

∫ ∞

0
e−t2 dt − 2√

π

∫ x

0
et2 dt. (A.84) 

Therefore, 

.
2√
π

∫ ∞

x

e−t2 dt = 1 − erf(x) = erfc(x). (A.85) 

In addition to the properties mentioned above, it is also useful to know the 
derivative and integral of the error function. The derivative can be easily obtained 
by its definition and the fundamental theorem of calculus, leading to 

.
d

dx
erf(x) = 2√

π
e−x2 ,

d

dx
erfc(x) = − 2√

π
e−x2 . (A.86) 

Higher-order derivatives are given by 

.
d(k)

dx(k)
erf(x) = 2(−1)k−1

√
π

Hk−1(x) e−x2 = 2√
π

d(k−1)

dx(k−1)

(
e−x2

)
, (A.87) 

where H represents the Hermite polynomials. 
An antiderivative of the error function is obtainable by integration by parts: 

. 

∫
erf(x) dx = 2√

π

∫ [∫ x

0
e−t2 dt

]
dx = 2√

π

[
x

∫ x

0
e−t2 dt −

∫
x e−x2 dx

]
,

(A.88) 
and by using Eqs. (A.11) and (A.81), one finds 

.

∫
erf(x) dx = x erf(x) + 1√

2
e−x2 . (A.89)
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A.10.3 Dirac Delta Function (Distribution) 

The Dirac delta function2 (or distribution) is defined by its properties. It can be 
visualized as a very sharp narrow pulse. The formal properties of the .δ-function are 

.δ(x) = 0, x /= 0, (A.90) 

which is generalized to 

.δ(x − x0) = 0, x /= x0, (A.91) 

and 

.f (a) =
∫ ∞

−∞
f (x) δ(x − a) dx, (A.92) 

where .f (x) is any smooth function inasmuch as the integration includes the point 
.x = a, as otherwise the integral equals zero. The latter equation yields to3 

.

∫ ∞

−∞
δ(x)dx = 1. (A.95) 

It follows that the Dirac delta function must be even in x, meaning that 

.δ(−x) = δ(x). (A.96) 

Using integration by parts, one can also define the derivative of the Dirac delta 
function as follows: 

.

∫ ∞

−∞
f (x) δ'(x − a) dx = −

∫ ∞

−∞
f '(x) δ(x − a) dx = −f '(a). (A.97) 

2 Even though it is not really a function, in the usual sense of what being a function means, it 
represents a special notation for the limit of a sequence of functions, i.e., a distribution. 
3 The result that can be also written as 

.

∫ b

−a

δ(x) dx = 1, for all a, b > 0. (A.93) 

Thus, 

.

∫
δ(x − a) dx = 1. (A.94)
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The .δ-function can be represented in terms of any basis of real and orthogonal 
functions, as long as the orthogonality relations are satisfied by such functions, 
namely, 

.

∫ b

a

φm(x) φn(x) dx = δmn. (A.98) 

Therefore, 

.δ(x − a) =
∞∑

n=0

φn(x) φ'
n(x). (A.99) 

Evidently, coefficients .φn(a) are functions of the variable a. If Eq. (A.99) is 
multiplied by .φ'

n(x) and integrated over the domain, Eq. (A.96) is proven. 
Another useful side of the Dirac delta function is its integral representation. The 

Fourier transform leads to the identification of4 

.δ(x − a) = 1

π

∫ ∞

−∞
exp[ik(a − x)] dk. (A.100) 

A.10.4 Heaviside Function 

The Heaviside function, sometimes called the step function, is defined by parts as 
follows:5 

.H(x) =
{
1, x > 0

0, x ≤ 0.
(A.102) 

The Dirac delta function is the derivative of the Heaviside function: 

.δ(x) = dH(x)

dx
, (A.103) 

4 The constant factor in Eq. (A.100) may differ from application and theoretical interest. 
5 Or as an indicator function, 

.H(x) := 1x>0. (A.101)
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while the ramp function6 is an antiderivative of the Heaviside step function: 

.

∫ x

−∞
H(x') dx' = x H(x). (A.105) 

A.10.5 Riemann Zeta Function 

The Riemann zeta function, sometimes called Euler-Riemann zeta function, is a 
function for complex variables in the form of .s = σ + it , defined as follows: 

.ζ(s) =
∞∑

n=1

1

ns

=
∫ ∞

0

xs−1

ex−1
dx. (A.106) 

Above and beyond that, Euler succeeded in proving the identity: 

.

∞∑
n=1

1

ns
=

∏
p, prime

1

1 − p−s
, (A.107) 

where on the right-hand side, the product extends over all prime numbers p, leading 
to the so-called Euler products. 

The zeta function satisfies the functional equation: 

.ζ(s) = 2s πs−1 sin
(πs

2

)
𝚪(1 − s) ζ(1 − s). (A.108) 

A brief list of specific values of the .ζ -function is given below: 

.ζ(2n) = (−1)n+1 B2n(2π)2n

2(2n)! , (A.109) 

in which .B2n is the 2n-th Bernoulli number: 

.ζ(−n) = (−1)n
Bn+1

n + 1
for n ≥ 0. (A.110) 

On the other hand, by analytic continuation, we have the following results: 

6 The ramp function is the unary real function defined as 

.R(x) =
{

x, x ≥ 0

0, x < 0.
(A.104)
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.ζ(−1) = − 1

12
. (A.111) 

.ζ(0) = −1

2
. (A.112) 

.ζ(1) = 1 + 1

2
+ 1

3
+ · · · (A.113) 

.ζ(2) = 1 + 1

22
+ 1

32
+ · · · = π2

6
. (A.114) 

A.10.6 The Sign Function 

The sign function returns the sign of a real number. It is defined as follows: 

.sgn(x) = d

dx
|x| =

⎧⎪⎪⎨
⎪⎪⎩

−1 x < 0,

0 x = 0

1 x > 0.

(A.115) 

An alternative representation of such function is 

.sgn = −1 + 2
∫ x

−∞
δ(z) dz. (A.116) 

A.11 Bessel Differential Equation 

The linear second-order ordinary differential equation 

.x2 d
2y

dx2 + x
dy

dx
+ (x2 − ν2)y = 0, (A.117) 

is called the Bessel equation. The number . ν is the order of the Bessel equation. 
This differential equation is named after Friedrich Wilhelm Bessel, a German 
mathematician and astronomer who studied it in detail and demonstrated that its 
solutions can be expressed using a special class of functions known as cylinder 
functions or Bessel functions. Assuming that . ν is non-integer and positive, the 
general solution of the Bessel equation can be written as
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.y (x) = AJν (x) + BJ−ν (x) , (A.118) 

where . A and . B are arbitrary constants and . Jν and .J−ν are Bessel functions of the 
first kind. These Bessel function can be represented by a series: 

.Jv (x) =
∞∑

z=0

(−1)z

𝚪 (z + 1) 𝚪 (z + ν + 1)

(x

2

)2z+ν

, (A.119) 

and 

.J−v (x) =
∞∑

z=0

(−1)z

𝚪 (z + 1) 𝚪 (z − ν + 1)

(x

2

)2z−ν

, (A.120) 

respectively. 
If . ν is an integer, the Bessel functions become dependent on each other: 

.J−ν(x) = (−1)νJν(x). In this case, the general solution is given by 

.y (x) = A Jν (x) + B Yν (x) , (A.121) 

where . A and . B are arbitrary constants, and . Yν is the Bessel function of the second 
kind, which can be expressed in terms of the Bessel functions of the first kind, 
namely, 

.Yν (x) = Jν (x) cos(πν) − J−ν (x)

sin(πν)
. (A.122) 

The modified Bessel equation is obtained replacing x for ix in the Bessel 
equation, becoming 

.x2 d
2y

dx2 + x
dy

dx

'
− (x2 − ν2)y = 0. (A.123) 

The general solution of this equation is given by 

.y (x) = A Jν (−ix) + B Yν (−ix) = C Iν (x) + DKν (x) , (A.124) 

where . A, . B, . C, and . D are arbitrary constants and . Iν and . Kν are the modified Bessel 
functions of the first and second kind. These functions can be represented as 

.Iν(x) = iνJν(ix) =
∞∑

z=0

1

z! 𝚪(z + ν + 1)

(x

2

)2z+ν

, (A.125) 

and
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.Kν(x) = π

2

I−ν (x) − Iν (x)

sin(πν)
, (A.126) 

respectively. 
The general solution of the differential equation 

.x2 d
2y

dx2
+ x

dy

dx
− (a2x2 + ν2)y = 0, (A.127) 

is given by 

.y (x) = AJν (ax) + BYν (ax) , (A.128) 

where . A and . B are arbitrary constants. 
To express a solution of the diffusion equation when it depends on the radial 

coordinate in a compact form, it is convenient to define the following function: 

.Q
(i)
α,β(w, z) ≡ Iα(w)Kβ(z) + (−1)iIβ(z)Kα(w). (A.129) 

A.11.1 Recurrence Formulas: Derivatives 

.
d

dx

[
xνJν(x)

] = xνJν−1(x). (A.130) 

.
d

dx

[
x−νJν(x)

] = −x−νJν+1(x). (A.131) 

.
d

dx

[
xνYν(x)

] = xνYν−1(x). (A.132) 

.
d

dx

[
x−νYν(x)

] = −x−νYν+1(x). (A.133) 

.
d

dx

[
xνIν(x)

] = xνIν−1(x). (A.134)
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.
d

dx

[
x−νIν(x)

] = x−νIν+1(x). (A.135) 

.
d

dx

[
xνKν(x)

] = −xνKν−1(x). (A.136) 

.
d

dx

[
x−νKν(x)

] = −x−νKν+1(x). (A.137) 

.
d

dx

[
xνQ(1)

α,α(a, x)
]

= −xνQ
(2)
α,α−1(a, x). (A.138) 

.
d

dx

[
xνQ(1)

α,α(x, a)
]

= xνQ
(2)
α,α−1(a, x). (A.139) 

.
d

dx

[
xνQ

(2)
α,α−1(x, a)

]
= −xνQ

(1)
α−1,α−1(a, x). (A.140) 

A.12 Solution of Differential Equations by Quadratures 

It is said that a differential equation is solved in quadratures if its general solution 
is expressed in terms of one or more integrals. The name quadrature originates 
from geometry, where quadrature means finding an area, a task overtaken in modern 
mathematics by integration. There is no known method to solve the general n-th 
order linear differential equation by quadratures if .n ≥ 2, only special cases, such as 
equations with constant coefficients. For example, consider the following ordinary 
differential equation (EDO): 

.
dy(x)

dx
= f (x), (A.141) 

where .y(a) is known. Then, to express the solution of this ODE in terms of an 
integral, we must integrate both sides from a to x (to avoid confusion with notation, 
first we have to set .x = x' in Eq. (A.141)), resulting in 

.y(x) − y(a) =
∫ x

a

f (x') dx'. (A.142) 

Finally, the general solution in quadratures is given by
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.y(x) = y(a) +
∫ x

a

f (x') dx'. (A.143) 

Moreover, if x lies within the interval .[a, b], and using the properties of the definite 
integrals, we can write Eq. (A.142) as 

.y(x) = y(a) +
∫ b

a

f (x') dx' −
∫ b

x

f (x') dx', (A.144) 

or 

.y(x) = y(a) +
∫ b

a

H(x − x') f (x') dx', (A.145) 

where .H(x) is the Heaviside function or discontinuous step function, the definition 
of which is given by Eq. (A.101). This function subtracts the over-value of the 
integral from x to b. 

Now, we can consider a second-order differential equation, that is, 

.
d2y(x)

dx2
= f (x), (A.146) 

and we need two conditions to obtain a solution. In this case, we will consider 

.y(a) = ya, y'(a) = y'
a. (A.147) 

By integrating Eq. (A.146), we obtain 

.
dy(x)

dx
= y'

a +
∫ x

a

f (x') dx', (A.148) 

and performing a second integration yields 

.y(x) = ya + y'
a (x − a) +

∫ x

a

∫ x''

a

f (x') dx' dx''. (A.149) 

The (dummy) variables of integration are . x' and . x'', and both integrals have a as 
starting point. This allows us to represent the region of integration in the .x' x''-plane, 
where the intersection .(a, a) is shown on the lower left corner as a kind of origin 
(see Fig. A.1). The corresponding region of integration for expression (A.149) is the 
intersection of the lines generated by the integration limits, which corresponds to 
the upper triangle in the figure. 

Furthermore, the same region can also be obtained if the integration order is 
inverted, meaning that the integration with respect to . x'' will be carried out first, and 
then we will perform the integration with respect to the . x' variable. This is often
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Fig. A.1 The order of integration of Eq. (A.149) can be switched if the integration region defined 
by its limits is the same. The region in the .x' x''-plane is defined (visually) by drawing straight 
lines: From the inner integral, we draw two vertical lines (dashed green), one at .x' = a and the 
other at .x' = x''. Then we draw two horizontal lines (dashed blue) at .x'' = a and .x = x. The  
integration limits also define an equality, .x'' = x', that is represented on the plane by a dashed red 
straight tilted line. The region formed by the intersection is the upper triangle filled in orange, but 
the same region can be obtained if the integration is carried out looking first at the horizontal lines 
.x'' = x' and .x'' = x, and then the vertical ones at .x' = a and .x' = x. This last step allows us to 
write Eq. (A.149) as Eq. (A.151) 

convenient and simplifies the calculations. Now, the limits need to be changed. From 
the figure, we can ascertain that the new form for Eq. (A.149) is 

.y(x) = ya + y'
a (x − a) +

∫ x

a

f (x')
∫ x

x'
dx'' dx', (A.150) 

which can be integrated to finally obtain 

.y(x) = ya + y'
a (x − a) +

∫ x

a

(x − x') f (x') dx'. (A.151) 

This last equation is solved in quadratures as its solution is expressed in terms of an 
integral.



Appendix B 
Vector Analysis of Differential Operators 

The math involved in the computation of different features of the theory of 
diffusion under confinement requires the knowledge of differential operators in 
various coordinates. This appendix is intended to be a shortcut in the description 
of differential operators, as well as a brief reminder on how a specific coordinate 
system is arranged. Even though there are at least 11 coordinate systems where 
vector analysis can be performed, the discussion in this section is limited to 
rectangular (Cartesian) coordinates, circular cylindrical coordinates, and spherical 
polar coordinates. 

B.1 Rectangular (Cartesian) Coordinates 

Rectangular (or Cartesian) coordinates are defined by a set of three lines perpen-
dicular to one another (see Fig. B.1). Each line eventually becomes a number line. 
Every position within the system is fully determined by specifying its components 
along all axes. Then one reads .(x, y, z) as the position. 

The Cartesian representation of the gradient . ∇, divergence . ∇·, and Laplacian . ∇2

acting on a function .f = f (x, y, z) or vector .u = (ux, uy, uz) are given below 

.∇f = ∂f

∂x
êi + ∂f

∂y
êj + ∂f

∂z
êk. (B.1) 

.∇ ·u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂x
. (B.2) 
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Fig. B.1 Three-dimensional 
rectangular (Cartesian) 
coordinate system with origin 
O and axis lines .x, y and z, 
oriented as depicted in the 
figure. A specific location is 
represented by a point with 
coordinates . P(x, y, z)

.∇ × u =
(

∂uz

∂y
− ∂uy

∂z

)
êi +

(
∂ux

∂z
− ∂uz

∂x

)
êj +

(
∂uy

∂x
− ∂ux

∂y

)
êk. (B.3) 

.∇2f = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
. (B.4) 

B.2 Circular Cylindrical Coordinates 

In this case, the three curvilinear coordinates are labeled as .(r, φ, z), whose unitary 
vectors are also orthogonal. From Fig. B.2 one can verify that .r cosφ and .r sinφ are 
the projections along the x- and y-axes, respectively, while z stands for the height. 

The gradient . ∇, divergence . ∇·, and Laplacian . ∇2 acting on a function . f =
f (r, φ, z) or vector .u = (r, φ, z) are 

.∇f = ∂f

∂r
êr + 1

r

∂f

∂φ
êφ + ∂f

∂z
êk. (B.5) 

.∇ ·u = 1

r

∂(r ur)

∂r
+ 1

r

∂uφ

∂φ
+ ∂uz

∂z
. (B.6) 

. ∇ × u =
(
1

r

∂uz

∂φ
− ∂uφ

∂z

)
êr +

(
∂ur

∂z
− ∂uz

∂r

)
êφ + 1

r

[
∂(r uφ)

∂r
− ∂ur

∂φ

]
êk.

(B.7) 

.∇2f = 1

r

∂

∂r

(
r
∂f

∂r

)
+ 1

r2

∂2f

∂φ2 + ∂2f

∂z2
. (B.8) 

For which we identify 

.x = r cosφ, y = r sinφ, z = z, (B.9)
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Fig. B.2 Three-dimensional 
circular cylindrical coordinate 
system together with their 
equivalent Cartesian 
projections. A specific 
location is represented by a 
point with coordinates 
. P(r, φ, z)

in addition to 

.r =
√

x2 + y2, φ = arctan
(y

x

)
. (B.10) 

The relations between unit vectors in Cartesian coordinates and unit vectors in 
circular cylindrical coordinates are 

.

êx = cosφêr − sinφêφ, êr = cosφêx + sinφêy,

êy = sinφêr + cosφêφ, êφ = − sinφêx + cosφêy,

êk = êk.

(B.11) 

B.3 Spherical Coordinates 

The spherical polar coordinate system is constructed as shown in Fig. B.3, where r 
is the radial distance of a particular point from the origin, . θ is the angle with respect 
to the polar axis, and . φ corresponds to the angle of rotation from the initial meridian 
plane. 

From the figure, one can see that 

.x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (B.12) 

along with 

. r =
√

x2 + y2 + z2, φ = arctan
(y

x

)
and θ = arctan

(√
x2 + y2

z2

)
.

(B.13)
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Fig. B.3 Three-dimensional 
spherical polar coordinates’ 
system together with their 
equivalent Cartesian 
projections. A specific 
location is represented by a 
point with coordinates 
. P(r, θ, φ)

The gradient . ∇, divergence . ∇·, and Laplacian . ∇2 acting on a function . f (r, θ, φ)

or vector .u = (r, θ, φ) are 

.∇f = ∂f

∂r
êr + 1

r

∂f

∂θ
êθ + 1

r sin θ

∂f

∂φ
êφ. (B.14) 

.∇ ·u = 1
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The relations between unit vectors in Cartesian coordinates and unit vectors in 
spherical coordinates are 

.

êx = sin θ cosφêr + cos θ cosφêθ − sinφêφ,

êr = sin θ cosφêx + sin θ sinφêy + cos θ êk,

êy = sin θ sinφêr + cos θ sinφêθ + cosφêφ,

êθ = cos θ cosφêx + cos θ sinφêy − sin θ êk,

êk = cos θ êr − sin θ êθ ,

êφ = − sinφêx + cosφêy.

(B.18)



Appendix C 
Differential Geometry in a Nutshell 

Differential geometry is a mathematical discipline that studies the geometry of 
smooth shapes and smooth spaces, also referred to as smooth manifolds. It makes 
use of the techniques of differential calculus, integral calculus, linear algebra, 
and multilinear algebra. We use the concept of a manifold to mathematically 
describe curved spaces, defined as a topological space that is modeled closely 
on Euclidean space locally but may vary widely in its overall properties, in 
simple terms, a smoothly curved space that is locally flat. Therefore, in a small 
enough neighborhood, Euclidean geometry applies. The line, for instance, is a one-
dimensional manifold since each point on it can be described by a single coordinate. 

If a manifold is differentiable and has a symmetric tensor, it is known as a 
Riemannian manifold and has a line element 

.dl2 = gijdx
idxj , (C.1) 

where . gij is the metric, . dxi and .dxj are the coordinate differentials, and the Einstein 
summation convention is used, i.e., when the same index appears twice in the same 
term, the term is implicitly summed over all possible values for that index, and 
no summation sign is needed. It is worth noting that the metric determines the 
coefficients of the line element. For example, the three-dimensional Euclidean line 
element in Cartesian coordinates is given by 

.dl2 = dx2 + dy2 + dz2. (C.2) 

In such a case, the Euclidean metric results in 

.gij =
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ . (C.3) 
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The metric has an inverse that is written with raised indices defined as 

.gikg
kj = δ

j
i , (C.4) 

where . δ
j
i is the Kronecker delta function defined as follows: 

.δ
j
i =

{
1, for i = j

0, for i /= j.
(C.5) 

Now, let us find the line element and metric for Euclidean two-dimensional space 
using polar coordinates. The polar angle . θ and radius r are defined in terms of the 
Cartesian coordinates as .x = r cos θ and .y = r sin θ . Then, 

.dx = cos θ dr − r sin θ dθ, (C.6) 

and 

.dy = sin θ dr + r cos θ dθ. (C.7) 

Substituting these two equations into (C.2) leads to 

.dl2 = dr2 + r2 dθ2, (C.8) 

resulting in the following metric tensor: 

.gij =
(
1 0
0 r2

)
. (C.9) 

The inverse is found by observing that 

.grrgrr = 1 ⇒ grr = 1, (C.10) 

and that 

.gθθgθθ =θθ rr ⇒ gθθ = 1

rr
, (C.11) 

consequently, 

.gij =
⎛
⎝1 0

0
1

r2

⎞
⎠ . (C.12)
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By definition, the relation between metric tensor and its inverse, in terms of 
components, is defined as follows: . gαγ gγβ = δα

β

.δα
β ≡ ∂xα

∂xβ
, (C.13) 

where the partial derivative is either 1, if .α = β, or 0 otherwise. 
Scalars, contravariant vectors, covariant vectors or one-forms, and tensors are 

four examples of objects that live on a manifold. To be more specific, scalars, 
contravariant vectors, and covariant vectors are all different types of tensors. 
The transformation properties of the components of tensors in general are basis-
independent, which means that if a tensor equation is true in one coordinate system, 
it is true in all coordinate systems. 

We commonly describe a vector by the number of basis vectors that must be 
added to form it. However, there is another method to express a vector in terms of 
basis vectors. This is accomplished by taking the vector’s dot product with each of 
the basis vectors: Assume that in the first scenario, we double the length of each of 
the basis vectors. As a result, the components decrease by double. On the contrary, 
decreasing the length of the basis vectors causes the vector’s components to increase 
by the same amount. Because these two values change in reverse order, we refer to 
them as the vector’s contravariant components. Form the same reason, contravariant 
components are specified using superscripts, opposite of basis vectors which are 
specified with subscripts. A contravariant vector, .V = V αeα , can be expanded into 
a linear combination of its components and coordinate basis, for example, in three 
dimensions: 

.V = V 1e1 + V 2e2 + V 3e3. (C.14) 

However, if we describe the vector in terms of its dot product with each of the 
basis vectors, then doubling the length of the basis vectors will double its related 
dot product. As a result, increasing the length of the basis vector increases the dot 
product. On the contrary, as the length of the basis vectors reduces, so does the dot 
product. Because both quantities vary in the same way, we refer to them as covariant 
components to describe the vector. 

The covariant vectors are always denoted by a lower index and its components 
are given by the dot product of . V with the basis vector . eα , namely, 

.Vα = V · eα. (C.15) 

Generally speaking, any system of quantities, which is transformed according to 
the transformation law 

.V 'α = ∂x'α

∂xβ
V β, (C.16)
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is called contravariant vector, where .V β are the components of the contravariant 
vector expressed in the original . xβ coordinate system and .V 'α are the components 
of the same contravariant vector expressed in the new . x'α coordinate system. The 
partial derivative term represents a transformation matrix, which describes the 
relationship between the old and new coordinate systems. 

Any system of quantities, which is transformed according to the transformation 
law 

.V '
α = ∂xβ

∂x'α Vβ, (C.17) 

is called covariant vector or one-form, where . Vβ are the components of the covariant 
vector expressed in the original . xβ coordinate system and . V '

α are the components of 
the same covariant vector expressed in the new . x'α coordinate system. 

A contravariant vector is a tangent vector to a parameterized curve, since a 
covariant vector is the gradient of a scalar field. If this parametric curve is, for 
example, the world line of a particle moving through spacetime, the four-velocity is 
a contravariant vector given by 

.Uμ = dxμ

dτ
=
(
dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
, (C.18) 

where the four-velocity is defined as the rate of change of the particle’s four-position 
.(t, x, y, z) with respect to the proper time . τ . 

Now, consider a scalar field . φ function of . xβ (. β=0,1,2,3). Then, its gradient 
components are given by 

.
∂φ

∂xβ
=
(

∂φ

∂x0 ,
∂φ

∂x1 ,
∂φ

∂x2 ,
∂φ

∂x3

)
. (C.19) 

Each partial derivative is a component of the covariant vector. 
Generally speaking, when differentiating a tensor, we have to take into account 

the derivatives of the basis vectors. Consider a contravariant vector . V α . Then, using 
the product rule, 

.
∂Ṽ α

∂xβ
= ∂V α

∂xβ
eα + V α ∂eα

∂xβ
. (C.20) 

The Christoffel symbols or connection coefficients .𝚪
γ
αβ are given by 

.
∂eα

∂xβ
= 𝚪

γ
αβeγ , (C.21) 

and represent the rate of change of components . V α with respect to . xβ . In an  n-
dimensional Riemannian manifold, there are . n3 different Christoffel symbols.
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To calculate the Christoffel symbols of the two-dimensional Euclidean space 
using polar coordinates, let us consider the transformation rule (C.16): 

.e'
α = ∂xβ

∂x'α eβ. (C.22) 

Therefore, 

.er = ∂x

∂r
ex + ∂y

∂r
ey = cos θ ex + sin θ ey, (C.23) 

and 

.eθ = ∂x

∂θ
ex + ∂y

∂θ
ey = −r sin θ ex − r cos θ ey. (C.24) 

Then, the derivatives are given by 

.
∂er

∂r
= 0, (C.25) 

.
∂er

∂θ
= − sin θ ex + cos θ ey, (C.26) 

.
∂er

∂θ
= ∂eθ

∂r
= 1

r
eθ , (C.27) 

.
∂eθ

∂r
= − sin θ ex + cos θ ey. (C.28) 

.
∂eθ

∂θ
= −r cos θ ex − r sin θ ey, (C.29) 

and 

.
∂eθ

∂θ
= −r er . (C.30) 

From these last relations, the Christoffel symbols finally become 

.𝚪θ
rθ = 𝚪θ

θr = 1

r
, 𝚪r

θθ = −r, 𝚪r
rθ = 𝚪r

θr = 𝚪r
rr = 𝚪θ

rr = 𝚪θ
θθ = 0. (C.31) 

A tensor is a function that maps contravariant and covariant vectors to a real 
number. Tensors are classified according to their rank or type. The rank is given by 
the number of indices, and the type .(n,m) is given by the n number of upper indices 
and m number of lower indices. For example, the type .(0, 0) is a scalar, the type
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.(1, 0) is a contravariant vector, and the type .(0, 1) is a covariant vector or one-form. 
These two tensors can be multiplied to form a rank-2 tensor, namely, 

.T α
β = V αWβ. (C.32) 

For example, the Kronecker delta . δα
β is a rank-2 tensor that transforms as 

.δ'α
β = ∂x'α

∂xμ

∂xν

∂x'β δμ
ν . (C.33) 

Lastly, we should mention the meaning of contraction, one of the rules of 
tensor algebra. By summing over identical upper and lower indices, a tensor can 
be contracted. For example, .Tβ = AαβBα , where the upper and lower . α indices are 
summed over.
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